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Abstract 12 

Purpose: Robust optimization (RO) methods are applied to intensity-modulated proton therapy (IMPT) 13 

treatment plans to ensure their robustness in the face of treatment delivery uncertainties, such as 14 

proton range and patient setup errors. However, the impact of those uncertainties on the biological 15 

effect of protons has not been specifically considered. In this study, we added biological effect-based 16 

objectives into a conventional RO cost function for IMPT optimization to minimize the variation in 17 

biological effect. 18 

Methods: One brain tumor case, one prostate tumor case and one head & neck tumor case were 19 

selected for this study. Three plans were generated for each case using three different optimization 20 

approaches: planning target volume (PTV)-based optimization, conventional RO, and RO incorporating 21 

biological effect (BioRO). In BioRO, the variation in biological effect caused by IMPT delivery 22 

uncertainties was minimized for voxels in both target volumes and critical structures, in addition to a 23 

conventional voxel-based worst-case RO objective function. The biological effect was approximated by 24 

the product of dose-averaged linear energy transfer (LET) and physical dose. All plans were normalized 25 

to give the same target dose coverage, assuming a constant relative biological effectiveness (RBE) of 1.1. 26 

Dose, biological effect, and their uncertainties were evaluated and compared among the three 27 

optimization approaches for each patient case.  28 

Results: Compared with PTV-based plans, RO plans achieved more robust target dose coverage and 29 

reduced biological effect hot spots in critical structures near the target. Moreover, with their sustained 30 

robust dose distributions, BioRO plans not only reduced variations in biological effect in target and 31 

normal tissues but also further reduced biological effect hot spots in critical structures compared with 32 

RO plans. 33 



Conclusion: Our findings indicate that IMPT could benefit from the use of conventional RO, which would 34 

reduce the biological effect in normal tissues and produce more robust dose distributions than those of 35 

PTV-based optimization. More importantly, this study provides a proof of concept that incorporating 36 

biological effect uncertainty gap into conventional RO would not only control the IMPT plan robustness 37 

in terms of physical dose and biological effect but also achieve further reduction of biological effect in 38 

normal tissues.   39 
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1. Introduction 42 

 Proton beams have the ability to deposit dose over a confined distance at the end of the beam 43 

range, namely the Bragg peak, and almost no dose is released beyond the peak. This characteristic of 44 

proton beams provides an accurate localization of dose in three dimensions. As a result, intensity-45 

modulated proton therapy (IMPT) delivered by pencil-beam scanning can generate highly conformal and 46 

homogeneous doses to target volumes with complex shapes while minimizing the undesired dose to 47 

adjacent organs at risk (OARs) (Lomax et al. 2001). However, proton beams are more sensitive to 48 

uncertainties that arise during treatment than are photon beams (Steneker, Lomax, and Schneider 49 

2006). Indeed, in the most advanced form of IMPT, multifield optimized IMPT, the final dose distribution 50 

is obtained by superimposing all individual inhomogeneous proton fields, which may make IMPT even 51 

more sensitive to uncertainties than conventional proton modalities such as passive scattering proton 52 

therapy (PSPT) or single field uniform dose (SFUD) IMPT (Albertini et al. 2008). To address this issue of 53 

uncertainty, robust optimization (RO) is commonly used in IMPT treatment planning (Bangert, Hennig, 54 

and Oelfke 2013; Chen et al. 2012; Fredriksson, Forsgren, and Hårdemark 2011; Gordon et al. 2010; 55 

Lomax 2008b, 2008a; McGowan et al. 2015; Perkó et al. 2016; Pflugfelder, Wilkens, and Oelfke 2008; 56 

Unkelbach et al. 2009; Unkelbach, Chan, and Bortfeld 2007; Wahl et al. 2017).   57 

 The current practice of proton therapy uses a constant relative biological effectiveness (RBE) 58 

value of 1.1 to account for the biological effect of the treatment, as recommended by the International 59 

Commission on Radiation Units and Measurements (International Commission on Radiation Units and 60 

Measurements 2010). This value reflects the basic assumption that protons are 10% more biologically 61 

effective than photons. However, RBE varies along the treatment field, for instance with linear energy 62 

transfer (LET), tissue-specific parameters (defined by α and β), dose per fraction, and other factors 63 

(McNamara, Schuemann, and Paganetti 2015; Paganetti et al. 2002). The use of variable RBE in 64 

treatment planning is challenging because of considerable model uncertainties for clinical tissues, 65 



because existing experimental biological data are insufficient to clearly correlate RBE and dose per 66 

fraction or (α/β)x for in vivo endpoints (Carabe et al. 2012; Giantsoudi et al. 2013; Paganetti et al. 2002; 67 

Resch et al. 2017). Moreover, treatment plans that use a variable RBE-weighted dose often deliver low 68 

physical doses in parts of the target because they assume that RBE is greater than 1.1 in areas of high 69 

