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Abstract

A stochastic programming framework is proposed for radiation therapy treatment plan-

ning. This framework takes into account uncertainty in setting up or positioning patients

identically day-to-day during the treatment period. Because uncertainties are unavoidable,

constraint violations are tolerated to some degree in practice. Under this assumption, a

chance-constrained programming (CCP) framework is developed to handle setup uncer-

tainties in treatment planning. The proposed framework can be employed under different

distributional assumptions. The goal of the proposed approach is to maximize both the

statistical confidence level of a treatment plan and the homogeneity of the dose distribu-

tions. This novel perspective provides a user-centric and personalized optimization model

that allows a trade-off between sufficient tumor coverage and sparing healthy tissues under

uncertainty. We describe testing of the performance of the proposed CCP models in terms

of plan quality, robustness, and homogeneity and confidence level of the constraints using

clinical data for a prostate cancer patient. Optimized CCP plans are also compared to plans

developed using a deterministic approach that does not take uncertainties into account.

Numerical experiments confirmed that the CCP is able to control setup uncertainties in

target coverage and sparing of organs-at-risk.
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1. Introduction

More than 1.6 million new cancer diagnoses and more than half a million cancer deaths

are expected to occur in the United States in 2017, according to the American Cancer

Society (Siegel et al., 2017). More than half of patients diagnosed with cancer undergo

radiation therapy, some in conjunction with chemotherapy or surgery (American Cancer

Society, 2015). Radiation therapy delivers radioactive particles to the tumor region in

order to damage the DNA of the cells, interfering with their ability to divide and grow.

An important goal in radiation therapy is to kill tumor cells while minimizing toxic effects

on surrounding healthy tissues.

Two of the most advanced and common modalities of radiation therapy are intensity-

modulated radiation therapy (IMRT) (Zelefsky et al., 2000, Lim, Choi, & Mohan, 2008,

Lim and Cao, 2012), which uses photons, and intensity-modulated proton therapy (Lomax

et al., 2001, Cao et al., 2013, 2014), which uses protons. In delivering radiation for therapy,

both of the methods decompose one open beam into many “beamlets” for each angle. The

intensity of each beamlet can be modulated to achieve the optimal treatment effect; hence,

each beamlet can deliver a different level of radiation intensity. The goal in treatment

planning is to find the optimal beamlet intensities that will deliver a dose distribution as

close as possible to the radiation dose prescribed for treatment.

Several sources of uncertainty can degrade the outcome of radiation treatment. Setup

error, a common source of uncertainty, affects the relative position of the tumor with respect

to the treatment beams. Radiation therapy is often administered daily over a period of

several weeks, and the patient needs to be set up on the treatment couch in the exact same

position for each treatment. A change in position can cause the radiation dose received by

a voxel (a three-dimensional unit of volume) to differ from the planned dose to that voxel.

One effective method for calculating tumor dose while minimizing the radiation expo-

sure of healthy organs under conditions of uncertainty is robust optimization. Baum et al.

(2006) highlighted the importance of robustness in radiation therapy. Olafsson and Wright

(2006) presented a robust optimization approach simultaneously considering the uncertain-

ties resulting from dose calculation and organ positions. Other researchers (Pflugfelder,

Wilkens, & Oelfke, 2008, Liu et al., 2012b, Fredriksson, Forsgren, & H̊ardemark, 2011)

proposed using scenario-based worst-case robust optimization approaches. A further con-

sideration in radiation treatment planning is that the optimization model should contain

constraints to ensure clinical feasibility. However, some of the proposed robust optimization
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models do not contain constraints (Pflugfelder, Wilkens, & Oelfke, 2008, Liu et al., 2012a,

Fredriksson, Forsgren, & H̊ardemark, 2011), which can result in infeasible solutions. When

a solution is clinically infeasible, a planner must perform a post-processing remedial step

to obtain a solution that eliminates or minimizes the constraint violations. We claim that

information about clinical constraint violations under parameter uncertainties can help

physicians decide whether the obtained solution is good enough to allow the treatment to

proceed or whether an alternative treatment plan needs to be developed.

