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A B S T R A C T   

This paper presents a literature review on maintenance operations in the downstream petroleum industry. This 
process industry comprises facilities ranging from processing units to distribution networks, which makes the 
maintenance activities diverse. Maintenance optimization approaches from over 120 articles have been orga-
nized into two broad categories. The first category implemented maintenance operations according to the crit-
icality of equipment by applying methods like American Petroleum Institute, Analytical Hierarchy Process, and 
Failure Modes and Effect Analysis. The second category applied various optimal policies by adopting different 
tools such as mathematical models (probability, statistics, linear or nonlinear optimization methods, fuzzy logic), 
heuristic (metaheuristics) algorithms (genetic algorithm, firefly algorithm), data analytics (machine learning), 
and Internet of Things. The review also included maintenance implementation frameworks, planning & sched-
uling methods, safety, mechanization, and evaluation procedures. It also tracks the recent trends in the main-
tenance implementation approach, identifies gaps, and recommends future research directions.   

1. Introduction 

The petroleum industry can be broadly divided into three categories 
(see Fig. 1): Upstream, Mid-Stream, and Downstream (Clews, 2016). The 
upstream section mainly focuses on crude oil or natural gas production. 
The mid-stream section consists of the logistic system that links the 
upstream and downstream sections, including pipelines, ships, ports, 
and different storage facilities. The downstream section of the industry 
focuses on crude oil refining, natural gas processing, the petrochemical 
industries that process products derived from the refineries (the natural 
gas processes), and the distribution of final products to consumers 
(Iqbal et al., 2017). This last section of the industry integrates different 
and complex equipment that requires a variety of maintenance policies 
for a profitable run. This review paper presents component/equipment 
criticality analysis procedures, maintenance policy optimization meth-
odology, and other maintenance-related studies on the downstream 
section of the petroleum industry from the literature. 

The transformation of crude oil or natural gas into consumable 
products involves several processes. Crude oil processing involves sep-
aration (heating the crude oil and collecting the different products at 
their respective boiling temperature), conversion (converting the 

outputs of the separation process into consumable products), and 
treatment (ensuring product consistency of final products) (US Energy 
Information Administration 2022). These processes require different 
storage facilities, equipment (for processes like distillation and 
cracking), utilities, waste treatment processes, and internal trans-
portation systems. Natural gas processing primarily involves removing 
unwanted components such as water, oil, nonhydrogen gas, and 
different contaminants (US Energy Information Administration 2022). 
Several processes are involved in natural gas processing, including 
separation, dehydration, and extraction of different gasses. The final 
consumable products also require different types of facilities for distri-
bution. Some of the by-products of refineries or the natural gas processes 
(referred to as feedstock) are supplied to the petrochemical industries 
for further processing. These industries process the input from the oil 
(gas) industries to produce consumer goods like plastics, synthetic 
rubber, fibers, fertilizers, dye, surfactants, and detergents. The 
by-products from refineries (natural gas processing) require some in-
termediate processes before the petrochemical industries convert them 
into finished goods (Clews, 2016). These include the Building Blocks 
process and the Intermediate Chemicals process. 

Maintenance is one of the most critical functions for the profitability 
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of any company in the downstream petroleum industry. It affects costs 
related to production interruption, unsafe working conditions, envi-
ronmental degradation, and product quality losses due to poorly main-
tained facilities. The maintenance operations also incur financial costs 
through acquisitions of spare parts, repair equipment, inventory ex-
penses, and labor wages. Furthermore, companies can have a large 
volume of equipment requiring maintenance (which varies in frequency 
and severity) over their service life. The importance or criticality of each 
production equipment could also differ amongst facilities. Hence, 
companies would have to prioritize their maintenance activities for each 
piece of equipment. This requires maintenance optimization methods to 
address these complex prioritization processes in order to determine the 
optimal policy to service every piece of equipment. The objective of 
these optimizations could be to maximize profitability, improve pro-
duction safety or reliability of equipment, and/or minimize cost. 

Various maintenance policies can be found in the literature. These 
policies can be categorized into two broad groups based on the activities 
performed: corrective and preventive maintenance.  

• Corrective maintenance (CM) is defined as a repair operation to 
failed equipment (Ben-Daya et al., 2016). The operations can 
consume a large volume of resources and take a long time complete. 
Low-cost and non-critical equipment/components can adopt this 
policy to minimize maintenance costs and resource requirements.  

• Preventive maintenance (PM) includes all operations to minimize 
failure rates and severity. These operations are initiated based on 
different factors that, in most cases, are used to frame the mainte-
nance policy (Ben-Daya et al., 2016). Some of these policies have 
been briefly described below.  

• Time-based maintenance is performed over a predefined time interval 
or number of usage. Equipment can be maintained at different time 
intervals. Productions are halted for a short period at a pre-
determined interval to perform maintenance on multiple pieces of 
equipment (referred to as turnaround maintenance).  

• Reliability-centered employs the deterioration rate of equipment in 
order to determine the maintenance operation based on an accept-
able risk level. When this level is surpassed, reliability-centered 
maintenance is initiated. 

• Predictive maintenance applies various equipment/component dete-
rioration data collection methods to predict and then carry out 
maintenance operations. Data-driven methods have been widely 
used in this method.  

• Condition-based maintenance is performed after inspecting the 
equipment’s operational state to prevent future failures. The in-
spection can be performed continually or on a timely basis.  

• Risk-based inspection and maintenance policy utilize the risk level of 
equipment to propose a maintenance priority for a group of equip-
ment or system. The maintenance policy focuses on reducing the 
risks that arise from equipment failure. In this policy, risk compu-
tation can extend to broader factors that are generally not considered 
under most maintenance policies. 

• Opportunistic maintenance is defined as unplanned machinery resto-
ration operations during production shutdown due to the above-
mentioned maintenance policies (Chin et al., 2020).  

• Failure and fault-finding maintenance operations focus on equipment 
used intermittently, where the equipment was maintained right 
before its subsequent use. 

This paper reviewed articles on the optimal implementation of 
maintenance operations in the downstream petroleum industry. The 
main concepts of the different approaches from the literature are orga-
nized into two broad categories in the paper. In the first category, arti-
cles assess the criticality of components, equipment, or systems that 
were used to guide an optimal maintenance operation. Some of the 
assessment methods adopted include American Petroleum Institute 
(API) guide, Analytical Hierarchy Process (AHP), and Failure Modes and 
Effect Analysis (FMEA). In the other category, articles implement 
optimal maintenance policies. Frequently implemented policies 
comprise turnaround, risk-based, predictive, reliability-based, condi-
tion-based, or some combinations of these policies. The optimization 
decision variables of maintenance operations have mandated the use of 
mathematical tools like probability, statistics, linear programming, 
nonlinear programming, Markov decision process, fuzzy logic; machine 
learning; Internet of Things; and heuristic (metaheuristic). Other 
maintenance-related subjects in the downstream petroleum industry 
have also been reviewed in this paper to provide a complete picture of 
the function. These included maintenance scheduling, safety, sustain-
ability, and mechanization. A few articles have highlighted imple-
mentation frameworks for the various maintenance operations in the 
downstream petroleum industry, while others proposed procedures for 
the evaluation of operations. 

The remainder of this paper is organized as follows. Section 2 pre-
sents some general background on the maintenance activities in the 
downstream petroleum industry. The methods for collecting and orga-
nizing the reviewed articles are also presented in this section. Section 3 
covers the details of the reviewed articles. These articles are organized 
into different subsections to examine the maintenance approaches sys-
tematically. Numerical analyses of the reviewed articles as well as a brief 
discussion, are given in Section 4. Future research directions, supported 
by reference articles, are proposed in Section 5. The final section pre-
sents concluding remarks. 

2. Background 

The downstream petroleum industry mainly processes the final 
products and distributes them to the consumers. The processing section 
comprises product and by-product processing, whereas the distribution 
section encompasses different pipeline networks, tanker trucks (trains), 
storage facilities, pumping stations, and retail stations. The production 
process and the distribution section for most parts of the industry are 
continuous processes. Therefore, the maintenance operations may not 
be performed without shutting down (at least reducing production 

Fig. 1. Oil – Natural Gas processing.  
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capacity) the whole facility in most cases. In these cases, turnaround 
maintenance is commonly applied to complete maintenance operations. 
Condition- and reliability-based approaches can be used for critical 
components/equipment to determine the shutdown/scale-down period, 
and opportunistic maintenance can be adopted for the remaining 
equipment. The degradation rate can be computed using a stochastic 
method that utilizes a probability distribution for the specific equip-
ment. The direct and indirect maintenance costs would have to be 
compared among the various alternatives before deciding on the specific 
preventive maintenance policy or resorting to the traditional corrective 
maintenance policy. Equipment for transportation (including vehicles), 
storage, and retail stations can adopt any of the preventive maintenance 
approaches discussed above. For example, time-based maintenance for 
vehicles and condition-based or reliability-centered maintenance for 
storage and retail stations can be regarded as more suitable approaches. 
Factors like the equipment’s or component’s criticality, government- 
imposed safety regulations/laws, and the manufacturer’s mandatory 
inspection and repair operations can be integrated into the policy opti-
mization efforts. 

Maintenance management involves planning, policy adoption, and 
effectiveness & efficiency assessment activities (Ruschel et al., 2017). 
Planning can include scheduling operations and integrating different 
organizational functions, production systems, and supply chains. 
Selecting and adopting the appropriate policy addresses issues related to 
modeling the degradation process, inspection/maintenance intervals, 
operational cost estimation, and service life management of equipment. 
The assessment activities incorporate health prognosis, analysis of reli-
ability, risk, and consequence, along with monitoring and evaluating 
operations. These activities entail optimization tools to tackle the scar-
city of different resources and limitations of policies. Optimization re-
quires a model formulation for the problem with a specific objective/s 
and a solution method to solve the model. Solving these optimization 
models is challenging because of the large volume and variety of equi-
pment/components needed in the computation. It is further complicated 
by the imprecise and often dynamic nature of the data collected for 
analysis. 

This paper selected articles directly relevant to the downstream pe-
troleum industry to provide a focused analysis. The articles were 
searched based on the following phrases:  

1) "Petrochemical, refinery, oil & gas, pipeline, and distribution 
network, tanker truck," which represented subsectors in the down-
stream petroleum industry; 

2) "maintenance, combined/joint maintenance, and spare part optimi-
zation, preventive, risk-based, condition-based, turnaround" for 
searching maintenance policies; 

3) "maintenance framework, and maintenance evaluation" for search-
ing implementation procedures and assessment tools for the overall 
maintenance operations. 

The filtering processes were performed on the title of the articles 
(Chin et al., 2020) over multiple stages. Upon careful inspection, a few 
articles have been dropped off because of the lack of direct relation to 
the downstream petroleum industry. Google Scholar was the main 
search engine used to identify the articles on the subject matter. As a 
result, 120 articles were collected, organized, and then presented under 
different categories, with a brief discussion of each article. Fourteen 
more papers have been presented to benchmark the recent de-
velopments in maintenance optimization in other industries. 

3. Literature review 

The maintenance function optimization followed two directions: 
methods centered on equipment criticality assessment (independently) 
or the optimization of the maintenance policy. The first direction 
concentrated on equipment criticality to perform maintenance 

operations (covered in Section 3.1). The second direction applied 
maintenance optimization based on different policies, which may inte-
grate the criticality assessments (covered in Section 3.2). Optimization 
methods can also consider different objectives, such as implementation 
planning/scheduling and multiple organizational functions. In addition, 
other maintenance implementation topics have also been reviewed in 
this section (covered in Section 3.3). The presentation of reviewed ar-
ticles followed this organization. The industrial processing order (oil and 
gas processing, distribution, and by-product process) was used to orga-
nize the presentation at the lowest level. Fig. 2 summarizes the main-
tenance operation optimization in the downstream petroleum industry. 