LET (Paganetti 2014). On the other hand, if RBE is underestimated, critical structures may receive 70 

overdosage (Unkelbach et al. 2016).  71 

 Although factors such as tissue type, endpoint, and dose affect the relationship of RBE to LET, 72 

generally, biological effectiveness increases as LET increases (Carabe et al. 2013; Grassberger et al. 2011; 73 

McNamara, Schuemann, and Paganetti 2015; Polster et al. 2015; Wedenberg, Lind, and Hårdemark 74 

2013). Unlike other biological parameters, LET can be calculated with high accuracy using analytical 75 

methods or Monte Carlo simulations (Cortés-Giraldo and Carabe 2015; Marsolat et al. 2016; Wilkens and 76 

Oelfke 2003). Previous studies have demonstrated that active scanning can shape the distribution of 77 

dose-averaged LET (i.e., the biological effect) without significantly altering the distribution of physical 78 

dose ( Giantsoudi et al. 2013; Grassberger et al. 2011) because IMPT has a much higher degree of 79 

freedom for modulation than do other proton therapy modalities (Cao et al. 2018). Therefore, recent 80 

studies have attempted to optimize biological dose by simultaneously optimizing physical dose and  LET 81 

distribution (An et al. 2017; Bassler et al. 2010; Cao et al. 2018; Fager et al. 2015; Giantsoudi et al. 2013; 82 

Grassberger et al. 2011; Inaniwa et al. 2017; Unkelbach et al. 2016). The primary focus of these studies 83 

was on increasing LET in radioresistant tumors or reducing it in critical normal tissues. However, the 84 

impact of IMPT delivery uncertainties on biological effect has not been carefully evaluated or included in 85 

optimization.  86 

 The aim of this work is to introduce a RO model for IMPT treatment plans that can achieve a 87 

robust biological effect distribution while maintaining satisfactory robust dose coverage in target 88 

volumes and sparing of critical structures. In the approach described here, the sum of the differences 89 



between the highest and the lowest biological effect in each voxel, approximated by the product of dose 90 

and LET, was penalized to supplement a voxel-based worst-case RO cost function. This proof-of-concept 91 

study is demonstrated by IMPT treatment planning for three patient cases.  92 

2. Methods and materials 93 

2.1 Biological effect-based robust optimization (BioRO) 94 

 In IMPT, each beam consists of multiple beamlets that irradiate the tumor volume. The physical 95 

dose and LET delivered to voxel 𝑖 by beamlet 𝑗 in unit intensity are indicated as 𝐷𝑖𝑗 and 𝐿𝑖𝑗. 𝑤𝑗
2 was used 96 

to denote the intensity of beamlet 𝑗 to preserve the nonnegativity. Thus, for beamlet set 𝑁𝐵, the total 97 

dose 𝐷𝑖, dose-averaged LET 𝐿𝑖, and LET-weighted dose (LETxD) 𝐿𝐷𝑖 in voxel 𝑖 can be calculated as 98 

follows: 99 

𝐷𝑖 = ∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗                                                                                      (1) 100 

𝐿𝑖 =
∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗

2𝑁𝐵
𝑗

∑ 𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗

                                                                                     (2) 101 

𝐿𝐷𝑖 = ∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗                                                                               (3) 102 

A research treatment planning platform, matRad (Wieser et al. 2017), was used to calculate 𝐷𝑖𝑗 and 𝐿𝑖𝑗 103 

using a singular value decomposed pencil beam algorithm (Bortfeld, Schlegel, and Rhein 1993). 104 

 Commonly, IMPT uncertainties are handled by using margins. The clinical target volume (CTV) is 105 

expanded into the planning target volume (PTV), and planning is performed to irradiate the latter (Chen 106 

et al. 2012; Fredriksson, Forsgren, and Hårdemark  2011; Liu et al. 2012). For PTV-based optimization, a 107 

standard quadratic objective function is minimized as follows (Oelfke and Bortfeld 2001): 108 

𝐹𝑃(𝑤𝑗) = 𝑝𝑇
1

𝑁𝑇
∑ (𝐷𝑖 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1 + 𝑝𝑂𝐴𝑅

1

𝑁𝑂𝐴𝑅
∑ 𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅) × (𝐷𝑖 − 𝐷0,𝑂𝐴𝑅)

2𝑁𝑂𝑅𝐴
𝑖=1    (4)                109 



where 𝑁𝑇, and 𝑁𝑂𝐴𝑅 are sets of voxels in target volumes and OARs, respectively. Parameters 𝑝 denote 110 

the penalty weights of the corresponding organs to control the priorities between competing objectives. 111 

𝐷0 terms are the prescribed doses required by the treatment plans. The heavy-side step function 112 

𝐻(𝐷𝑖 − 𝐷0,𝑂𝐴𝑅) is a discontinuous function whose value is 0 for a nonpositive argument and 1 for a 113 

positive argument. 114 

 As alternatives to geometric margins, optimization methods that explicitly take setup and range 115 

uncertainties into account have been proposed (Fredriksson, Forsgren, and Hårdemark 2011; Liu et al. 116 