The clinical goal of achieving an effective dose for target tissue(s) while sparing the

organs at risk (OARs) is often difficult to satisfy. Hence, some degree of clinical constraint

violations can be tolerated by clinicians as long as the deviation is not too far from the

clinical objective. This has motivated us to develop a probabilistic approach, specifically,

a chance-constrained programming (CCP) model to address the problem using confidence

levels. The underlying assumption of a chance-constrained framework is that we have

full knowledge of the probability distribution of the uncertainty. Although we may not

have enough data to infer the true probability distribution of an uncertain parameter, an

approximate probability distribution of uncertainty can be included in the CCP framework.

CCP (Charnes and Cooper, 1959) has been widely studied and plays an important role

in engineering, telecommunications, and finance (Geletu, Klöppel, & Li, 2013). Recently,

An et al. (2017) presented a conditional value at risk (CVaR) chance-constrained treatment

planning optimization in proton therapy. This stochastic programming technique assumes

random data variations and allows constraint violations up to a specified tolerance level in

the probabilistic setting. In general, CCP relaxes the constraints in a deterministic opti-

mization model and replaces them with probabilistic constraints. Each chance constraint

specifies the level of confidence for satisfying the corresponding deterministic constraint.

Confidence levels can be helpful information for treatment planners because they allow

treatment plans to be developed based on the decision maker’s risk preference on con-

straint violation. Most of the existing treatment planning optimization models do not

provide information about feasibility violation under uncertainty. For instance, in robust

optimization, the goal is to achieve feasibility under any realization of a predetermined un-

certainty set; however, in CCP, one seeks to satisfy the constraints with high probability.

Nevertheless, for the special case of the ellipsoidal uncertainty set, chance constraints and

deterministically robust constraints have been proven to be equivalent (Calafiore and El

Ghaoui, 2006).

One of the limitations of the CCP approach is that the feasible set of a chance constraint
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is usually nonconvex, which makes the optimization problem difficult to solve (Nemirovski

and Shapiro, 2006). However, under some assumptions on an uncertain parameter, de-

terministic equivalent transformations have been developed (Charnes and Cooper, 1959,

Geletu, Klöppel, & Li, 2013). Finding a feasible solution for the deterministic counterparts

of the chance constraints is often computationally less burdensome than solving the original

stochastic model.

Therefore, in this paper, a CCP framework is developed to optimize radiation therapy

treatment plans under conditions of uncertainty regarding the patient setup. The proposed

model controls the frequency of constraint violations and provides optimized treatment

plans along with a corresponding confidence level. A confidence level, the probability

that the constraints will hold under uncertainties, can help the physician to select an

appropriate treatment plan based on the risk tolerance level for constraint violation. We

first construct the chance-constrained framework to control the dose to each anatomical

structure by addressing the clinical requirements for treatment: controlling the cold spots

and hot spots on the target while sparing normal tissues. (A cold spot is a portion of

tissue that receives less than the desired radiation dose, and a hot spot is a portion of

tissue that receives a dose higher than the desired dose.) The practical application of

CCP necessitates a rational method for choosing risk levels or tolerances for the chance

constraints; this issue is addressed by optimizing the confidence levels within the proposed

framework. However, if the confidence levels are implicitly known as part of the decision

process, the framework can help to maximize the homogeneity of the dose distributions. In

addition, we derive second-order cone programming equivalents of the chance constraints

and employ the framework to handle uncertainties under different probability distributions.

This paper makes three main contributions. (1) A chance-constrained optimization

framework is developed to handle random setup uncertainties in the problem of radiation

therapy treatment planning. (2) Within the framework of CCP, confidence levels (i.e., the

probability of satisfying the constraints) and the plan’s quality, robustness, and homogene-

ity are optimized. (3) We demonstrate that the CCP framework can be extended to an

uncertainty with a specific probability distribution with simple modification.