3.1. Criticality assessment methods 

Criticality assessment of equipment (components) is very crucial to 
efficiently utilize the limited maintenance resources. When a large 
amount of equipment is considered for maintenance (often the case for 
the downstream petroleum industry), optimizing specific objective/s 
may not be practical. Criticality assessment effectively isolates the 
essential or non-essential equipment/components to allocate the 
appropriate level of attention. Assessments can be based on several 
factors, such as importance to the processes, repair cost, level of 
degradation, reliability, safety to the production process and society, 
and impact on the environment. Table 1 summarizes the articles that 
implemented these methods, which are discussed in the section. 

One of the most widely used methods for determining the equip-
ment’s criticality was developed by American Petroleum Institute (API), 
which applied a risk-level assessment method. The risk level of equip-
ment was computed as a product of the likelihood of failure (LOF) and 
consequence of failure (COF). LOF may include failure frequency, like-
lihood factors like age, working environments and inspection profi-
ciency, and management system. COF consisted of availability and 
maintenance cost, accident and injury, and environmental impact. The 
methods employed for estimating the LOF and COF distinguished the 
various approaches observed in the literature. 

Analytical hierarchy process (AHP) and failure modes and effect 
analysis (FMEA) have also been adopted for criticality assessment. AHP 
is a method where risk factors are compared among themselves for each 
piece of equipment/component. Weights are given to each factor based 
on its criticality. The FMEA approach integrates experts’ analysis of 
different risk factors. AHP and FMEA approaches have also been used in 
conjunction with policy optimization, and several articles were cited in 
the following subsections to demonstrate this application in the down-
stream petroleum industry. 

Other criticality assessment methods have also been adopted in the 
industry. These methods combined the API, AHP, and FMEA methods 
with methods like fuzzy logic, critical indexing, and quality function 
deployment (QFD). Novel approaches such as Pareto analysis, machine 
learning, robust portfolio model, self-organizing map, and heuristic have 
also been implemented. 

3.1.1. Inspection operations 
The criticality assessment method has been implemented to priori-

tize the inspection operations of equipment in the industry. (Choi et al., 
2005) used API standard methods to compute the risk level of equipment 
to determine the inspection management and reinspection intervals 
based on production data for refineries. It considered factors like me-
chanical and processing environments, failure frequency, and equip-
ment management as input for LOF, whereas financial risk (equipment 
failures, production interruption, injuries compensation, environmental 
cleanup) as factors for COF for a case from the refineries. Chang et al. 
(Chang et al., 2005) focused on directly applying the methods to the 
pipings by considering management, failure frequency, and likelihood 
(age, damage mechanisms/frequencies, inspection proficiency) for LOF 
computation, whereas injury compensation, environment cleanup, 
adjacent repair, and downtime factors for COF. Tien et al. (2007) 
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demonstrated the API implementation using the facility’s data to 
formulate the LOF (based on piping, damage, inspection, condition, 
process, and mechanical factors) and COF (based on chemical, quantity, 
state, escalation, pressure, credit, damage potential, toxic quantity, 
dispersibility, population, credit factors). Filho et al. (Filho et al., 2004) 
used the API approach to calculate the probability of failure to prepare 
an inspection plan for a pipeline network. When computing the damage 
(as part of the causes for failure), a Bayesian-based approach was used to 
update the current conditions of the pipes based on the latest inspection 
results and prior state. Mokhtar, Ismail, & Muhammad (Mokhtar et al., 
2009) compared degradation analysis and first-order reliability methods 
for computing failure probability. These methods computed the API 
failure likelihood using failure probability drawn from the risk-based 
inspection data for a pipe system. Degradation analysis was built on 
probability distribution fitted to the data collected, whereas the 
first-order reliability method implemented an optimization program for 
material property and physical geometry data. Shuai et al. (2012) and 
Zhang et al. (Zhang et al., 2017) have presented API implementation to 
determine the inspection management method before executing risk 
reduction measures for the facilities. The LOF was computed as the 
probability of failure at a given time (a function of the generic failure 
frequency, management system, and equipment factor). Financial-based 
consequences were considered as COF. Wang et al. (Wang et al., 2014) 
implemented a failure rate computation method using Monte Carlo 
simulation to determine the failure rate. The failure rate was adjusted 
using the damage factor (considering active damage mechanism and 
historical inspection data) before being applied as LOF for computing 
the API. 

3.1.2. Maintenance operations 
The API method has also been adopted to determine the criticality of 

maintenance operations. Anvaripour et al. (Anvaripour et al., 2013) 
employed the Delphi method (a method for collecting data by surveying 
a group of experts) to analyze API risk levels and categorize refinery 
assets. Failure frequency was considered as LOF, while the COF was 
computed as the product of operational impact, flexibility, maintenance 
cost, and impact on safety and environment. Bevilacqua et al. (Bev-
ilacqua et al., 2016) compared the risk-based (using API) and criticality 
index (based on different process parameters) approaches to predict 
maintenance needs for the main processing equipment. The critical 
index method computed the risk level by adding the weighted values of 
several factors (temperature, pressure, complexity, available backups, 
effect and occurrence of failures, accidents, environments, and so on). 
Bevilacqua & Braglia (Bevilacqua and Braglia, 2000) presented an 

AHP-based maintenance optimization model, which includes damages, 
applicability (in terms of investment cost and technical feasibility), 
added value, and cost of maintenance. Rahmana (Rahmana et al., 2021) 
adopted an approach combining quality function deployment (QFD) 
with AHP and FMEA (added for risk analysis). QFD is a method devel-
oped for gathering information on customers’ requirements as well as 
the level of satisfaction for a given product or service. Wang et al. (Wang 
et al., 2012) adopted the FMEA-based method to compute the criticality 
of a failure based on safety, environmental impact, and economic loss 
using a panel of experts. It integrated API to compute the risk levels and 
AHP to determine the importance of the failure factor for a case from a 
catalytic reforming plant. 

A few articles have incorporated fuzzy logic approaches to the AHP 
for determining the criticalities of a range of equipment in a facility 
(components in a system). This approach enabled the formulation of 
different value levels for parameters that have been used to assess the 
criticality level. Shahri et al. (2021) integrated a fuzzy inference system 
with AHP for assessing the criticality of assets from the gas processing 
plant. The risk level of an asset was calculated using a weighted prob-
ability & consequence of failure criteria then an AHP was used to pri-
oritize the criteria (determined by a panel of experts). The fuzzy 
inference system analyzed failure criteria to establish the asset’s criti-
cality for implementing maintenance operations. Mohamed and Saad 
(2016) proposed a fuzzy AHP where a multi-criteria decision model (a 
hierarchy of criteria) was developed to evaluate equipment. Data for 
safety, cost, reliability, and availability factors were collected first, then 
a fuzzy AHP method (Eigenvalue method (EVM), mean normalized 
value (MNV), and normalized geometric mean (NGM) - details given in 
Saad et al. (2016) was implemented to determine the priority. The 
factors determined the mode-based maintenance policy. 

Laggoune and Aïssani (2000) implemented Pareto analysis to 
determine the rankings of machines used for maintenance 
decision-making. Then a reliability distribution function was fitted to 
study the failure property of high-priority equipment and propose the 
appropriate maintenance policy. Pareto analysis determines the major 
causes of failures. According to the theory, 80% of the failures can be 
attributed to 20% of the causes. Astepe and Alkara (2021) presented a 
machine learning tool to prioritize maintenance operations. The model 
automated the prioritization process through machine learning algo-
rithms, including logistic regression, support vector machine classifier, 
artificial neural networks, random forests, LightGBM (Light Gradient 
Boosting Machine) classifier, and XGBoost (Extreme Gradient Boost) 
classifier. 

For a pipeline distribution network, Cagno et al. (2000) 

Fig. 2. Maintenance optimization approaches summary for the downstream petroleum industry.  
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demonstrated the implementation of Bayesian inference to combine 
expert opinions (using AHP) with historical data to improve the failure 
probability estimation. The estimate, combined with the length of the 
section and standard replacement period, has enabled the prioritization 
of replacement activities. Yin et al. (2021) proposed a fuzzy logic 
inference method combined with machine learning algorithms to 
determine the failure criticality of the oil and gas pipeline. The fuzzy 
inference was applied to evaluate failure criticality factors (safety, flow 
interruption effect, environmental impact, maintenance), while the 
machine learning part was used to construct a maintenance predicting 
model. The machine learning consisted of multilayer perceptron, sup-
port vector regression, and random forest algorithms. Sacco et al. (2019) 
developed a robust portfolio model (RPM) to identify maintenance de-
cisions that effectively reduce the likelihood and severity of failures. 
RPM methods are considered effective in cases where there is incom-
plete knowledge about parameters or imprecise decision-maker prefer-
ences. It uses weighted values for evaluating different criteria. The 
model was used to construct a maintenance framework based on a 
pipeline’s internal corrosion, external corrosion, and other related ac-
tivities. Leoni et al. (2021) compared three risk-based criticality 
assessment methodologies: a combined hierarchical Bayesian network 
and FMECA (HBN-FMECA) method (with data collection, probability 
and severity analysis, and risk analysis stages), quantitative risk analysis 
using Safeti software (with hazard definition and scenario identification, 
rate estimation, consequence evaluation, and risk level determination 
steps), and risk-based inspection plan using Synergi Plant(with collect-
ing equipment and evaluation data, then risk analysis steps). The failure 

mode, effect, and criticality analysis (FMECA) were performed on the 
component to assess the severity of the failure to determine priorities. 
FMECA is a more in-depth analysis of criticality based on an extension of 
the FMEA method. Leoni et al. (Leoni et al., 2021) adopted the HBN 
method to compute the failure probability, while the FMECA method 
was used to calculate the severity of the failure. Markov chain Monte 
Carlo simulation was incorporated into the HBN to address any change 
or uncertainty associated with input data. The cost of failure was esti-
mated in order to determine the risk level. Leoni et al. (Leoni et al., 
2020) compared a combined HBN, FMECA, and cost risk priority num-
ber (CRPN) method with the quantitative risk analysis (QRA) method to 
prioritize the maintenance activities of components for a case from 
natural gas regulating and metering station. Using standard probabili-
ties, QRA was used with software (Safeti) for rapture and leakage sce-
narios. The HBN method estimated the probability of failure, while 
FMECA assessed the failure’s severity, and the CRPN assigned the pri-
ority for maintenance. 

Jaderi et al. (2014) presented an API risk-based criticality assessment 
method for the petrochemical industry, considering factors like failure 
frequency, operational impact & flexibility, maintenance cost, and 
environmental impact. Guo et al. (2009) formulated criticality based on 
different factors (production loss, safety effect, maintenance cost, and 
environmental impact) for a similar industry. The model was evaluated 
using an FMEA combined with a fuzzy back-propagating neural network 
method. Guevara et al. (2019) demonstrated the implementation of a 
technique for order preference by similarity to ideal solution (TOPSIS) to 
plastic mold machinery. TOPSIS method evaluates equipment based on 

Table 1 
Summary of criticality assessment methods.  

Operations Application Subsector Assessment Method Advantage (A)  Disadvantage (D) Publication 

Inspection Refinery API based approach 1A:- well-defined mathematical formulation.- 
documented standard procedure. 