2012; Lowe et al. 2017; Pflugfelder, Wilkens, and Oelfke 2008; Unkelbach et al. 2009). In these methods, 117 

dose distributions for multiple uncertainty scenarios are computed, and treatment plans are optimized 118 

with respect to all of the scenarios simultaneously. In this study, a voxel-based worst-case RO (Liu et al. 119 

2012) method was used to penalize excessively high and low doses to target volumes and excessively 120 

high doses to OARs: 121 

𝐹𝑅(𝑤𝑗) = 𝑝𝑇,𝑚𝑎𝑥
1

𝑁𝑇
∑ (𝐷𝑖,𝑚𝑎𝑥 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1 + 𝑝𝑇,𝑚𝑖𝑛

1

𝑁𝑇
∑ (𝐷𝑖,𝑚𝑖𝑛 − 𝐷0,𝑇)

2𝑁𝑇
𝑖=1         122 

+ 𝑝𝑂𝐴𝑅
1

𝑁𝑂𝐴𝑅
∑ 𝐻(𝐷𝑖,𝑚𝑎𝑥 − 𝐷0,𝑂𝐴𝑅) × (𝐷𝑖,𝑚𝑎𝑥 − 𝐷0,𝑂𝐴𝑅)

2𝑁𝑂𝑅𝐴
𝑖=1           (5) 123 

Note that 𝐷𝑖,𝑚𝑎𝑥 = max
𝑚

{𝐷𝑖
𝑚} and 𝐷𝑖,𝑚𝑖𝑛 = min

𝑚
{𝐷𝑖

𝑚} , 𝑚 ∈ 𝑀, indicate the maximum and minimum 124 

dose, respectively, among nine (|𝑀|=9) possible scenarios of voxel 𝑖, where m indicates uncertainty 125 

scenario and 𝐷𝑖
𝑚 indicate the dose calculation for voxel 𝑖 in scenario 𝑚. 126 

 According to Unkelbach et al. (2016), the RBE-weighted dose 𝑏𝑖 can be given using equation (6), 127 

where 𝑐 is a scaling parameter set to 0.04 μm/keV. It consists of two components, a physical component 128 

(𝐷𝑖) and a biological component (𝑐𝐿𝐷𝑖). We consider the latter as an approximation of the biological 129 

effect from all incident proton fields for a given voxel.  𝐿𝐷𝑖,𝑚𝑎𝑥 = max
𝑚

{𝐿𝐷𝑖
𝑚} and 𝐿𝐷𝑖,𝑚𝑖𝑛 = min

𝑚
{𝐿𝐷𝑖

𝑚}  130 
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denote the maximum and minimum LET-weighted dose, respectively, over all nine scenarios of voxel 𝑖, 131 

where 𝐿𝐷𝑖
𝑚 indicate the product of dose and LET for voxel 𝑖 in scenario 𝑚. 132 

𝑏𝑖 = ∑ (1 + 𝑐𝐿𝑖𝑗)𝐷𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 = 𝐷𝑖 + 𝑐𝐿𝐷𝑖                                                (6) 133 

 To reduce the variation in biological effect in each voxel 𝑖, we propose to add minimization of 134 

the uncertainty gap, i.e., 𝐿𝐷𝑖,𝑚𝑎𝑥 − 𝐿𝐷𝑖,𝑚𝑖𝑛, into the conventional RO model. This approach follows the 135 

principles of info-gap decision theory (Ben-Haim 2006; Matrosov, Woods, and Harou 2013), which seeks 136 

to maximize the robustness of a decision given minimum performance requirements. In other words, 137 

only the robustness of biological effect is optimized; biological effect itself is not maximized or 138 

minimized in either target or normal tissues.  139 

 Therefore, we added the L2-norm of the uncertainty gap of biological effect to (5) to construct 140 

the quadratic objective function for the biological effect-based RO (BioRO): 141 

𝐹𝐵(𝑤𝑗) = 𝐹𝑅(𝑤𝑗) +  𝑝𝑇,𝑔𝑎𝑝

1

𝑁𝑇
∑(𝐿𝐷𝑖,𝑚𝑎𝑥 − 𝐿𝐷𝑖,𝑚𝑖𝑛)

2

𝑁𝑇

𝑖=1

 142 

+𝑝𝑂𝐴𝑅,𝑔𝑎𝑝
1

𝑁𝑂𝐴𝑅
∑ (𝐿𝐷𝑖,𝑚𝑎𝑥 − 𝐿𝐷𝑖,𝑚𝑖𝑛)

2𝑁𝑂𝐴𝑅
𝑖=1                                      (7) 143 

In this study, PTV-based optimization, conventional RO, and BioRO models were solved by a quasi-144 

Newton method, the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (Liu and Nocedal 145 

1989). We implemented each of the models in our in-house IMPT treatment planning system (Cao et al. 146 

2013; Cao et al. 2014). Calculations of dose and LET using unit beamlet intensity were performed using 147 

matRad, as mentioned earlier.  148 

2.2 Patient cases and treatment planning 149 



 Three IMPT plans were generated to illustrate the PTV-based, RO, and BioRO methods for three 150 

clinical cases: a brain tumor case, a prostate tumor case and a head & neck tumor case (Table 1). For the 151 

brain tumor case, three sets of angle combinations (gantry and couch) were used: (260°, 10°), (100°, 152 