The paper is organized into 5 sections. The problem and the notation for the problem

formulation are described in Section 2. CCP is defined in a general setting in Section 3.

We add an explanation about how chance constraints for radiation therapy treatment

planning and the corresponding CCP framework can be constructed. The extension of

this framework for different uncertainties with specific probability distributions is also
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elaborated in Section 3. Section 4 discusses the results of a case study using clinical data

from a patient with prostate cancer. We offer our conclusions in Section 5.

2. Problem Description and Notation

The goal of a fluence map optimization in radiation therapy treatment planning is to

find the optimal beamlet weights, the amount of radiation that each beamlet delivers when

the gantry is positioned at a given angle. The deterministic fluence map optimization

model we use in this paper is presented in Lim, Choi, & Mohan (2008).

The input parameters for radiation therapy treatment planning models are shown in

Table 1.

Table 1: Parameter definition

T A set of voxels in the clinical target volume

OAR A set of voxels in organs-at-risk

J A set of all beamlets

θL Cold-spot control parameter on target

θU Hot-spot control parameter on target

ϕ Hot-spot control parameter on OAR

λ+T Penalty coefficient for hot spots on target

λ−T Penalty coefficient for cold spots on target

λOAR Penalty coefficient for hot spots on OAR

α+
T Risk level for having cold spots on target

α−T Risk level for having hot spots on target

α+
OAR Risk level for having hot spots on OAR

Given that the decision variable wj is the intensity of beamlet j ∈ J , the total dose in

voxel i can be calculated as

Di(w) =
∑
j∈J

dijwj , ∀i ∈ {T ∪OAR},

where dij denotes the dose contributed by the jth beamlet per unit weight and received by

voxel i. In a matrix format, we have

Di(w) = dTi w,
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where di represents the dose contribution from all beamlets to voxel i and w is the intensity

vector of the beamlets.

3. Chance-constrained programming

Let us consider the following problem:

{x|(ε : Ai(ε)x ≥ bi(ε))}, (1)

where x ∈ Rn is the decision variable and ε is a random variable affecting both Ai and bi

for all i = 1, . . . ,m. A classical approach to the solution of (1) under random uncertainty is

to introduce risk levels αi for i = 1, . . . ,m and to enforce the constraints satisfied with, at

most, probability (1− αi), in any choice of x, thus obtaining the so-called CCP. A generic

form of chance constraints can be stated as:

{x|ε : P [Ai(ε)x ≥ bi(ε)] ≥ 1− αi} i = 1, . . . ,m (2)

In the following section, constraint (2) is used to construct chance constraints for radi-

ation therapy treatment planning optimization under patient setup uncertainty.

3.1. Chance-constraints for treatment planning

Under a setup uncertainty, the random dose delivered to voxel i is denoted by

D̃i(w) = d̃Ti w, ∀i ∈ {T ∪OAR},

where d̃i is a random variable that denotes the amount of radiation dose received in voxel

i by all beamlets with a unit intensity (or weight).

Under the nominal assumption (i.e., no uncertainty), the target must receive a dose

over θL, a lower threshold value on the target:

DT (w) ≥ θL, (3)

where DT (w) is essentially the same as D̃T (w). However, constraint (3) becomes (4) under

uncertainty:

D̃T (w) ≥ θL (4)
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We reformulate this constraint as a chance-constrained framework by introducing a confi-

dence level and enforcing the constraint with probability, as represented in (5).

P{D̃T (w) ≥ θL} ≥ 1− α−T , (5)

where 1− α−T is the confidence level for avoiding cold spots on target voxels.

In addition, the dose received by a target voxel is limited to some level θU in order to

minimize hot spots on the tumor. The corresponding deterministic constraint is shown in

(6).

DT (w) ≤ θU (6)

In a stochastic framework, constraint (6) can be written as

D̃T (w) ≤ θU , (7)

and the probabilistic representation of constraint (7) is

P{D̃T (w) ≤ θU} ≥ 1− α+
T , (8)

where 1− α+
T is the confidence level for limiting hot spots on target voxels.