Choi et al. (2005);  

Pipeline network API based approach  Chang et al., 2005; Tien et al. 
(2007);     
Filho et al. (2004)     
Mokhtar et al. (2009)  

Crude oil tanks; Gas compressor 
stations 

API based approach D:- no procedures for component comparison. Shuai et al. (2012); Zhang et al. 
(2017)  

Petrochemical API based approach  Wang et al. (2014) 
Maintenance Refinery API based approach  Anvaripour et al. (2013)   

API & Critical Index  Bevilacqua et al. (2016)   
AHP 2A:- expert’s or customer’s input and 

comparison procedure included. 
Bevilacqua & Braglia, (2000)   

QFD, AHP, FMEA  Rahmana (2021)   
Pareto analysis  Laggoune & Aïssani  (2000)    

D:- vary organizations-wise.   
Catalytic reforming plant FMEA, API, AHP  Wang et al. (2014)  
Gas Processing Fuzzy AHP 3A: consider uncertainty Shahri et al. (2021)    

D: complex formulation   
Petroleum industry Fuzzy AHP  Mohamed and Saad (2016)  
Oil and Gas industry Machine learning A: data-based approach Astepe and Alkara (2021)  
Oil & gas pipeline Fuzzy Machine learning D: factor’s details are hidden Yin et al. (2021)  
Pipeline network AHP 2 . Cagno et al. (2000)  
Gas distribution network Robust portfolio model 

(RPM)  
Sacco et al. (2019)  

Natural Gas Regulating and 
Measuring Station (NGRMS) 

Hierarchical Bayesian 
Approach (HBA)  

Leoni et al. (2021a); Leoni et al. 
(2021b); Leoni et al. (2020)  

Petrochemical API based approach 1 . Jaderi et al. (2014)   
Fuzzy FMEA 3 . Guo et al. (2009)   
TOPSIS  Guevara et al. (2019)   
Self-organizing map, GA A: applied to large number of component F. Jaderi et al. (2019) 

Inspection & 
Maintenance 

Refinery Procedural heuristics  Bertolini et al. (2009); Bevilacqua 
et al. (2012)    

D: factor’s details are hidden   
Petrochemical API based approach 1 . Choi et al. (2007)   

AHP, Resistive 
maintenance 

2 . Hosseini et al. (2021) 

Safety; 
Maintenance 

Ammonium Hydroxide Production 
Unit 

API and AHP approach 1 . Ghasemi et al. (2021)  
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multiple criteria where the best (ideal) value for each criterion is used as 
a reference point for measurement. In this article, the TOPSIS approach 
ranked machines (based on five evaluation criteria), followed by 
implementing the maintenance operations based on the rankings. Jaderi 
(F. Jaderi et al., 2019) presented a combined self-organizing feature map 
and genetic algorithm (GA) approach to assess equipment’s vulnera-
bility and determine maintenance priority. The approach considered the 
operational impact and flexibility, cost, the impact on safety & envi-
ronment, and the frequency as parameters in the analysis of the com-
ponents. A self-organizing network was used to assess equipment risk 
based on the parameter. GA was used to optimize the structures of the 
system’s network. 

3.1.3. Combined inspection and maintenance operations 
Bertolini et al. (Bertolini et al., 2009) and Bevilacqua et al. (Bev-

ilacqua et al., 2012) proposed a procedural (heuristic) approach that 
assessed the criticality of equipment in a refinery. Bertolini et al. (2009) 
presented a procedure that considered five probability classes and four 
severity categories (i.e., safety, environmental, economics, and reputa-
tion) for computing a risk matrix using a panel of experts. The procedure 
by Bevilacqua et al. (Bevilacqua et al., 2012) includes listing compo-
nents (with their relevant information), assigning risk factors, filtering 
components (using a computerized maintenance management system), 
and determining the criticality of these items. The proposed method was 
shown to perform better compared to risk-based maintenance ap-
proaches. Choi et al. (2007) used equipment data and different oper-
ating scenarios to compute the API risk level (using Korean Gas Safety – 
RBI software or KGS-RBITM). The inputs for the software included 
equipment description data, consequence data (like material, fluid state, 
toxic material, detection rate), likelihood data (like the number of 
valves, branches, injection points and connections, vibration moni-
toring, construction), and financial data. Hosseini, Shahanaghi, & 
Shasfand (Hosseini et al., 2021) proposed an AHP method based on 
expert opinions. The method introduced a maintenance index based on 
the strength, opportunities, and sustainability against weaknesses and 
threats. Several indicators were used to formulate the index: equipment 
type, cost and labor effectiveness, economic impact, and compliance 
with safety and environmental regulations. Ghasemi, Azimi, & Ghasemi 
(Ghasemi et al., 2021) proposed a combined API-AHP method for a 
criticality analysis to implement maintenance priorities for an Ammo-
nium Hydroxide Production Unit. The risk levels were determined using 
the API, whereas the AHP was used to select the appropriate mainte-
nance policy based on multiple criteria (safety, cost, feasibility). 

3.2. Maintenance policy optimization 

Maintenance policies optimization concentrates on the optimization 
of resources utilized under given maintenance policies for predefined 
objective(s). This subsection discusses the implementation of these 
policies, including framework/guides, research reviews, and imple-
mentation varieties. However, the main focus will be the optimization 
methods for implementing the policy. Optimization tools have been 
developed from several fields of study (including operation research, 
mathematics, statistic, machine learning, and network analysis). These 
tools follow diverse approaches that have been summarized to illustrate 
the implementation procedures under each policy. Few methods inte-
grated the criticality assessment methods discussed above (Section 3.1) 
as part of the optimization model. Others combined multiple policies to 
fit specific problems better (see subsection d). Other related objectives 
were studied when policies were not optimized, which have been 
covered in the subsequent subsection (Section 3.2). 

3.2.1. Turnaround maintenance 
Most refineries and natural gas processing plants apply turnaround 

maintenance (TAM) to perform extensive maintenance activities. 
Determining the optimal time for the maintenance activities is crucial 

because the production process will be ceased during these activities. All 
maintenance activities are restricted to completion within a given time 
frame so normal production can resume. Although external factors (such 
as market demand, availability of spare parts, and/or skilled labor and 
weather condition) affect the schedule, the assessment of maintenance 
requirements is the main factor that determines the schedule. Different 
assessment methods have been proposed in the literature, which would 
be the focus of this section (Table 2). 

As an overall guide, Al-Turki et al. (2019) presented a review on the 
implementation (initiation, preparation, execution, and termination) of 
TAM for processing industries (including refineries and petrochemical 
industries). The management of maintenance operations included 
schedule optimization, risk management, collaboration, and informa-
tion (knowledge, best practices) sharing over the supply chain. Pokharel 
and Jiao (2008) and Johansson and Rudberg (2010) presented different 
case studies on implementing TAM approaches in different organiza-
tions. These publications emphasized a holistic (including external 
parties) and continuous approach to maintenance management. 
Pokharel & Jiao (Pokharel and Jiao, 2008) reviewed the planning ac-
tivities like maintenance team formation, scope formulation, and shut-
down optimization (using software), while the implementation focused 
on the events observed on the ground. Johansson & Rudberg (Johans-
son and Rudberg, 2010) studied the implementation of maintenance 
based on an eight-phase maintenance framework from the literature on 
three industrial cases (refer to Crespo Márquez et al. (Crespo Márquez 
et al., 2009) for the details of the framework). The phases are defining 
objectives, priority & strategy definitions, intervention, planning, 
scheduling (optimizing), execution, life cycle analysis, and continuous 
improvement. The article evaluated the maintenance activities from the 
perspective of holistic maintenance’s effectiveness, efficiency, and 
assessment. Almomani & Aldaihani (Almomani and Aldaihani, 2020) 
presented a maintenance operation management system based on 
equipment availability. The article described a zero-shutdown preven-
tive maintenance policy that incorporated activities such as equipment 
identification and evaluation (whether it can be maintained without 
shutdown or affecting production), defining pre- and post-shutdown 
maintenance tasks, and determining shutdown focus operations (re-
view, temporary by-pass solution, and project activities). Elwerfalli, 
Khan, & Munive-Hernandez (Elwerfalli et al., 2018) presented an 
improved scheduling model which comprised of removing non-critical 
equipment, implementing a risk-based inspection of critical equip-
ment, and classifying & determining the failure rate. Failure causes were 
identified using the fault tree analysis method, whereas the failure 
probability was simulated using a Weibull distribution. An inspection 
method based on crucial equipment’s risk level was also added to the 
model (Elwerfalli et al., 2019). The proposed model improved equip-
ment availability by 2% in addition to reducing maintenance-related 
costs. Al-Marri et al. (Al-Marri et al., 2020) presented factors to 
improve TAM implementation, reliability as well as efficiency. A focus 
group was used to identify the main factors (focus group), then an AHP 
was adopted to prioritize these factors. The main factors identified 
included labor skills, level of supervision, communication, safety, and 
on-site transportation. 

Elwerfalli & Alsadaie (Elwerfalli and Alsadaie, 2020) presented a 
method for determining the optimal interval for a planned maintenance 
operation based on the risk level of equipment for a Gas-Liquid Recovery 
Unit. The risk estimation was computed using the API method, where 
failure rates were determined as a series arrangement of units with a 
Weibull reliability distribution function. The consequence of failure was 
defined based on environmental impact, production loss, and asset 
damage, which are evaluated using experts. A shutdown maintenance 
policy was optimized to attain good maintenance intervals. Keshavarz, 
Thodi, & Khan (Keshavarz et al., 2012) presented a risk-based assess-
ment method to determine the implementation of turnaround (shut-
down) maintenance. The failure probability and consequence of failure 
for different policy scenarios (shutdown period, standby, and 
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redundancy) were computed using equipment data (parameters). When 
an optimal risk level was reached, a shutdown decision was made to 
perform the maintenance activities on the facility. Shou et al. (Shou 
et al., 2021) presented a framework with a five-step procedure which 
included scope delineation, existing states definition (measurement), 
waste assessment, identifying improvement tools, and developing an 
implementation plan. Shou et al. (Shou et al., 2019) proposed a classi-
fication method for categorizing maintenance activities as value-adding 
or non-value-adding in order to implement lean operations. This clas-
sification was formulated using a value stream mapping method to 
evaluate the effectiveness and efficiency of a natural gas processing fa-
cility. The activities were defined from the perspectives of the 
manufacturing process, construction industry, and maintenance project 
field. Crestani, Le Dain, & Flaus (Crestani et al., 2020) constructed a 
decision support model for TAM scheduling under different constraints, 
processing environments, internal and external stakeholders’ roles, and 
available data. The model assessed several components of the mainte-
nance operation for gas processing plants and trucking (transportation) 
companies. 

Duffuaa & Daya (Duffuaa and Daya, 2004) presented a general 
guideline that included steps for initiating, planning, executing, and 
terminating a TAM for the petrochemical industry. The specific activities 
in each step have been discussed in detail to give a complete imple-
mentation guide. Masubelele & Mnkadla (Masubelele and Mnkadla, 
2021) surveyed stakeholders (managers, contractors, project team 
members) involved in the TAM operations from different industries 
(including the petrochemical) to identify the critical factors for imple-
menting the policy. The factors, which included a commitment to the 
project, setting clear goals/objectives, clear definitions of roles/res-
ponsibilities, and the competency and experience of project managers, 
were prioritized using a mean score method. Halib, Ghazali, & Nordin 
(Halib et al., 2010) studied the impact of the organizational size of a 
company on the implementation of TAM. Based on multiple hypotheses, 
this study assessed the size of the company against the level of formal-
isation (a measure of administrative structure) and centralization (a 
measure of authority). The study showed TAM needed a high level of 
centralization and formalisation to meet operational schedules and 
requirements. 