350°), and (180°, 0°). Setup uncertainties of ± 3 mm in three dimensions and range uncertainties of ± 153 

3.5% of the nominal range were assumed. Two beams, (90°, 0°) and (270°, 0°), were used for the 154 

prostate tumor case, with setup uncertainties of ± 5 mm and range uncertainties of ± 3.5% of the 155 

nominal range. Similarly, setup uncertainties of ±3 mm and range uncertainties of ± 3.5% of the beams’ 156 

nominal range were assumed in the head and neck tumor case under three beams: (180°, 0°), (65°, 345°) 157 

and (300°, 20°). Therefore, both RO and BioRO considered nine scenarios, i.e., one nominal scenario 158 

(without the consideration of uncertainties), and eight uncertainty scenarios, including six setup 159 

uncertainty scenarios by shifting the patient’s CT image (Albertini et al 2011) and two range uncertainty 160 

scenarios by scaling the nominal beamlet ranges (Schaffner and Pedroni 1998). The prescribed dose to 161 

target volumes and field arrangements were the same as those used in the clinical treatments. More 162 

planning details are listed in Table 1. The doses prescribed to all OARs were set to 0 in the optimizations. 163 

 Upon the completion of the optimization step for each of the three approaches, fixed RBE (1.1)-164 

weighted dose (RWD) and LETxD were calculated for each of the nine scenarios. Note that each of the 165 

three plans was normalized to have 98% of the CTV covered by the prescribed dose. Dose-volume 166 

histograms (DVHs) and LETxD-volume histograms for the nominal scenario were used to quantify the 167 

plans’ quality. To evaluate and compare the plan robustness, the envelope of all DVHs or LETxD-volume 168 

histograms in band graphs (Trofimov et al. 2010) and maps of the uncertainty gap for all nine scenarios 169 

were displayed. The difference between the worst and best value of a DVH point, such as Dv%, is 170 

considered as the bandwidth at Dv% for a given organ. 171 

3. Results 172 



 Figure 1 shows the DVH and LETxD volume histogram bands for the CTV and the brainstem for 173 

the three differently optimized IMPT plans in the brain tumor case. The DVH bands for the CTV were 174 

narrower for the RO and BioRO plans than for the PTV-based plan, indicating that the RO and BioRO 175 

plans were less sensitive to setup and range uncertainties than was the PTV-based plan. As we expected, 176 

the BioRO approach was able to generate robust physical dose distributions in the target volume that 177 

were comparable to those generated by the RO approach. Moreover, the DVH bands for the brainstem 178 

were similar for all three optimization techniques. We should note that the mean dose to the brainstem 179 

increased from 25.9 Gy with the RO plan to 27.8 Gy with the PTV-based plan and 28.3 Gy with the BioRO 180 

plan. However, the maximum dose to the brainstem was similar in all three plans; the maximum values 181 

(worst-case) of D2% were 57.9 Gy, 54.5 Gy, and 54.8 Gy for the PTV-based, RO, and BioRO plans, 182 

respectively (Table 2).  183 

 In contrast, LETxD volume histogram bands of the three plans exhibited pronounced differences 184 

(Figure 1). The robustness of the LETxD distributions in both the CTV and the brainstem was markedly 185 

improved by the BioRO approach. For instance, the bandwidth at D98% of c LETxD in the CTV was 0.4 Gy 186 

for the BioRO plan, 0.7 Gy for the PTV-based plan, and 0.5 Gy for the RO plan. The bandwidth at D2% of c 187 

LETxD in the CTV was 0.7 Gy for the BioRO plan, but 2.0 Gy and 2.1 Gy for the PTV-based plan and the 188 

RO plan, respectively. Similarly, the bandwidth at D2% of c LETxD in the brainstem was 0.7 Gy for the 189 

BioRO plan, smaller than the 2.6 Gy and 1.6 Gy bandwidths for the PTV-based and RO plans. The 190 

bandwidth at the mean value of c LETxD in the brainstem was also lower for the BioRO plan, 0.9 Gy 191 

compared to 2.6 Gy and 2.0 Gy for the PTV-based plan and the RO plan, respectively (Table 2).  192 

 The results for the prostate tumor case are shown in Figure 2 and Table 3. The differences in 193 

dose and LETxD distributions among the three IMPT plans were similar for the prostate and brain tumor 194 

cases. Note that the improvement in the robustness of LETxD with the BioRO plan in the bladder and 195 

rectum was modestly lower than in the brainstem as shown by the brain tumor case because of the 196 



anatomy and the beam arrangement. The bandwidth at D2% of c LETxD in the bladder was 1.7 Gy for the 197 

BioRO plan, smaller than the 3.8 Gy and 2.2 Gy bandwidths for the PTV-based plan and the RO plan, 198 

respectively (Table 3). The bandwidth at the mean value of c LETxD in the bladder was 0.4 Gy for the 199 