Similarly, chance constraints can be defined for OAR sparing. If a voxel belongs to a

healthy structure or an OAR, it is desirable to limit the dose below some level ϕ, which is a

structure-specific parameter. Equations (9), (10), and (11) are the OAR-sparing constraints

in the format of deterministic, stochastic, and chance constraints, respectively.

DOAR(w) ≤ ϕ (9)

D̃OAR(w) ≤ ϕ (10)

P{D̃OAR(w) ≤ ϕ} ≥ 1− α+
OAR, (11)

where 1 − α+
OAR is the confidence level for the sparing of voxels in OAR. Note that there

are often more than one OAR structure is located in a treatment site.

The following two remarks highlight the feasibility of chance constraints when compared

to deterministic and stochastic constraints:

Remark 1. Any of the chance constraints (5), (8), or (11) are feasible if the corresponding
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deterministic constraints (3), (6), or (9) are feasible.

Remark 2. Any feasible solution of the stochastic constraints (4), (7), or (10) is feasible

for the corresponding chance constraints (5), (8), or (11).

3.2. CCP models under normal distribution (CCP-N)

In this section, the dose contribution vector d̃i is assumed to be normally distributed

with mean E(d̃i) and standard deviation σ(d̃i) (Fredriksson, Forsgren, & H̊ardemark, 2015).

The normal probability distribution has attractive analytical properties that facilitate fur-

ther analysis (Chan, Tsitsiklis, & Bortfeld, 2010). Furthermore, the sum of the random

errors with arbitrary distributions will converge to a normal distribution, as follows from

a central limit theorem. Hence, the normality assumption will also help to extend the

analysis for multiple sources of uncertainty (Chu et al., 2005).

It should be noted that one of the difficulties in solving this probabilistically constrained

model comes from the fact that the chance constraints (5), (8), or (11) may not be convex

(Nemirovski and Shapiro, 2006). Under the normality assumption of uncertainty, we can

prove that these constraints are convex. Thus, the optimization model becomes easier

to solve. Proposition 1 and Corollary 1 below elaborate the convexity of the treatment

planning chance constraints under the assumption of normal distribution for uncertainties.

Then, Proposition 2 provides linear deterministic equivalents of the chance constraints (5),

(8), and (11).

Proposition 1. Assuming that an uncertain parameter follows a normal distribution, the

feasible region for each of the chance constraints (5), (8), or (11) is convex for any α ≤ 1/2.

Proof. Suppose the uncertain coefficients d̃i, ∀i = 1, · · · , depend affinely on a random

variable ε̃ij whose distributions are normal, so we have

di(ε̃) = d0i +
∑
j∈J

dji ε̃ij ,

where d0i vector is equal to E(d̃i), and elements of dji vectors are 0 except for the jth element

which is 1. Under the affine dependence of uncertainties on the random vector, the chance
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constraints (5), (8), or (11) are of the forms (12) - (14), respectively.

P{D̃T (w) ≥ θL} = P{−(d0T +
∑
j∈J

djT ε̃Tj)
T
w ≤ −θL} ≥ 1− α−T (12)

P{D̃T (w) ≤ θU} = P{(d0T +
∑
j∈J

djT ε̃Tj)
T
w ≤ θU} ≥ 1− α+

T (13)

P{D̃OAR(w) ≤ ϕ} = P{(d0OAR +
∑
j∈J

djOARε̃OARj)
T
w ≤ θU} ≥ 1− α+

OAR, (14)

where (12) - (14) have the same form as P{(a0 + ã)Tx ≤ b} ≤ 1− α. It is known that any

chance-constrained linear program of the form

max cTx

s.t.

P{(a0 + ã)Tx ≤ b} ≤ 1− α,

with the acceptable risk level α ≤ 1/2 is a convex program, if the distribution of uncertain

parameter ã is log-concave and symmetric (Nemirovski and Shapiro, 2006, Prékopa, 1995).