3.2.2. Risk-based maintenance 
Risk-based maintenance (RBM) policy considers the risk associated 

with the failure of equipment emanating from different factors. These 

risks are not only used to determine the maintenance or inspection ac-
tivities but also the optimization of the maintenance resources. Various 
critical analysis methods have been combined with this policy to 
enhance the optimization effort. The application of RBM approaches in 
the downstream petroleum industry has been summarized in Table 3. 
The policy combined various criticality assessment methods with 
different mathematical optimization models. The articles based on this 
approach have been briefly described below. 

For the petrochemical and refinery plants, Hameed and Khan (2014) 
presented a procedure with three modules for the implementation of an 
RBM policy. The first module selected the equipment for maintenance 
from the risk evaluation process (derived from qualitative risk assess-
ment based on production loss, damage, safety, and environmental 
impact). Failure data and consequences were estimated to analyze the 
risk level and determine the optimal maintenance interval. Bahoo-
Toroody et al. (BahooToroody et al., 2019) proposed a risk-based pro-
cedure based on processing variables for the optimization of 
maintenance schedules. The first step was to adopt a model to address 
the fluctuation and uncertainty of acquired data. Failure probability was 
computed using a Dynamic Bayesian network and updating models 
using the probability of detection and sensors uncertainty. The last step 
(optimization) considered decision options (for scheduling the mainte-
nance operation) and the costs of failure & maintenance. 

A Bayesian network analysis method has also been used in the dis-
tribution section of the industry. Leoni et al. (Leoni et al., 2019) pro-
posed a risk-based optimization method for scheduling maintenance. 
The method identified a component for which a fault tree analysis was 
prepared. The fault tree was mapped into a Bayesian network (backward 
analysis) that was used to determine failure rates which led to the 
estimation of the failure risk. Finally, the maintenance interval was 
determined for optimal operation. Singh and Markeset (2009) proposed 
a fuzzy logic framework for a risk-based inspection of pipelines for a 
processing plant. The proposed risk-based inspection model considered 
the operating conditions (temperature, flow rates, pressures, pH) and 
the inspection parameters (frequency, efficiency) to determine the 
estimated corrosion level in a pipe. From this estimation, the LOF and 
COF were computed to determine the risk level, ultimately optimizing 
the inspection schedule. The article proposed a fuzzy logic model to 
compute the trust level of the inspection results (based on the in-
spection’s number, rate, and efficiency). 

For the case of an ethylene oxide production facility, Hu et al. (2009) 
defined the RBM procedure into subsystem identification, risk 

Table 2 
Summary of articles that focused on turnaround maintenance.  

Application Subsector Optimization Method Advantage (A) Disadvantage (D) Publication 

Refinery & 
Petrochemicals 

Review of implementation 
methods  

Al-Turki et al. (2019) 

Oil and gas industry Software and company-specific 
systems  

Pokharel and Jiao (2008); Johansson and 
Rudberg (2010)  

Statistical analysis,  probability A: optimal result can be obtained D: not practical for a large number 
of equipment 

Almomani and Aldaihani (2020)  

Statistics analysis, probability  Elwerfalli, Khan, & Munive-Hernandez 
(2018; 2019)  

Focus group (with AHP) A: expert opinion included D: company specific approach Al-Marri et al. (2020) 
Gas liquid recovery Statistics analysis,  probability 

(with API) 
A: standardized method and can be applied to a large number D: 
optimal result not guaranteed 

Elwerfalli and Alsadaie (2020) 

Liquid natural gas plant Statistics analysis, probability 
(with API)  

Keshavarz et al. (2012) 

Natural Gas Plant Lean management system 
implementation 

A: an efficient and effective system can be achieved D: optimal 
result not guaranteed 

Shou et al. (2021)  

Value-based classification  Shou et al. (2019) 
Gas processing and 

trucking 
Data based analysis 1A: stakeholders are involved Crestani et al. (2020) 

Petrochemicals Implemnetation Guideline D: optimal result not guaranteed Duffuaa and Daya, 2004  
Qualitative data analysis 1 . Masubelele and Mnkadla (2021)  
Assessing company size and 
turnaround  

Halib et al. (2010)  
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estimation, risk evaluation, and maintenance steps. After identifying the 
subsystem, risks were estimated first by defining failure scenarios with 
their respective probabilities, then determining the failure consequence 
(failure and maintenance costs), and finally estimating the risk. The risk 
evaluation step defined the acceptable risk level before determining the 
maintenance plan that would be implemented for the subsystem. The 
plan involved different optimizing techniques, maximum failures under 
different preventive maintenance approaches (perfect or imperfect 
maintenance), and acceptable reliability levels. Khan & Haddara (Khan 
and Haddara, 2004) presented an RBM model that consisted of three 
interactive modules. The first module estimated risks by implementing 
four steps: failure scenario development, consequence assessment 
(considering fatality, economic, environmental, and system perfor-
mance losses), failure probability analysis (using fault tree analysis 
(FTA) – cause of failure analysis through deductive method), and esti-
mation. The second module evaluated the risk by formulating accept-
able levels and comparing these levels to the estimated risks. Finally, the 
maintenance planning was performed by a cyclic estimation and opti-
mization of the maintenance interval until good results were attained. 
Luo et al. (2020) presented a risk-based inspection and maintenance 
method for a large crude oil storage tank in the petrochemical industry. 
The method integrated a risk assessment (using the API method) with a 
periodic detection approach to optimize the maintenance operation. The 
proposed model was applied to maintain a storage tank floor failure due 
to corrosion. Maintenance policy optimization and component criti-
cality analysis can be formulated using a fuzzy logic concept integrated 
with other mathematical methods. F. Jaderi et al. (2019) compared the 
risk-based method with fuzzy risk analysis methods for different com-
ponents. For the criticality analysis (conventional RBM), a panel of ex-
perts defined the frequency of failure, parameters for the consequence of 
failure computation, criteria for criticality evaluation, and procedure for 
maintenance optimization. The experts determined the linguistic values 
for the same RBM criticality analysis steps and used fuzzy logic theories 
to compute the failure frequency, consequence of failure, and risk level. 
The method considered risk factors such as safety, environmental 
impact, production downtime, different types of costs, failure frequency, 
and mean time to repair. 

3.2.3. Predictive maintenance 
Adopting a predictive maintenance (PdM) policy requires a good 

data source for assessing the latest condition and the equipment’s 
overall failure (reliability) characteristic to predict the maintenance 
requirement. Online monitoring of equipment and historical data are 
some of the data sources observed in the literature for this policy. 
Different methods have been utilized to exploit these data in order to 
provide an optimal predictive maintenance plan. Table 4 presents a 
summary of PdM applications in the downstream petroleum industries. 

Helmiriawan and Al-Ars (2019) demonstrated a machine-learning 
approach for predicting equipment failures based on data of process-
ing variables for an oil refinery plant. A recurrent neural network (RNN) 
was constructed to detect the slow changes in the deterioration of 
equipment performance and predict failures to help plan for mainte-
nance operations. Pisacane et al. (2021) formulated a combined 
data-driven algorithm with a multi-objective optimization method to 
predict component failures for a refinery. The algorithm (heuristics) was 
used to extract the probability of failures fed to two optimizers: 
bi-objective mixed integer programming (using AUGMEnted CONstraint 
ϵ – AUGMECON) and bi-objective large neighborhood search. The 
AUGMECON obtained final results (an hour faster) even though there 
was no difference in the result’s quality. Antomarioni et al. (2019) have 
proposed an integer programming approach to improve reliability under 
limited time and financial resource constraints. The method consisted of 
association rule mining (data mining tool) for predicting component 
breakage and an integer programming model to determine the optimal 
set of components to repair for an oil refinery plant. The association 
rules (developed using the plant’s historical data) took 120–180 s for 10, 
000–20,000 components. Al-Subaiei et al. (2021) proposed a smart PdM 
framework that continuously monitors and diagnoses equipment to 
provide information on the plant’s availability and downtime for a re-
finery. The framework incorporated technical and financial feasibility 
studies. Zulkafli and Dan (2016) presented a PdM method using a 
probability distribution for a gasification processing unit. The method 
involved the computation of two parameters for the Weibull distribution 
(failure probability model). The failure probability was used to deter-
mine the maintenance operation frequency (the minimum and 

Table 3 
Summary of articles that focused on the risk-based policy approach.  

Application 
Subsector 

Optimization Advantage (A) 
Disadvantage (D) 

Publication 

Refinery & 
Petrochemical 

Statistical 
analysis, 
probability (with 
risk matrix) 

1A: standard and 
mathematical 
method. 

Hameed and 
Khan (2014)   

Specific factors can 
be studied.  

Natural Gas 
System 

Statistical 
analysis, 
probability (with 
dynamic 
Bayesian) 

D: no comparison 
among equipment 

BahooToroody 
et al. (2019) 

Natural Gas 
Regulating and 
Metering 
Station 

Statistical 
analysis, 
probability (with 
Bayesian network)  

Leoni et al. 
(2019) 

Pipelines Network Fuzzy Framework 2A: uncertainty 
included D: 
complex 
computation 

Singh and 
Markeset (2009) 

Petrochemical Statistics analysis, 
probability (with 
API) 

1 . Hu et al. (2009)    

Khan and 
Haddara (2004)    
Luo et al. (2020)  

Fuzzy risk analysis 
methods 

2 . F. Jaderi et al. 
(2019)  

Table 4 
Summary of articles that focused on predictive maintenance optimization.  

Application 
Subsector 

Optimization Advantage (A) 
Disadvantage (D) 

Publication 

Refinery RNN 1A: data-based 
approach 

Helmiriawan and 
Al-Ars (2019)   

D: factor’s details 
are hidden   

Data-driven 
algorithm, multi- 
objective IP  

Pisacane et al. 
(2021)  

Smart 
maintenance 
framework  

Al-Subaiei et al. 
(2021)  

IP 2A: can attain 
optimal result 

Antomarioni et al. 
(2019)   

D: less applicable 
for a large volume  

Gasification 
processing 
unit 

Weibull analysis 
method  

Zulkafli and Dan 
(2016) 

Oil Pipeline, 
Pumps, 
Bearing 

Review  Jimenez et al. ( 
Jimenez et al., 
2020) 

Pipeline Stochastic, 
mathematical 
analysis 

1 . Kermanshachi 
et al. (2020)  

Assessment matrix 
process (with 
FMSA)  

Nordal and 
El-Thalji (2021) 

Petrochemical IoT 2 . Bayoumi and 
McCaslin (2017)  
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maximum maintenance activities) along with the amount of labor 
required for each activity. 

Jimenez et al. (Jimenez et al., 2020) presented a survey on multiple 
PdM approaches for a pipeline distribution system. For a single model, 
the survey indicated that a knowledge-based, data-driven, or 
physical-based (using degradation laws) approach could be imple-
mented, whereas the combination of these approaches led to 
multi-model methods. Furthermore, the policy implementation in-
tegrates methods for diagnosis and prognosis of equipment, providing 
information on the maintenance intervention time. Kermanshachi et al. 
(2020) developed a PdM model for pipeline corrosion failure to deter-
mine the optimal time interval with minimal maintenance cost for a 
natural gas transmission pipeline network. The failure rate was modeled 
using a probability distribution (stochastic), whereas mathematical 
analysis was applied to obtain the optimal cost and time for maintenance 
activities. The model’s prediction accuracy was reported with R2 greater 
than 0.8 for different cases. Nordal and El-Thalji (2021) proposed a PdM 
assessment matrix method (a heuristic procedure) to address the limi-
tation of a failure mode and symptom analysis (FMSA) method, which 
was adopted to assess the reliability and risk associated with equipment. 
FMSA (introduced by International Organization for Standardization – 
ISO) is a method for criticality assessment that focuses on the symptoms 
of failure to monitor and prioritize the criticality of components or 
systems. The method was demonstrated in the maintenance of a cen-
trifugal compressor (commonly used for transporting natural gas 
through the pipeline). 