BioRO plan, 0.5 Gy for the PTV-based plan, and 0.7 Gy for the RO plan. In the rectum, the bandwidth at 200 

D2% of c LETxD was 2.1 Gy for the BioRO plan, compared to 4.3 Gy and 2.4 Gy for the PTV-based plan and 201 

the RO plan, respectively. The bandwidth at the mean value of c LETxD in the rectum was 0.4 Gy for the 202 

BioRO plan, compared to 0.5 Gy and 0.9 Gy for the PTV-based plan and the RO plan. 203 

 The DVHs, c LETxD volume histograms and their statistics for the head and neck tumor case are 204 

shown in Figure A1, B1 and Table 4. The BioRO approach produced plan with more robust LETxD 205 

distribution than did the RO and PTV-based methods, and similar dose distribution compared to RO plan 206 

which is better than PTV-based plan. The bandwidth at D2% of c LETxD in the larynx was 0.8 Gy for the 207 

BioRO plan, 2.1 Gy for the PTV-based plan, and 1.2 Gy for the RO plan. The bandwidth at the mean value 208 

of c LETxD in the larynx was 0.4 Gy for the BioRO plan, 0.8 Gy for the PTV-based plan, and 1.0 Gy for the 209 

RO plan. In the parotid (right), the bandwidth at D2% of c LETxD was 0.8 Gy for the BioRO plan, smaller 210 

than the 1.5 Gy and 1.2 Gy bandwidths for the PTV-based and RO plans; and the bandwidth at mean 211 

value of c LETxD was 0.4 Gy for the BioRO plan, smaller than the 0.7 Gy and 0.6 Gy bandwidths for the 212 

PTV-based and RO plans. Similarly, the bandwidth at D2% of c LETxD in the parotid (left) was 1.1 Gy for 213 

the BioRO plan compared to 1.3 Gy for the PTV plan and 2.2 Gy for the RO plan; the bandwidth at mean 214 

value of c LETxD in the parotid (left) was 0.2 Gy for the BioRO plan compared to 0.2 Gy for the PTV plan 215 

and 0.3 Gy for the RO plan. 216 

 Figure 3 shows uncertainty maps for the three plans for the brain tumor case. The RO method 217 

was the most robust in terms of physical dose distribution in the target and brainstem. Moreover, the 218 

RO plan was more robust than the PTV-based plan in terms of LETxD. The BioRO method, which 219 

minimized the variation in biological effect, led to a remarkable reduction of LETxD hot spots, especially 220 



in the brainstem. Meanwhile, the robustness of the physical dose distribution for the BioRO plan was 221 

improved compared to the PTV-based plan.  222 

 As shown in Figure 4, the biological effect in the nominal scenario was the lowest for the BioRO 223 

plan, especially in critical organs. However, there was almost no difference among the three plans in the 224 

physical dose distributions for the nominal scenario (see subfigure (a-b), (a-c) and (b-c)). 225 

4. Discussion 226 

 Three has been a growing interest in LET-based IMPT planning, including novel forward planning 227 

techniques and optimization methods(An et al. 2017; Bassler et al. 2010; Cao et al. 2018; Fager et al. 228 

2015; Giantsoudi et al. 2013; Grassberger et al. 2011; Inaniwa et al. 2017; Unkelbach et al. 2016). The 229 

primary goal of LET-based planning is to place areas of higher LET to achieve a greater biological effect in 230 

radioresistant tumors while minimizing LET in critical structures to avoid unnecessary tissue damage. At 231 

the same time, LET-based planning keeps physical dose distributions as similar as possible to those 232 

currently used in proton therapy with fixed RBE planning. These methods have demonstrated the 233 

potential of increasing LET in target regions and/or reducing LET in normal tissues without excessively 234 

compromising current dose requirements. However, the challenge of IMPT delivery uncertainties has 235 

been largely ignored. The BioRO approach to IMPT planning proposed in the present study focuses on 236 

minimizing the variation in biological effect attributable to physical uncertainties for both target and 237 

normal tissues. The uncertainty gap minimization method was effective in reducing the spread of LETxD-238 

volume histogram bands in this study. In other words, this approach could produce treatment plans with 239 

a high certainty of biological effect with satisfactory physical dose plan quality. 240 

 RO has been shown to deliver IMPT more safely than conventional PTV-based optimization 241 

(Fredriksson, Forsgren, and Hårdemark 2011; Liu et al. 2012; Lowe et al. 2017; Pflugfelder, Wilkens, and 242 

Oelfke 2008; Unkelbach et al. 2009). RO provides dose distributions that are robust against delivery 243 



uncertainties, especially because it limits the impact of shifted Bragg peaks at the beam’s distal edge, 244 

close to the target boundary. Therefore, researchers have proposed that unlike PTV-based plans, RO 245 

plans may alleviate increased LET or LETxD in OARs adjacent to the target (Giantsoudi et al. 2017). Our 246 

study confirmed that this is the case. For example, compared to the PTV-based plan, LETxD for 2% of the 247 

volume and mean LETxD for the brainstem were reduced by 15% and 11%, respectively, with RO. 248 