Since ε̃ is assumed to be normally distributed, and normal distributions have a log-concave

symmetric density function, the feasible region for any of the chance constraints (5), (8),

or (11) is convex.

Corollary 1. Consider the system of chance constraints (15) for the problem of treatment

planning optimization.The feasible region for the set of chance constraints (15) is convex

for any α ≤ 1/2 under the assumption of normal distribution for uncertainties.

P{D̃T (w) ≥ θL} ≥ 1− α−T ∀T (15)

P{D̃T (w) ≤ θU} ≥ 1− α+
T ∀T

P{D̃OAR(w) ≤ ϕ} ≥ 1− α+
OAR ∀OAR

Proof. According to Proposition 1, the feasible region of any individual constraint in (15)

is convex for any α ≤ 1/2 under the assumption of normal distribution for uncertainty. It

is known that the intersection of convex sets is convex (Bazaraa, Sherali, & Shetty, 2013).

As a result, the feasible region of (15) is convex.
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Proposition 2. Let random dose D̃i(w) follow a normal distribution with mean E(D̃i(w))

and standard deviation σ(D̃i(w)), and consider the following set of constraints:

E(D̃T (w))− Φ−1(1− α−T )σ(D̃T (w)) ≥ θL ∀T (16)

E(D̃T (w)) + Φ−1(1− α+
T )σ(D̃T (w)) ≤ θU ∀T (17)

E(D̃OAR(w)) + Φ−1(1− α+
OAR)σ(D̃OAR(w)) ≤ ϕ ∀OAR (18)

Then, every feasible solution of the constraints (16)-(18) is feasible for the constraint (15),

where Φ(·) represents the cumulative distribution of a normal standard probability density.

Proof. Under the normality assumption of D̃i(w), the standardized form of D̃i(w) is defined

as

Z̃i(w) =
D̃i(w)−E(D̃i(w))

σ(D̃i(w))

In order to yield the desired result for the constraint (16), the chance constraint (5) can

be transformed by simple subtraction and division as follows:

P{ D̃T (w)−E(D̃T (w))

σ(D̃T (w))
≥ θL −E(D̃T (w))

σ(D̃T (w))
} ≥ 1− α−T

P{Z̃T (w) ≤ θL −E(D̃T (w))

σ(D̃T (w))
} ≤ α−T

θL −E(D̃T (w))

σ(D̃T (w))
≤ Φ−1(α−T ),

from which constraint (16) is obtained.

Next, we derive the deterministic equivalent of the chance constraint (8).

P{ D̃T (w)−E(D̃T (w))

σ(D̃T (w))
≤ θU −E(D̃T (w))

σ(D̃T (w))
} ≥ 1− α+

T

P{Z̃T (w) ≤ θU −E(D̃T (w))

σ(D̃T (w))
} ≥ 1− α+

T

θU −E(D̃T (w))

σ(D̃T (w))
≥ Φ−1(1− α+

T ),
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from which constraint (17) follows. In a similar fashion, it can be shown that constraint

(18) is equivalent to (11).

The dose calculated using any feasible solution of the constraints (16)-(18) will be within

the lower- and upper-boundary control parameters prescribed for each structure with the

specified confidence level for each voxel. Typically, the same dose is prescribed to all voxels

in the target, so we assume equal confidence levels for all voxels in the same structure

for each set of constraints. In other words, the resulting dose of any feasible solution of

constraints (16)-(18) is greater than θL with confidence level (1 − α−T )% and less than θU

with confidence level (1−α+
T )% for each target voxel, and also less than ϕ with confidence

level (1− α+
OAR)% for each OAR voxel, in the face of uncertainty.

3.2.1. CCP-N (I)

In this section, we develop a model in which the confidence levels (1−α) described above

become decision variables, leading to a formulation (19) that maximizes the confidence

levels (1− α) for all voxels.

max λ−T (1− α−T ) + λ+T (1− α+
T ) + λOAR(1− α+

OAR) (19)

s.t.