Bayoumi and McCaslin (2017) presented a tool for a petrochemical 
facility that integrated the different management levels for maintenance 
operations. This approach was based on the IoT, where information from 
various sources was collected to formulate a prediction model based on 
statistical analysis. The approach included data collection and integra-
tion, modeling, predicting, optimizing, acting, and presenting steps. 

3.2.4. Condition-based maintenance 
Condition-based maintenance (CBM) concentrates on the opera-

tional state of equipment for its service life. Periodic and non-periodic 
inspections can give the required information about the condition of a 
given asset. An in-service equipment condition monitoring system or 
indirect equipment deterioration method (like the number of run hours, 
the volume of processed product, and measured operating pressure or 
temperature) can also be used to determine the equipment’s existing 
condition. The implementation of this maintenance policy is briefly 
discussed in this subsection. A summary of the articles covered is given 
in Table 5. 

Reviews on the implementation of CBM (specific to the subsectors in 
the industry) have been identified in the literature. Abbasi et al. (2020) 
reviewed the implementation of a CBM policy for oil and gas rotating 
mechanical equipment (induction motors, compressors, and pumps). It 
categorized the different CBM approaches as model-based (utilizing 
mathematical model), knowledge-based (implementing data analysis 
algorithms), and parameter extraction-based (by means of equipment 
parameters estimation) methods. It analyzed the advantages, limita-
tions, and practical application of each approach. Zhou et al. (2022) 
proposed a hierarchical coordinated reinforcement learning method 
that consisted of a hierarchical coordination mechanism and a distrib-
uted Q-learning method to optimize the maintenance operations. The 
article adopted a discrete event simulation method to compute the 
degradation rate, which was used to optimize large-scale maintenance 
problems. 

Shin and Jun (2015) discussed the definition, benefits and limita-
tions, international standards, techniques, and procedures for the CBM 
policy using case studies for a truck engine, lift arm of loader, locomo-
tive, and compressor. Faris et al. (2019) presented a summary of 
maintenance system development and condition monitoring methods 
for gas compressor plants. The article discussed monitoring conditions 
(temperature, pressure, and gas properties), fault diagnosis, and 

implementation of the maintenance policy. 
Kareem and Jewo (2015) adopted a method that used operational 

variables to measure critical equipment deterioration instantaneously, 
enabling organizations to predict failures and plan their maintenance 
activities accordingly. Three variables (temperature, vibration, and 
pressure) were measured for a centrifugal compressor to predict the 
failure rate in this approach. Mathematical analyses were used to 
determine failure rates and risk analysis using historical data for the 
equipment. In an earlier publication, Kareem et al. (2011) showed that 
this approach can reduce the cost of inspection (man-hour) by providing 
an optimum maintenance plan (cycle). Shin et al. (2020) presented a 
convolutional neural network (CNN) model for the CBM of pitting 
corrosion in the petrochemical industry. The model was formulated to 
detect low levels of corrosion. First, the CNN model was trained to detect 
the defect. Then a fitness evaluation method (fitness for service -API) 
was used to assess the damage. Depending on the result of the assess-
ment, either a maintenance order (low-level damage) or further evalu-
ation using a human operator (high-level damage) was recommended. 

3.2.5. Reliability centered maintenance 
The reliability of equipment can be computed by determining the 

failure or hazard rate obtained from the manufacturer or computed from 
historical data. The objective of this policy would be to keep the reli-
ability level above a certain threshold. Table 6 presents a summary of 
the articles that demonstrate the application of this maintenance policy 
to the downstream petroleum industry. 

Selvik et al. (2020) discussed the ISO standard (ISO 14,224:2016) on 
reliability and maintenance from the perspective of petroleum, petro-
chemical, and natural gas industries. The article compared the definition 
and concepts of reliability & maintenance with those concepts from 
other standards, such as ISO 31,000:2018 (uncertainty). These concepts 
are considered important in computing risk and implementing RCM 
operations. Focusing on the refineries, Deepak Prabhakar and D. (2013) 
presented a general overview of the implementation of the 
reliability-centered maintenance (RCM) policy. Conventional RCM 
consists of defining functions, failure modes, effects, consequences, 
management policies, and any proactive activities steps. Other versions 
of the policy included research-based RCM (mathematical or probabi-
listic approaches) and consultant-based RCM (streamlined RCM, PdM 
optimization, and total productive maintenance approaches). An 
accelerated RCM method comprised data collection, reliability analysis, 
failure identification, FMECA for critical equipment analysis, and 
implementation stages. The article described implementation models, 
requirements & limitations of the approach, and a few recommendations 
for all these methods. Cochran (Cochran, 2001) presented a Markov 

Table 5: 
Summary of articles that focused on condition-based maintenance.  

Application 
Subsector 

Optimization Advantage (A) 
Disadvantage (D) 

Publication 

Oil and gas 
Industry 

Review  Abbasi et al. 
(2020) 

Natural gas plant Hierarchical 
coordinated 
reinforcement 
learning 

1A: data-based 
approach 

Zhou et al. 
(2022) 

Gas compressors, 
Locomotives & 
Trucks 

Review D: factor analyzed in 
detail 

Shin and Jun 
(2015) 

Gas compression 
plant 

Maintenance 
operation 
overview  

Faris et al. 
(2019) 

Petrochemical Statistical analysis, 
probability 

A: can analyze 
factors in detail  D: 
less useful for a large 
volume 

Kareem and 
Jewo (2015);  
Kareem et al. 
(2011)  

Convolutional NN 1. Shin et al. 
(2020)  
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model to determine the availability of a system (7 components). The 
model defined failure and repair rates as an exponential distribution for 
transition among the different states. The model considered 4 compo-
nent states and 3 system states with only one maintenance policy 
(action). 

Mohammed et al. (2020) proposed an RCM policy to improve the 
reliability of loading/unloading equipment. The model developed 
identified the critical components along with their failure modes. The 
failure rate and mean time between failures of components (modeled as 
exponential distribution) determined the system’s reliability, which was 
ultimately used to schedule the optimal maintenance period. For a case 
from the petrochemical industry, Li and Gao (2010) applied a 
reliability-centered intelligent maintenance system that combined 
radical maintenance policy (RM - a policy focusing on the root causes of 
failure) based on FMECA and FTA to identify the root causes of failures. 

The system constitutes data collection, subsystem identification and 
evaluation, criticality assessment, failure mode analysis, and mainte-
nance policy formulation steps. Najari et al. (2018) compared two reli-
ability metrics: maintenance-free operating period (MFOP) and mean 
time between failure (MTBF). MTBF is defined as the average time 
length between failures (the ratio between the total number of failures 
and total time horizon), while MFOP is defined as the period over which 
a system performed the expected operation. MTBF demonstrated 
inherent disadvantages by accepting failures and unscheduled mainte-
nance in the computation, whereas MFOP focuses on the operational 
period. 

3.2.6. Mixed maintenance policies 
Some of the maintenance policies have been combined to best fit the 

requirements of different types of equipment. Table 7 presents the 
summary of these approaches. The mixed maintenance policies com-
bined CM primarily with one or more PM policies. Some of these 
methods incorporated criticality assessment methods discussed in the 
previous section. 

For the petroleum industry, Aghaee et al. (Aghaee et al., 2020) 
applied different maintenance policies along with a fuzzy Delphi-based 
method to evaluate priorities and a fuzzy decision-making trial evalu-
ation and laboratory (DEMATEL) method to determine the relationship 
among the assessment criteria. Analytical Network Process (ANP), a 
more general form of AHP, was used to compare and select the best 
maintenance for each priority level. Elhdad, Chilamkurti, & Torabi 
(Elhdad et al., 2013) presented an ontology and business process-based 
framework (on PM and CM policies) to monitor and maintain a petro-
leum processing plant. The Framework defined different functions in the 
production process (including their inter-relationship) to monitor the 
performance of devices in addition to initiating maintenance operations 
based on the device’s instant states. 

Tan et al. (Tan et al., 2011) adopted the API risk-based approach to 

Table 6 
Summary of articles that focused on Reliability centered maintenance.  

Application 
Subsector 

Optimization Advantage (A) 
Disadvantage (D) 

Publication 

Petroleum 
industry 

ISO standards  Selvik et al. 
(2020) 

Refinery Review of 
different 
methods  

Deepak 
Prabhakar and 
D. (2013)  

MDP  Cochran (2001) 
Transportation Statistical 

analysis, 
probability 

1A: can attain optimal 
result D: less applicable 
for a large volume 

Mohammed 
et al. (2020) 

Petrochemical Intelligent 
system (with 
FMEA & FTA) 

A: expert’s input 
included. D: vary 
organizations-wise. 

Li and Gao 
(2010)  

MTBF, MFOP, 
metrics 
comparison 

1. Najari et al. 
(2018)  

Table 7 
Summary of the articles that focused on a mixed maintenance policies approach.  

Application 
Subsector 

Policies Combined Optimization Advantage (A) Disadvantage (D) Publication 

Petroleum industry CM, PM,  CBM, RCM, and PdM Fuzzy logic, statistical analysis, matrix 
(with Fuzzy AHP) 

1A: uncertainty included Aghaee et al. (2020)  

CM and PM Ontology and business process-based 
framework 

D: complex computation Elhdad, Chilamkurti, & 
Torabi (2013) 

Refinery & 
Petrochemical 

CM, CBM, RCM, and PdM Statistics analysis, probability, Matrix 
(with API & AHP) 

2A: comparison steps included Tan et al. (2011)  

CM and PM Maintenance performance indicators 
and management 

D:- vary organization-wise. Sailer & Hladík (2021) 

Refinery CM and PM Associative rules  Antomarioni et al. (2018)  
CM and PM Monte Carlo, GA (with FEMA) A: suitable for large volume Bagajewicz (2013)  
PM, PdM, TAM Implementation guidelines D: factor’s details are hidden Kosta & Kosta (2013)  
Criticality, identification of 
equipment 

Review of incidents  Nelson & Anderson (2021) 

Gas industry Fault diagnosis,  RBM Review  Faris, Elamin Elhussein, & 
Yousif (2019) 

Oil transfer station RBM and CBM IoT A: data-based approach D: factor’s 
details are hidden 

Wang & Gao (2012) 

Pipeline network CM and PM Markov Decision Process A: uncertainty was included D: optimal 
result not guaranteed 

Bediako et al. (2020) 

Petrochemical Opportunistic with CM or PM Monte Carlo simulation  Laggoune, Chateauneuf, & 
Aissani (2009)  

CM, PM, CBM, RCM,  PdM Fuzzy distance-based analysis method 
(Fuzzy AHP) 

1 . Panchal et al. (2017)  

CBM, CM, Opportunistic Multi-objective optimization (GA) A: suitable for large volume D: optimal 
result not guaranteed 

Alrabghi, Tiwari, & Savill 
(2017)  

RBM and CBM Decision-making System  Yuan, Wang, & Gao (2012)  
CM, PM Wiener degradation, Bayesian inference A: factor analysis included D: complex 

formulation 
Zhao et al. (2021)  

CBM, Scheduled, Proactive, and 
Design-out Modification 

AHP 2 . Elijaha (2021)  

CBM, PDM, RBM, and TPM Formulating, planning, implementation 
Initiate, plan, execute  