Similarly, LETxD for 2% of the volume and mean LETxD for the rectum were reduced by 33% and 43%, 249 

respectively. 250 

 Interestingly, the BioRO plan further reduced LETxD in OARs than the RO plan for both patient 251 

cases. For example, for the brain tumor case, compared to the PTV-based plan, LETxD for 2% of the 252 

volume and mean LETxD for the brainstem were reduced by 48% and 43%, respectively. Similarly, for 253 

the prostate tumor case, LETxD for 2% of the volume and mean LETxD for the rectum were reduced by 254 

40% and 43%, respectively. This finding may be nonintuitive, as minimization of LETxD was not specified 255 

in the BioRO cost function. Instead, the uncertainty gap of LETxD was minimized. We conjecture that the 256 

reduction of LETxD in BioRO plans is attributable to the positive correlation between the uncertainty gap 257 

of LETxD and the nominal LETxD. For instance, a higher LETxD leads to a larger uncertainty gap, as either 258 

nominal LETxD or LETxD in various uncertainty scenarios is modulated by the same set of beamlet 259 

intensities, i.e., 𝐿𝐷𝑖 = ∑ 𝐷𝑖𝑗𝐿𝑖𝑗𝑤𝑗
2𝑁𝐵

𝑗 . In all patient cases, we found that the sum of all beamlet 260 

intensities for the BioRO plan was the lowest among the three plans. However, these reduced total 261 

intensities did not necessarily lead to a cold plan in terms of dose, as seen in this study, because of the 262 

solution degeneracy of IMPT optimization.  263 

We also note that our method is similar to ones proposed by Giantsoudi et al (2017) and An et al 264 

(2017) in which biological effect was included in the robust optimization framework. But our method is 265 

different in terms of its objectives that minimize the impact of physical uncertainties on biological effect, 266 



i.e., those uncertainty gap terms, instead of minimizing worst-case biological effect. The difference 267 

among methods is worth investigating in future studies. Moreover, the information gap concept could 268 

also be applied in the robust optimization of dose, compared to the worse case optimization strategies 269 

extensively used in the literature. However, this may require a comprehensive comparison study and is 270 

beyond the scope of this paper concerning biological effect robustness. 271 

 Moreover, the BioRO plan also reduced LETxD in the target for all patient cases. However, the 272 

reduction in the target dose was much smaller than it was in OARs. The main reason for this difference 273 

may be that the BioRO plan enforced the requirement of prescribed dose to the target, but not to OARs, 274 

for which there was no lower dose limit. One straightforward method to avoid the reduction of LETxD in 275 

the target could be to use an additional objective to maximize the nominal or minimum LETxD for target 276 

voxels. Such a method for managing the trade-off between optimality and robustness with regard to 277 

biological effect needs to be explored in future research. 278 

 The gain in LET or LETxD while maintaining dose requirements is mainly achievable because 279 

IMPT provides a higher degree of freedom for optimization, i.e., intensity modulation. Our study 280 

demonstrated that plan robustness to biological effect can be improved by redistributing LETxD. 281 

Similarly, previous studies showed that LET and LETxD were improved by redistributing them (Cao et al. 282 

2018; Inaniwa et al. 2017; Unkelbach et al. 2016). Because large uncertainties in proton RBE models 283 

remain a challenge to implementing RBE-based optimization in clinical practice, LET- or LETxD-based 284 

optimization is a promising method for improving the current proton treatment by moving toward 285 

biological effect-based IMPT planning. 286 

   287 

5. Conclusion 288 



 We presented a proof-of-concept study of biological effect-based IMPT robust optimization in 289 

order to reduce the impact of variation in protons’ biological effect while limiting the degradation of the 290 

physical dose distribution from a voxel-based worst-case RO plan. By minimizing the uncertainty gap of 291 

the biological effect (approximated by the product of LET and physical dose) in each voxel, the BioRO 292 

approach provided robust distributions of biological effect to both target and critical structures. This 293 

approach does not depend on tissue parameters or variable RBE models, which are associated with large 294 

uncertainties. In addition, our three patient case studies demonstrated that BioRO can avoid elevating 295 

biological effect in critical structures. 296 
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Table 1. Patients information and treatment planning parameters. 428 

Cancer type 
Prescription 

dose (Gy/fx) 

Number of 

fractions 

Beam angles 

(gantry, couch) 

Number of 

beamlets 
Volumes included in optimization 

Prostate 1.8 (CTV) 30 (90°, 0°) 5532 
CTV, PTV, bladder, femoral heads, 

rectum 
   (270°, 0°) 5525 

Brain 2 (CTV) 39 (260°, 10°) 3808 

CTV, PTV, brainstem, optic chiasm, 

spinal cord, brain 
   (100°, 350°) 3902 

   (180°, 0°) 3927 

H&N 2 (CTV) 33 (180°, 0°) 23758 

CTV, PTV, left parotid, right parotid, 

larynx, spinal cord, mandible, left cochlea, 

right cochlea, brainstem, esophagus 

   (65°, 345°) 25656 

   (300°, 20°) 25352 

Abbreviations: CTV, clinical target volume; PTV, planning target volume 429 

 430 

  431 



Table 2. Dose and LET-weighted dose (LETxD; scaled by c = 0.04 μm/keV) values in the clinical target 432 

volume (CTV) and the brainstem for a brain tumor case optimized by PTV-based optimization, robust 433 

optimization (RO), and biological effect-based robust optimization (BioRO) approaches. 434 