E(D̃T (w))− Φ−1(1− α−T )σ(D̃T (w)) ≥ θL ∀T

E(D̃T (w)) + Φ−1(1− α+
T )σ(D̃T (w)) ≤ θU ∀T

E(D̃OAR(w)) + Φ−1(1− α+
OAR)σ(D̃OAR(w)) ≤ ϕ ∀OAR

α−T , α
+
T , α

+
OAR ≤ 1/2

w ≥ 0,

where λ−T , λ+T , and λOAR are penalty coefficients for cold spots on the target, hot spots on

the target, and hot spots on the OAR, respectively.

However, the inverse function Φ−1(y) makes it difficult to find the optimal value of α

in model (19). Instead, the model can be reformulated as

max λ−T Φ−1(1− α−T ) + λ+T Φ−1(1− α+
T ) + λOAR Φ−1(1− α+

OAR) (20)

s.t.

Constraints of model (19),
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because Φ−1(y) is a monotonically increasing function of y. Considering Φ−1(1− α) =

Gα as a new set of variables for α ∈ {α−T , α
+
T , α

+
OAR}, the model is simplified as follows:

max λ−T G(α−
T ) + λ+T G(α+

T ) + λOAR G(α+
OAR) (21)

s.t.

E(D̃T (w))−G(α−
T ) σ(D̃T (w)) ≥ θL ∀T

E(D̃T (w)) +G(α+
T ) σ(D̃T (w)) ≤ θU ∀T

E(D̃OAR(w)) +G(α+
OAR) σ(D̃OAR(w)) ≤ ϕ ∀OAR

Gα−
T
, Gα+

T
, Gα+

OAR
≥ 0

w ≥ 0.

3.2.2. CCP-N (II)

In some situations, the treatment planner may wish to develop a plan that satisfies a

preferred value of confidence (α.). This level of confidence may violate constraint feasibility

for fixed values of θL, θU , and ϕ; hence, these three parameters can be treated as variables.

Then, an optimization model can be developed to find optimal beamlet intensities in such

a way that deviations of these three variables from their target values can be minimized,

i.e., min (θU−θL) and min ϕ for a given level of confidence (1−α.). Therefore, we propose

the following optimization model (22), in which θL, θU , and ϕ are considered as decision

variables for a fixed value α. for each organ.

min − λ−T θL + λ+T θU + λ+OAR ϕ (22)

s.t.

E(D̃T (w))− Φ−1(1− α−T )σ(D̃T (w)) ≥ θL ∀T

E(D̃T (w)) + Φ−1(1− α+
T )σ(D̃T (w)) ≤ θU ∀T

E(D̃OAR(w)) + Φ−1(1− α+
OAR)σ(D̃OAR(w)) ≤ ϕ ∀OAR

θL ≤ θL ≤ θ̄L
θU ≤ θU ≤ θ̄U
ϕ,w ≥ 0

where θ and θ̄ are lower and upper bounds for variables θ, respectively.
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3.3. CCP models under uniform distribution (CCP-U)

In this section, the vector d̃i − E(d̃i) is assumed to be uniformly distributed in the

ellipsoid ε = {ξ = Qz : ‖z‖ ≤ 1} where Q = υΓf ,Γ = σ2(d̃i) � 0, υ =
√
n+ 3,Γf ∈

Rn, and υ is a full rank factor such that Γ = ΓfΓTf . Under a uniform distributional

assumption for uncertainties, Proposition 3 and Corollary 2 below explore the convexity

of the treatment planning chance constraints. Those are followed by Proposition 4, which

is related to the work by Calafiore and El Ghaoui (2006) and provides deterministic linear

equivalents of the chance constraints (15) under the above-mentioned assumptions.

Proposition 3. For any α ≤ 1/2, the feasible region for each of the chance constraints (5),

(8), or (11) is convex, if uncertain dose distributions d̃i − E(d̃i) are uniformly distributed

in the ellipsoid ε = {ξ = Qz : ‖z‖ ≤ 1}.