Velmurugan & Dhingra 
(2015);  
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classify equipment’s criticality and proposed a maintenance policy for 
each category that was selected using AHP. Various maintenance pol-
icies were evaluated for each category, and then the appropriate policy 
was established for the respective asset. Accordingly, CM policy was set 
for the lower-risk category, whereas PM policies, such as RCM, were 
implemented for high-risk (critical) assets. Sailer & Hladík (Sailer and 
Hladík, 2021) presented a maintenance management model to improve 
the efficiency of maintenance organizations by identifying key perfor-
mance indicators, organizational structure, and asset management 
processes. The model described different components of the mainte-
nance management system, which include planning, scheduling, anal-
ysis, execution, improvement, measurement, and requirements of 
maintenance operations. Antomarioni et al. (Antomarioni et al., 2018) 
applied a data mining tool (association rules) where past data about the 
stoppages or component breakdowns over a given period was used to 
provide information about optimal maintenance policies decision 
(implement predictive or correction interventions). Bagajewicz (Bag-
ajewicz, 2013) described Monte Carlo and GA simulation methods for 
the optimization of different maintenance objectives (profit, cost, and 
safety) subjected to various constraints (labor, budget, and acquisition & 
inventory of spare parts). Monte Carlo simulation was used to optimize 
simple maintenance problems by randomly sampling the model vari-
ables, whereas the GA was used to solve complex problems. The pro-
posed model reported the number of resources (for example, labor) to 
attain the optimal objective (economic loss). Kosta & Kosta (Kosta and 
Kosta, 2013) presented a complete guide on the implementation of 
maintenance operations in a refinery. This research classified the main 
maintenance operations in a refinery as mechanical, electrical, instru-
mentation, and civil functions. It proposed various approaches for 
groups of equipment (structure or facility) inspection, failure analysis, 
and the optimization of the adopted policy (CM, PM, PdM, and TAM). 
Nelson & Anderson (Nelson and Anderson, 2021) proposed a guide for 
identifying, documenting, inspecting, planning, and resolving critical 
equipment failure causes. The guide adopted different standards (API, 
Industrial Valves, American Society of Mechanical Engineers) for iden-
tifying assets to include in the list. The article discussed the adoption of 
criticality assessment methods (FTA, FMEA, Layer of Protection) to 
determine risk levels. It emphasized the importance of paying more 
attention to minor (mostly overlooked) equipment, which could cause 
accidents in the industry. 

Focusing on the distribution section of the industry, Faris, Elamin 
Elhussein, & Yousif (Faris et al., 2019) presented a review of several 
approaches for condition monitoring, fault diagnosis, reliability/avai-
lability/maintainability analysis, and risk-based inspection for com-
pressors. The study discussed failure probability assessment approaches, 
risk estimation methods, operating parameters evaluation, and main-
tenance policy optimization techniques for the equipment. Wang & Gao 
(Wang and Gao, 2012) proposed a risk- and condition-based indicator 
decision-making system (RCBIDS) using IoT for an oil transfer station. 
The system was comprised of different operational activities, including 
fault or defects detection, remote condition monitoring, maintenance 
technical support service, and maintenance decision support system. 
Bediako et al. (Bediako et al., 2020) proposed a Markov Decision Process 
(MDP) model for optimizing the maintenance of pipelines under CM and 
PdM policies for a cost-minimizing objective. The deterioration rate was 
determined using periodic and continuous inspection. The model 
defined maintenance actions (preventive or corrective), states (based on 
the deterioration) of the pipeline, and transition probability between the 
states. 

Laggoune, Chateauneuf, & Aissani (Laggoune et al., 2009) proposed 
an optimization model based on a PM policy for a petrochemical plant 
with multiple component systems (series arrangement). An opportu-
nistic maintenance policy was incorporated into the model to utilize the 
shutdown period. The components’ failure probability (time to failure) 
was determined using historical data. The model’s objective was to 
reduce the maintenance cost for components in a series system with a 

random failure. A Monte Carlo simulation was used to show that the 
model can reduce up to 70% of the maintenance cost. Panchal et al. 
(Panchal et al., 2017) formulated a fuzzy AHP approach with a combi-
native distance-based assessment model to identify the criticality of 
components and proposed the optimal maintenance policy (combina-
tion of CM, PM, CBM, RCM, and PdM). Alrabghi, Tiwari, & Savill 
(Alrabghi et al., 2017) applied a Genetic Algorithm (GA - GAnetXL) to 
optimize two objectives (minimize maintenance cost and maximize 
production throughput). A simulation-based approach modeled the in-
dustrial environment, while the GA optimized the policies (CBM, CM, 
and Opportunistic Maintenance) for different types of equipment. Yuan, 
Wang, & Gao (Yuan et al., 2012) proposed a maintenance 
decision-making system architecture where reliability-centered main-
tenance, condition monitoring system (assessment and prediction), and 
manufacturing execution system were integrated. A real-time database 
was used to provide a unified data structure to implement man-machine 
interfaces. The system determined maintenance priorities, risk levels, 
degradation trends, and optimization of maintenance activities. Zhao 
et al. (Zhao et al., 2021) presented a maintenance policy optimization 
approach to address the uncertain nature of degradation. Bayesian 
analysis was used to dynamically update the degradation parameters, 
formulated as a Wiener probability distribution. Different parameters 
were used to formulate the probability distribution of varying asset 
degradation models. For a short-time planning horizon, PM or CM pol-
icies were carried out to minimize the expected cost of maintenance. 
Elijaha (Elijaha, 2021) compared the effectiveness of four maintenance 
policies (CBM, Scheduled, Proactive, and Design-out Modification) for a 
pump. The model incorporated defining subsystems, collecting data, 
failure analysis, FMEA, criticality analysis, policy selection using AHP, 
determining maintenance action, implementation, and evaluation steps. 
The article demonstrated the implementation of the selected policies for 
the components of a pump. Velmurugan & Dhingra (Velmurugan and 
Dhingra, 2015) proposed a conceptual framework for implementing 
different maintenance policies by reviewing various 
maintenance-related publications from the literature. The framework 
consisted of processes for formulating, planning, implementing main-
tenance policies, and assessing maintenance performance. The article 
also reviewed the tactical aspects of a few maintenance policies (CBM, 
PdM, RBM, and TPM). 

3.3. Others 

Other maintenance objectives have also been optimized using 
various methods in the downstream petroleum industries. These objec-
tives can be directly related to the implementation of maintenance op-
erations (such as scheduling, operations proficiency, and 
mechanization) or the integration of other related organizational func-
tions (safety, production, and inventory) to increase the effectiveness of 
maintenance operations (Table 8). 

3.3.1. Planning and scheduling 
Maintenance operation planning & scheduling are vital in the 

downstream petroleum industry. Various optimization methods have 
been proposed to model and solve these functions. Seif et al. (Seif et al., 
2021) developed a mixed-integer optimization model for maintenance 
scheduling problems in oil and gas processing plants. The model con-
sisted of multiple maintenance campaigns that considered many com-
ponents and labor. The objective of the optimization was to reduce the 
shutdown cost of maintenance. Constraints included the time bound-
aries for each campaign, available resources, workload balance, and 
shutdown indicators. Alkhamis & Yellen (Alkhamis and Yellen, 1995) 
adopted an integer programming model for a maintenance scheduling 
optimization problem. The model maximized the unit/equipment utili-
zation under PM-related constraints (such as maintenance window, 
resource, logic, operation sequence, and maintenance completion). Hou 
et al. (Hou et al., 2022) proposed a short-term production scheduling 

E. Wari et al.                                                                                                                                                                                                                                    



Computers and Chemical Engineering 172 (2023) 108177

12

model for the maintenance of charging tanks to ensure a continuous 
process flow. A multi-objective model with constraints such as material 
conservation, resource capacity, assignment, and processing limitations 
was considered in the model. An adaptive enhanced selection pressure 
algorithm (GA-based metaheuristics) was used to solve the problem. 
Xingchun, Sujing, & Qiang (Xingchun et al., 2022) presented a simul-
taneous production and maintenance scheduling model for a refinery. 
The model formulated a multiobjective mixed-integer nonlinear pro-
gramming method to minimize operating costs and total risk arising 
from maintenance activities. The constraints consisted of resource & 
processing limits, maintenance logic, risk level evaluation, and budget 
restriction. Yabrudy Mercado et al. (D. F. C. J. S. L. B. and. C. A. C. 
Yabrudy Mercado 2020) presented an efficiency-centered maintenance 
method (from an energy conservation and cost reduction perspective) to 
develop a maintenance plan for a heat exchanger cleaning operation. 
The approach aimed at determining a schedule and type of activities for 
proficient maintenance service based on criticality analysis of different 
equipment’s condition indicators. Its implementation saved up to US$ 
150,000 on maintenance costs. 

Ahmed et al. (Ahmed et al., 2015) proposed a goal programming 
model for optimizing a nonlinear problem with multiple maintenance 
objectives (maintenance cost, reliability, and equipment availability) for 
a gas processing facility. Each objective (for a specified time horizon) 
has its respective constraints and lower bounds extending over a range 

of equipment in the problem formulation. For example, reliability 
depended on the failure rate probability (distribution) selected, whereas 
cost was subjected to the number & type of maintenance of operations. 
The model incorporated CM and PM, replacement, and inspection op-
erations with various outcomes depending on the equipment’s service 
life and reliability level threshold. Hameed et al. (Hameed et al., 2019) 
developed a decision support tool for two-objective optimization prob-
lems in RBM scheduling. The tool developed combined a genetic algo-
rithm (GA) and simulation-based optimization methods with objectives 
to minimize the total cost of maintenance and improve reliability. 
Constraints incorporated functions for determining the effective age of 
the equipment, preventing activity overlaps, as well as implementing 
maintenance operations. The proposed tool was demonstrated on a 
Liquefied Natural Gas (LNG) plant. 

Carlucci & Tognarelli (Carlucci and Tognarelli, 2015) presented a 
maintenance schedule optimization model for a gas generator under 
different working environments and failure probability distribution. The 
article showed how the generator was affected by the available stations, 
the maintenance operations, and the spare parts inventory. The model 
employed reliability software (BlockSim) as an optimization tool. Gar-
gari, Hagh, & Zadeh (Gargari et al., 2021) formulated a PM schedule for 
a multi-energy gride (combining electric and natural gas supply) to 
enhance the supply system’s resilience. The schedule adopted a 
sequential approach which included data collection, selecting 

Table 8 
Summary of articles that focused on maintenance optimization.  

Study focus Application Subsector Optimization Advantage (A) Disadvantage(D) Publication 

Planning and scheduling Oil and Gas plant Mixed Integer Programming 1A: optimal results can be obtained D: not 
practical for a large volume of equipment 

Seif et al. (2021)  

Refinery Integer Programming  Alkhamis & Yellen  (1995)   
Mathematical model  Hou et al. (2022)   
Mixed-integer NLP  Xingchun, Sujing, & Qiang 

(2022)   
Mathematical analysis  Yabrudy Mercado et al. 