Tissue Dosimetric  

Parameter 

PTV-based RO BioRO 

Nom  Max Min Nom  Max Min Nom  Max Min 

CTV D98% (Gy[RBE]) 54.0 55.0 49.6 54.0 54.4 51.4 54.0 54.8 51.3 

 
D2% (Gy[RBE]) 55.6 58.0 54.6 55.3 55.5 54.8 55.8 56.2 55.1 

 
c LETxD98% (Gy) 3.6 4.0 3.3 4.4 4.5 4.0 3.6 3.8 3.4 

 
c LETxD2% (Gy) 7.2 8.4 6.4 6.9 8.1 6.0 5.3 5.7 5.0 

Brainstem D2% (Gy[RBE]) 54.3 57.9 50.4 54.0 54.5 51.6 53.8 54. 8 51.2 

 Dmean (Gy[RBE]) 27.8 35.2 20.4 25.9 31.9 19.9 28.3 35.0 21.4 

 c LETxD2% (Gy) 9.4 10.2 7.6 8.0 8.6 7.0 4.9 5.3 4.6 

 c LETxDmean (Gy) 4.7 6.0 3.4 4.2 5.2 3.2 2.7 3.2 2.3 

Abbreviations: RBE, relative biological effectiveness; Nom, nominal 435 

  436 



Table 3. Dose and LET-weighted dose (LETxD; scaled by c = 0.04 μm/keV) values in the clinical target 437 

volume (CTV), rectum, and bladder for a prostate tumor case optimized using PTV-based optimization, 438 

robust optimization (RO), and biological-based robust optimization (BioRO) approaches. 439 

Tissue Dosimetric Parameters PTV-based RO BioRO 

Nom  Max Min Nom  Max Min Nom  Max Min 

CTV D98% (Gy[RBE]) 78.0 80.0 68.2 78.0 78.8 73.5 78.0 78.7 73.5 

 
D2% (Gy[RBE]) 81.8 89.6 79.0 80.3 80.8 78.8 80.1 80.8 78.7 

 
c LETxD98% (Gy) 3.6 5.2 2.8 5.0 5.5 4.5 4.5 4.9 4.0 

 
c LETxD2% (Gy) 8.7 10.4 7.2 6.9 8.6 5.8 5.9 6.6 5.3 

Rectum D2% (Gy[RBE]) 72.0 81.2 49.7 71.9 78.4 51.1 71.7 78.2 52.1 

 D2% (Gy[RBE]) 72.0 81.2 49.7 71.9 78.4 51.1 71.7 78.2 52.1 

 c LETxD2% (Gy) 5.8 8.2 3.9 3.9 5.0 2.6 3.5 4.4 2.3 

 c LETxDmean (Gy) 0.7 1.2 0.3 0.4 0.7 0.2 0.4 0.6 0.2 

Bladder D2% (Gy[RBE]) 78.4 84.1 63.7 73.3 78.4 61.6 73.6 78.3 62.3 

 Dmean (Gy[RBE]) 8.7 12.0 5.7 7.6 10.4 5.1 7.8 10.6 5.3 

 c LETxD2% (Gy) 8.7 9.9 6.1 6.6 7.6 5.4 5.4 6.1 4.4 

 c LETxDmean (Gy) 0.9 1.2 0.5 0.7 1.0 0.5 0.6 0.8 0.4 

Abbreviations: RBE, relative biological effectiveness; Nom, nominal  440 



Table 4. Dose and LET-weighted dose (LETxD; scaled by c = 0.04 μm/keV) values in the clinical target 441 

volume (CTV), larynx and parotid (right & left) for a H&N tumor case optimized using PTV-based 442 

optimization, robust optimization (RO), and biological-based robust optimization (BioRO) approaches. 443 