(2020)  
Gas processing Nonlinear optimization problem 2A: suitable for a large volume D: optimal results 

not guaranteed 
Ahmed et al. (2015)  

Liquefied Natural Gas 
(LNG) 

Genetic Algorithm and simulation  Hameed et al. (2019)  

Gas distribution Statistical analysis, probability 3A: can analyze factors in detail D: less useful for 
a large volume 

Carlucci & Tognarelli 
(2015)   

Linear programming 1. Gargari, Hagh, & Zadeh 
(2021)  

Hydrocarbon Supply 
chain 

Mixed Integer Programming  Ghaithan (2020)  

Petrochemicals Statistical analysis, probability 3. Berk & Moinzadeh (2000) 
Inspection interval Refinery Monte Carlo simulation 4A: provide a good estimation D: optimal result 

not guaranteed 
Mendes (and. L. M. W. 
Mendes, 2018)   

Expectation theory  Abbasinejad, Hourfar, & 
Elkamel (2021)  

Pipelines Management guide  Amani (2022) 
Safety Refinery Markov Decision Process 5A: models uncertainity D: less useful for large 

volume 
Redutskiy (2017)   

Combined fuzzy NN, firefly heuristics 2. Zhao et al. (2020) 
Evaluation Petrochemical Performance metrics; Economic, 

environmental, social evaluation  
Assaf et al. (2015); Tong 
et al. (2020)   

Supplier evaluation using TOPSIS  Tong, Pu & Ma (2019)   
Evaluation using questionnaires  de Vries & Visser (2021) 

Integrated maintenance Refinery Monte Carlo simulation 4 . Tsutsui & Takata (2010) 
Assessing outsourcing Refinery System dynamics model 2. Kaveh Pishghadam & 

Esmaeeli (2021) 
Operation proficiency 

improvement 
Gas metering stations Integer programming and heuristic 1. Cassettari, Gaggero, & 

Saccaro (2021) 
Maintenance location 

optimization 
Gas distribution 
network 

Mixed-integer programming using 
GAMS, Cplex  

Malec, Benalcazar, & 
Kaszyński (2020) 

Procedural maintenance 
approach 

Gas distribution 
network 

Non-Markovian stochastic Petri nets 5. Carnevali et al. (2014) 

Failure mode 
determination 

Petrochemical FMEA; Fuzzy logic A: models uncertainity D: complex model 
formulation 

Azadeh, Ebrahimipour, & 
Bavar (2010) 

Integrating 
mechanization 

Petrochemical   Yin et al. (2020); Shan et al. 
(2020)  
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operational scenarios, performing operations, integrating maintenance, 
creating a schedule, optimizing resiliency, and repeating the process 
until the best scenario was attained. Ghaithan (Ghaithan, 2020) pre-
sented a mathematical model for maintenance planning and scheduling 
in the hydrocarbon supply chain network. The approach considered the 
processing operation as part of the modeling. A mixed-integer pro-
gramming method was applied to maximize profit subject to various 
constraints (demand and supply balance, processing capacity, produc-
tion and maintenance time span, resource limitations, and so on). 

Finally, considering cases from the petrochemical industry, Berk & 
Moinzadeh (Berk and Moinzadeh, 2000) formulated a maintenance 
scheduling model for n identical machines from different industrial 
sectors. It considered limited resources and identical & independently 
distributed maintenance time to assess the profit generated based on two 
variables, i.e., the number of machines operating and their ages. Oper-
ating characteristics curves were used to compare the profit rates for 
different scenarios. 

3.3.2. Inspection interval determination 
Inspection intervals impact the equipment’s reliability and mainte-

nance cost differently. Therefore, inspections would have to be opti-
mized for the best outcome of these maintenance parameters. Mendes 
(Mendes, 2018) presented a Monte Carlo simulation method for deter-
mining the inspection period for a pump used in refineries. A Weibull 
probability distribution was proposed for a cold standby system to 
formulate the failure time. Costs related to inspection operations were 
minimized in the method. Abbasinejad, Hourfar, & Elkamel (Abbasi-
nejad et al., 2021) developed a model for estimating the interval of a 
proactive maintenance policy based on expected utility theory (expected 
future use of equipment). The research aimed at providing a mainte-
nance plan with the lowest cost and acceptable reliability, availability, 
and safety. The model first determined failure probability (parameters 
for Weibull distribution), then calculated monetary parameters, and 
finally computed the optimum maintenance interval. Amani (Amani, 
2022) reported a framework to improve the effectiveness and efficiency 
of a pipeline inspection management system. The framework consisted 
of developing the information (identifying the pipeline, measuring de-
fects, assessing, designing the inspection method, performing the in-
spection and reporting), creating an integrated model, and validating 
steps. The framework was built on questionnaires conducted in the 
industry. 

3.3.3. Safety 
Safety issues are crucial for all operations in the downstream pe-

troleum industry since most of the products processed pose a range of 
accidents and hazards to human life as well as the environment. Main-
tenance operations are studied in the industry from the perspective of 
mitigating the dangers that arise from faulty processing equipment in 
addition to the risk caused by maintenance operations. Redutskiy 
(Redutskiy, 2017) proposed a black-box approach for various failures 
and incidents with the associated restoration and maintenance opera-
tions. The approach considered minimizing the probability of failure, 
downtime, and cost as an objective and built a system-level Markov 
process model with various states along with the respective action. Zhao 
et al. (Zhao et al., 2020) presented fuzzy-based neural network (NN) 
approaches to evaluate the risk level (using indices) of maintenance 
operations for a refinery unit. The main goal of the evaluation was to 
ensure the safety of the operations. It was performed based on factors 
such as the operating environment, maintenance technician & materials, 
management, and the specific type of operations. The approach 
formulated a fuzzy-based NN model and used a firefly algorithm as a 
solver. 

3.3.4. Maintenance operation evaluation 
A few publications have presented methods for evaluating mainte-

nance operations. Assaf et al. (Assaf et al., 2015) and Tong et al. (Tong 

et al., 2020) presented maintenance efficiency measurement methods. 
The former publication adopted a data envelopment analysis method for 
five key performance metrics (reliability, cost, time, non-ordinary task, 
and labor) to analyze the maintenance. A software (Efficiency Mea-
surement System) was used to assess maintenance units. The latter 
publication proposed a framework for performance evaluation criteria 
for maintenance services. It implemented a fuzzy PROMETHEE (Pref-
erence Ranking Organization Method for Enrichment Evaluation) 
method based on three evaluation criteria categories: economic (cost, 
service reliability), environmental (eco-design, resource consumption, 
recycling), and social (stakeholders, employee, safety). Tong, Pu & Ma 
(Tong et al., 2019) presented a methodology for selecting and evaluating 
equipment maintenance service providers with a case study from the 
petrochemical industry. The proposed methodology evaluated service 
providers from a safe and sustainable production perspective using the 
fuzzy TOPSIS method. The criteria included market acceptance, equip-
ment and resource condition, and safe production. de Vries & Visser (de 
Vries and Visser, 2021) proposed several critical factors for evaluating 
the performance of a maintenance team in the petrochemical industry. 
These factors assessed maintenance operations (identification, planning, 
scheduling, and execution), equipment effectiveness, cost, safety, envi-
ronment, human factor, and organizational issues. The evaluation was 
conducted based on the responses from questionnaires. 

3.3.5. Miscellaneous topics 
Other maintenance objectives found in the literature have been 

briefly discussed below.  

• Refineries: Tsutsui & Takata (Tsutsui and Takata, 2010) presented a 
Monte Carlo simulation system that combined maintenance and 
production operations optimization to reduce the loss due to ma-
chine failure and downtime. The losses considered included inspec-
tion cost, repair cost, and operator’s injury for a desulfurization 
facility in a refinery. The system incorporated the production oper-
ations, planning (processing & maintenance), failure likelihood as-
sessments, condition monitoring, and inspection components. Kaveh 
Pishghadam & Esmaeeli (Kaveh Pishghadam and Esmaeeli, 2021) 
designed a model to analyze outsourced maintenance services in 
terms of their effectiveness, efficiency, and profitability for re-
fineries. A system dynamics model with different scenarios was used 
to analyze the variables that affect the system to obtain the optimal 
service.  

• Gas distribution: Cassettari, Gaggero, & Saccaro (Cassettari et al., 
2021) formulated an optimization model for a four objectives 
problem (reduce the number of operators, reduce idle time, reduce 
the distance traveled, and balance operators’ workload) for gas 
metering maintenance service. The problem was formulated as a 
vehicle routing problem. An Integer programming (for small-size 
problems) and a heuristic (for large-size problems) were proposed 
to solve the problem. The constraints included the number and type 
of activities, time horizon, number of operators, precedence rela-
tionship, distance, and travel time. The heuristics comprised clus-
tering, cluster optimization & merging, and refinement steps. Malec, 
Benalcazar, & Kaszyński (Malec et al., 2020) presented an optimi-
zation model for determining maintenance centers’ locations for a 
gas distribution network. The objective of the model was to minimize 
the maintenance cost while improving the maintenance service and 
response time for the network. The problem, formulated as a 
mixed-integer programming model, was solved using commercial 
software (GAMS and CPLEX). Constraints included resource capacity 
limitation, assignment restriction, and operational flow after the 
respective maintenance services. Carnevali et al. (Carnevali et al., 
2014) proposed a maintenance procedure with multiple imple-
mentation phases based on the gas distribution network’s physical 
and geographical parameters. The procedure adopted a 
non-markovian variant of stochastic Petri nets to obtain information 
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on the availability of the network sections and overall service qual-
ity. It incorporated a quasi-static fluid-dynamics analysis and failure 
& consequence management procedures (including time-dependent 
parameters).  

• Petrochemical: Azadeh, Ebrahimipour, & Bavar (Azadeh et al., 2010) 
proposed a fuzzy rule-based inference system that mimics human 
reasoning through interactive knowledge acquisition to pinpoint the 
failure cause of a pump based on operating parameters. These pa-
rameters included flow rate, pressure, temperature, vibration, and 
brake horsepower. The rules were developed by integrating main-
tenance knowledge (from a handbook and experience) with the 
FMEA method (from the operating parameters). Yin et al. (Yin et al., 
2020) and Shan et al. (Shan et al., 2020) proposed different mech-
anization technologies for maintenance operations after assessing 
existing technology in petrochemical industry facilities. Mechani-
zation is the transformation of manual (human or animal-powered) 
operations to complete machine-based operations. This trans-
formation’s main objective was to improve maintenance operations’ 
productivity. Yin et al. (Yin et al., 2020) assessed the existing 
mechanization level to propose appropriate technologies for imple-
mentation. The article identified seven levels of mechanization: 
complete manual, static hand tools, flexible hand tools, automated 
hand tools, static machine (workstation), flexible machine, and 
completely automated. Shan et al. (Shan et al., 2020) proposed a 
mechanization level assessment method (petrochemical mainte-
nance mechanization assessment - PEMMA) to facilitate the mecha-
nization process. The method followed defining the mechanization 
scale, identifying major activities and the required equipment, 
developing scoring schemes, determining an assessment index, and 
validating steps. 

4. Discussion 

The maintenance optimization approach selection varied depending 
on the size of the asset considered in a given campaign. The optimization 
problem for a single piece of equipment focused on determining the 
optimal objective value which is affected by various parameters and 
variables related to the equipment. The objective included minimizing 
cost, improving reliability/availability, or reducing risk levels, while the 
constraints take in equipment failure rate, inspection frequency, 
acceptable risk level, and different maintenance-related costs. On the 
other hand, when a collection of equipment or machinery was consid-
ered (usually at the plant level), prioritization (criticality) tools were 
added to the optimization model. These tools enabled companies to 
arrange maintenance operations in one or multiple facilities in an 
organization. 

The distribution of the reviewed articles has been analyzed to better 

understand the maintenance implementation trends in the downstream 
petroleum industry. Fig. 3 shows the reviewed articles’ distribution in 
the industrial subsector. The processing sector of the industry (the re-
fineries and natural gas processing) has received more attention than 
other sections, while the transportation sector has received the least 
attention, with the petrochemical & distribution network laying be-
tween these two extremes. 

Fig. 4 shows the distribution of criticality analysis methods in the 
reviewed articles. API and AHP were the most common analysis 
methods employed for this method, whereas FMEA, combined analysis 
methods (merging methods like API, AHP, FMEA, fuzzy logic, and 
heuristics), and other methods (machine learning, TOPSIS, Robust 
portfolio model, Pareto analysis, Bayesian analysis, and self-organizing 
map) were observed in the review. Figs. 5 and 6 present the composi-
tion of the maintenance policy type and the optimization method 
adopted by the articles. As shown, the TAM, RBM, and PdM policy ap-
proaches were the most frequently implemented maintenance policies, 
whereas exact methods based on probability, statistics, matrix, and 
mathematical programming (such as linear, integer, nonlinear and sto-
chastic) dominated the methods. 