Tissue Dosimetric Parameters PTV-based RO BioRO 

Nom  Max Min Nom  Max Min Nom  Max Min 

CTV D98% (Gy[RBE]) 66.0 67.0 63.8 66.0 66.5 64.5 66.0 66.5 64.9 

 
D2% (Gy[RBE]) 67.4 69.0 66.8 67.5 67.8 66.6 67.4 67.8 66.6 

 
c LETxD98% (Gy) 3.7 3.9 3.5 3.8 4.0 3.6 3.6 3.8 3.4 

 
c LETxD2% (Gy) 6.1 6.6 5.6 6.2 7.0 5.7 5.9 6.4 5.5 

Larynx D2% (Gy[RBE]) 66.5 69.3 64.5 65.6 66.4 63.8 65.4 66.2 63.6 

 Dmean (Gy[RBE]) 20.8 25.9 16.1 17.3 21.6 13.3 19.4 23.3 15.5 

 c LETxD2% (Gy) 6.9 7.9 5.8 6.1 6.5 5.3 4.8 5.1 4.3 

 c LETxDmean (Gy) 2.0 2.5 1.5 1.5 2.0 1.2 1.4 1.6 1.2 

Parotid_R D2% (Gy[RBE]) 66.3 67.7 64.8 66.4 66.8 65.8 66.4 66.8 65.8 

 Dmean (Gy[RBE]) 16.5 19.9 13.3 13.8 16.7 11.1 15.1 18.1 12.2 

 c LETxD2% (Gy) 5.3 6.1 4.6 5.0 5.7 4.5 4.6 5.0 4.2 

 c LETxDmean (Gy) 1.1 1.5 0.8 1.0 1.3 0.7 0.9 1.1 0.7 

Parotid_L Dmean (Gy[RBE]) 37.6 44.4 31.4 30.8 38.5 23.0 30.0 36.4 23.1 

 c LETxD2% (Gy) 6.1 8.7 4.0 3.0 4.8 1.8 3.0 4.5 1.9 

 c LETxDmean (Gy) 2.7 3.3 2.0 3.2 4.4 2.4 2.4 3.0 1.9 

 c LETxDmean (Gy) 0.4 0.5 0.3 0.3 0.5 0.2 0.3 0.4 0.2 

Abbreviations: RBE, relative biological effectiveness; Nom, nominal. 444 

 445 



 446 

Figure 1. Dose-volume histograms (DVHs) and c LETxD-volume histograms of the clinical target volume 447 

(CTV) and the brainstem for three IMPT plans in a brain tumor patient case: PTV-based optimization, 448 

robust optimization (RO), and biological effect-based RO (BioRO). The bands were constructed on the 449 



basis of nine uncertainty scenarios with various range shifts and setup errors. The bold lines indicate the 450 

nominal distributions.  451 

  452 



 453 

Figure 2. Dose-volume histograms (DVHs) and c LETxD-volume histograms of the clinical target volume 454 

(CTV) and the bladder for three IMPT plans in a prostate tumor patient case: PTV-based optimization, 455 

robust optimization (RO), and biological effect-based RO (BioRO). The bands were constructed on the 456 



basis of nine uncertainty scenarios with various range shifts and setup errors. The bold lines indicate the 457 

nominal distributions. 458 
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 460 

Figure 3. Distribution of differences between the maximum and minimum values in each voxel PTV-461 

based, robust optimization (RO), and biological effect-based RO (BioRO) plans for the brain tumor 462 

patient case. The top row shows the difference distributions for dose (based on a constant RBE of 1.1). 463 

The bottom row shows difference distributions for LET weighted dose (LETxD) (scaled by c  =0.04 464 

μm/keV). The green and black contours indicate the clinical target volume (CTV) and brainstem, 465 

respectively. 466 

 467 

  468 



 469 

Figure 4. Comparison of PTV-based, robust optimization (RO), and biological effect-based RO (BioRO) 470 

plans for the brain tumor patient case. Panels (a), (b), and (c) show dose distributions (based on a 471 

constant RBE of 1.1) for the nominal scenario for PTV-based, RO, and BioRO plans , respectively. Panels 472 

(A), (B), and (C) show LET-weighted dose (LETxD) distributions (scaled by c = 0.04μm/keV ) for the 473 

nominal scenario for PTV-based, RO, and BioRO plans, respectively. Panel (a – b) illustrates the absolute 474 

difference of (a) and (b), calculated by subtracting the value in (b) from the value in (a) for each voxel. 475 

The same method was applied for (a-c), (b-c), (A-B), (A-C), and (B-C). The green and black contours 476 

indicate the clinical target volume (CTV) and brainstem, respectively. 477 

 478 
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Appendix A. Dose-volume histograms and c LETxD-volume histograms in the CTV and larynx for plans 481 

optimized by PTV-based, RO and BioRO for the head & neck tumor case. 482 

 483 



Figure A1. Dose-volume histograms (DVHs) and c LETxD-volume histograms of the clinical target volume 484 

(CTV) and the larynx for three IMPT plans in a head & neck tumor patient case: PTV-based optimization, 485 

robust optimization (RO), and biological effect-based RO (BioRO). The bands were constructed on the 486 

basis of nine uncertainty scenarios with various range shifts and setup errors. The bold lines indicate the 487 

nominal distributions.  488 
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Appendix B. Dose-volume histograms and c LETxD-volume histograms in the parotid (right & left) for 503 

plans optimized by PTV-based, RO and BioRO for a head & neck tumor case. 504 

 505 



Figure B1. Dose-volume histograms (DVHs) and c LETxD-volume histograms of the parotid (right & left) 506 

for three IMPT plans in a head & neck tumor patient case: PTV-based optimization, robust optimization 507 

(RO), and biological effect-based RO (BioRO). The bands were constructed on the basis of nine 508 

uncertainty scenarios with various range shifts and setup errors. The bold lines indicate the nominal 509 

distributions.  510 
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