Fig. 7 show the number of publications on criticality analysis 
methods (prior to 2010, 2010 - 2015, and post-2015). API was the 
industry’s most common criticality analysis method before 2010. 
However, the use of this approach has declined, while the imple-
mentation of AHP and newer methods have grown significantly over the 
years. Combined analysis has remained a moderately popular method, 
whereas FMEA/FMSA slightly declined in their applications. This 
decline can be partly attributed to the recent evolution of the FMEA 
method. The development of new criticality analysis methods has 
sharply increased over the last era. These methods addressed diverse 
requirements for prioritizing maintenance operations in the industry. 

Based on the analysis given in Fig. 8, the implementation of most 
policies has increased over the past few years. The most radical increase 
observed was in the implementation of PdM, coinciding with the 
popularity of tools like machine learning and data mining that are 
frequently applied with this policy. TAM has remained the most popular 
policy in the industry, whereas RBM, CBM, and RCM policies have 
continued to grow in implementation. Combined policy approaches 
have grown significantly, which in most cases, are mainly used to sup-
plement CM with different PM policies. Maintenance-related topics in 
the downstream petrochemical industries have grown considerably 
especially in the post-2015 era. As the knowledge base and impact of 
maintenance function increased, research has expanded to enhance the 
operations’ proficiency and efficacy. Overall, the diversity of policies 
and criticality analysis methods has increased over the past decade with 
new methods, either developed or adapted to the needs of the industry. 

Fig. 3. Industrial sector-based distribution of the reviewed articles.  
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5. Future research direction 

The downstream petroleum industry covers a wide range of pro-
cessing and distribution facilities with complex procedures and equip-
ment. As a result, the maintenance optimization requirements of 
facilities in the industry are highly diverse. Studies on the optimization 
methods identified in the literature have been discussed in Section 3. 
This section presents potential research extensions to these studies that 
could impact optimization approaches in the industry. 

Crude petroleum and its by-product processing have been identified 

as the industry’s main focus area for maintenance optimization research. 
Even with such research inclination, the optimization studies can be 
extended in all categories. Potential optimization and criticality analysis 
methods can be explored by benchmarking practices in related in-
dustries. For example, policy optimization can consider the extension of 
RBM and CBM policies as well as the implementation of new (least 
common) policies, such as time-based and opportunistic maintenance 
policies (Chin et al., 2020). Criticality analysis methods such as crisis 
tree analysis, adaptive risk analysis, process graph, and event tree can be 
investigated for potential industry applications (Chin et al., 2020). 

Fig. 4. Criticality determination approaches.  

Fig. 5. Maintenance policy-based distribution of the reviewed articles.  

Fig. 6. Maintenance optimization approaches.  
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Maintenance features such as condition monitoring, inspection, 
replacement, repair, and dependency for single and multi-component 
systems can be studied to enhance the optimization model (De Jonge 
and Scarf, 2020; Keizer et al., 2017). As most industrial processes 
possess stochastic attributes, integrating stochastic optimization 
methods could lead to a more realistic problem formulation (Alaswad 
and Xiang, 2017). These stochastic formulations can define deteriora-
tion rates, reliability, failure risk, available resources, and other 
maintenance-related factors. The combination of maintenance with 
different organizational functions (inventory and production manage-
ment) can be another research extension (Hwang and Samat, 2019; Van 
Horenbeek et al., 2013). This approach can enhance the impact of the 
maintenance optimization model by providing organization-wide solu-
tions. Sustainable maintenance can also be addressed in more detail, 
even though few articles have already begun studying the topic (Saihi 
et al., 2022; Olugu et al., 2022; Hosseinzadeh et al., 2023). 

The maintenance of distribution facilities for semi-processed and 
finished products provides a good research prospect in the industry. In 
addition to some of the research extensions that these facilities share 
with processing sections, the combined safety and maintenance opti-
mization problem could be valuable to the knowledge base. These fa-
cilities also extend over large regions, requiring the integration of 
logistics when formulating the optimization problem. The maintenance 
of a fleet of trucks or trains to transport products can be another future 
research direction. As shown in Section 4, the research in this direction 

is minimal despite its importance to the industry. Some topics that could 
be considered include maintenance cost optimization methods based on 
travel distance and road conditions, focusing on critical components 
(Zhetesova et al., 2020). Vujanović, Momčilović, & Medar (Vujanović 
et al., 2018), Durán et al. (Durán et al., 2021), Kfita & Drissi-Kaitouni 
(Kfita and Drissi-Kaitouni, 2017), and Wang et al. (Wang et al., 2021) 
have discussed other directions for this research prospect. 

6. Conclusion 

Maintenance is an essential function that draws research in the 
downstream petroleum industries. These research varied in terms of 
asset prioritization, applied policies, optimization methods, manage-
ment framework/guidelines, implementation control, and evaluation to 
tackle the diverse maintenance needs of the subsectors. The overall 
approach observed was to arrange first components/equipment based 
on their criticality to the production process, safety, environment, and/ 
or failure rates, and then either perform the maintenance operations or 
select an appropriate maintenance policy to optimize objectives such as 
maintenance cost (summation of maintenance-related cost), reliability, 
and availability. Criticality analysis methods such as the API approach, 
AHP, and FMEA were prevalent with various development of these 
methods and new ones. When a large volume of assets is considered for a 
maintenance campaign, optimizing policies may not be a practical 
approach to implement. Therefore, the criticality analysis methods were 

Fig. 7. Yearly distribution of criticality analysis methods.  

Fig. 8. Yearly distribution of maintenance policy.  
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adopted as the sole optimization tool. 
Though dominant policies were frequently applied in the industry 

(like TAM and different mixed approaches), a range of policies 
(including RMB, PdM, CBM, and RCM) have also been implemented 
independently. When considering single equipment or machinery, the 
optimization addressed model variables or maintenance policies that 
attain the optimal value for the objective set. As an optimization tool, 
exact methods have been widely used, but other methods such as fuzzy 
logic, heuristics, machine learning tools, and different combined 
methods have also been observed in the publications. Optimization also 
included other focus points, such as maintenance operation scheduling, 
safety (both the maintenance operation and the overall safety of the 
production process), supplier selection, outsourcing, joint production- 
maintenance approach, and maintenance mechanization. Furthermore, 
several articles have demonstrated the different maintenance imple-
mentation frameworks and evaluation methods. 

Maintenance optimization approaches have grown in terms of the 
sub-sectoral coverage, range of policies implemented, variety of critical 
analysis methods, and diversity of optimization tools adopted over the 
years in the industry. However, due to the vast number of industrial 
facilities, research should be expanded to reach every corner of the in-
dustry. Researchers can explore the implementation of potential critical 
assessment methods and policies, stochastic methods, and industry- 
specific research gaps (sub-sectoral or aggregated supply chains). Inte-
grated maintenance function over the supply chain can result in more 
lean, cost-effective, and efficient operations. 

To sum up, maintenance functions in the downstream petroleum 
industry entail a large number of complex activities bounded by time 
and cost. It directly affects the production process’s profitability, safety, 
and environmental footprint. Therefore, research and advances in the 
function could lead to organizational success in the industry. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. Weihang Zhu reports financial support 
was provided by National Science Foundation. Weihang Zhu reports 
financial support was provided by National Academies of Sciences En-
gineering and Medicine. Weihang Zhu reports financial support was 
provided by US Department of Agriculture. 

Data availability 

No data was used for the research described in the article. 

Acknowledgment 

This paper is partially supported by funding from National Science 
Foundation grants #1855147, #1950036, #2141674, #2220683, Na-
tional Academy of Sciences, Engineering, and Medicine grant 
#200011064, and U. S. Department of Agriculture grants #13111855, 
#13424031, two grants from University of Houston Advanced 
Manufacturing Institute. Their support is much appreciated. 

References 

Abbasi, T., Lim, K.H., Soomro, T.A., Ismail, I., Ali, A., 2020. Condition based 
maintenance of oil and gas equipment: a review. In: 3rd International Conference on 
Computing, Mathematics and Engineering Technologies (iCoMET). 

Abbasinejad, R., Hourfar, F., Elkamel, A., 2021. Optimum maintenance interval 
determination for field instrument devices in oil and gas industries based on 
expected utility theory. Comput. Chem. Eng., 107362 

Aghaee, A., Aghaee, M., Fathi, M.R., Shoa’bin, S., Sobhani, S.M., 2020. A novel fuzzy 
hybrid multi-criteria decision-making approach for evaluating maintenance 
strategies in petrochemical industry. J. Qual. Maint. Eng. 351–365. 

Ahmed, Q., Moghaddam, K.S., Raza, S.A., Khan, F.I., 2015. A multi-constrained 
maintenance scheduling optimization model for a hydrocarbon processing facility. 
J. Risk Reliab. 151–168. 

Al-Marri, A.N., Nechi, S., Ben-Ayed, O., Charfeddine, L., 2020. Analysis of the 
performance of TAM in oil and gas industry: factors and solutions for improvement. 
Energy Rep. 2276–2287. 

Al-Subaiei, W., Al-Herz, E., Al-Marri, W., Al-Otaibi, R., Ashyan, H., Jaber, H., 2021. 
Industry 4.0 smart predictive maintenance in the oil industry to enable near-zero 
downtime in operations. In: The 11th Annual International Conference on Industrial 
Engineering and Operations Management. Singapore. 

Al-Turki, U., Duffuaa, S., Bendaya, M., 2019. Trends in turnaround maintenance 
planning: literature review. J. Qual. Maint. Eng. 253–271. 

Alaswad, S., Xiang, Y., 2017. A review on condition-based maintenance optimization 
models for stochastically deteriorating system. Reliab. Eng. Syst. Saf. 54–63. 

Alkhamis, T.M., Yellen, J., 1995. Refinery units maintenance scheduling using integer 
programming. Appl. Math. Model. 543–549. 

Almomani, H., Aldaihani, A.H., 2020. Maintenance operations and its management in oil 
industry in Kuwait. J. Environ. Treat. Techniq. 1563–1567. 

Alrabghi, A., Tiwari, A., Savill, M., 2017. Simulation-based optimisation of maintenance 
systems: industrial case studies. J. Manuf. Syst. 191–206. 

Amani, N., 2022. Integrating inspection management (IM) in piping system of petroleum 
industry in Iran. Facilities 268–280. 

Antomarioni, S., Bevilacqua, M., Potena, D., Diamantini, C., 2018. Defining a data-driven 
maintenance policy: an application to an oil refinery plant. Int. J. Qual. Reliab. 
Manage. 77–97. 

Antomarioni, S., Pisacane, O., Potena, D., Bevilacqua, M., Ciarapica, F.E., Diamantini, C., 
2019. A predictive association rule-based maintenance policy to minimize the 
probability of breakages: application to an oil refinery. Int. J. Adv. Manuf. Technol. 
3661–3675. 

Anvaripour, B., Sa’idi, E., Nabhani, N., Jaderi, F., 2013. Risk analysis of crude distillation 
unit’s assets in abadan oil refinery using risk based maintenance. Tech. J. Eng. Appl. 
Sci. (TJEAS) 1888–1892. 

Assaf, S.A., Hadidi, L.A., Hassanain, M.A., Rezq, M.F., 2015. Performance evaluation and 
benchmarking for maintenance decision making units at petrochemical corporation 
using a DEA model. Int. J. Adv. Manuf. Technol. 1957–1967. 
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