Proof. Assume uncertain coefficients d̃i depend affinely on a random vector ε̃ij . Uniformly

distributed d̃i −E(d̃i) is defined as

d̃i −E(d̃i) = di(ε̃)− d0i =
∑
j∈J

dji ε̃ij .

The proof follows in similar fashion to the proof of Proposition 1. Under the above-

mentioned assumptions, the chance constraints (5), (8), or (11) are of the forms (12), (13),

or (14), respectively.

It is assumed that
∑

j∈J d
j
i ε̃ij follows a uniform distribution in the ellipsoid ε = {ξ = Qz :

‖z‖ ≤ 1}, which has a log-concave distribution function. Hence, the feasible region for

any of the chance constraints (5), (8), or (11) is convex (Nemirovski and Shapiro, 2006,

Prékopa, 1995).

Corollary 2. For any risk level α ≤ 1/2, the feasible region of the set of chance constraints

(15) is convex if d̃i−E(d̃i) is uniformly distributed in the ellipsoid ε = {ξ = Qz : ‖z‖ ≤ 1}.

Proof. From Proposition 3, we know that for any α ≤ 1/2, the feasible region of any

individual constraint in (15) is a convex set if vector d̃i −E(d̃i) is uniformly distributed in

the ellipsoid ε = {ξ = Qz : ‖z‖ ≤ 1}. Similar to the proof of Corollary 1, this extension

is the consequence of the fact that the intersection of convex sets is still convex (Bazaraa,

Sherali, & Shetty, 2013). Therefore, we can conclude that the feasible region of (15) is

convex if the assumptions hold.
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Proposition 4. Assume d̃i − E(d̃i) is uniformly distributed in the ellipsoid set ε = {ξ =

Qz : ‖z‖ ≤ 1}, in which Q = υΓf υ =
√
n+ 3, and consider the following set of constraints:

E(D̃T (w))− υ
√

Ψ−1beta(1− 2α−T ) σ(D̃T (w)) ≥ θL ∀T (23)

E(D̃T (w)) + υ
√

Ψ−1beta(1− 2α+
T ) σ(D̃T (w)) ≤ θU ∀T (24)

E(D̃OAR(w)) + υ
√

Ψ−1beta(1− 2α+
OAR) σ(D̃OAR(w)) ≤ ϕ ∀OAR (25)

Then, for any α ∈ (0, 0.5], every feasible solution of the constraints (23)-(25) is feasi-

ble for the chance constraints (5), (8), and (11), respectively. Ψbeta(·) is the cumulative

distribution function (CDF) of a beta(1/2;n/2 + 1) probability density function (PDF).

Proof. Consider the chance-constrained set (15). By subtracting E(D̃i(w)) from each side

of the constraints inside the probability, we can reformulate the constraints to

P{ D̃T (w)−E(D̃T (w))

σ(D̃T (w))
≥ θL − E(D̃T (w))

σ(D̃T (w))
} ≥ 1− α−T (26)

P{ D̃T (w)−E(D̃T (w))

σ(D̃T (w))
≥ θU − E(D̃T (w))

σ(D̃T (w))
} ≥ 1− α+

T (27)

P{ D̃OAR(w)−E(D̃OAR(w))

σ(D̃OAR(w))
≥ ϕ− E(D̃OAR(w))

σ(D̃OAR(w))
} ≥ 1− α+

OAR. (28)

Since the vector d̃i −E(d̃i) is uniform in ε, we have

d̃i −E(d̃i) = υΓfh, (29)

where h ∈ Rn+1 is uniform in {z : ‖z‖ ≤ 1}. By applying (29), we will obtain

D̃i(w)−E(D̃i(w)) = (υΓfh)Tw.

According to Calafiore and El Ghaoui (2006), the distribution function of [D̃i(w)−E(D̃i(w))]/υσ(D̃i(w))

is

nVn
nVn+1

(1− ξ2)n/2, ξ ∈ [−1, 1],

14



in which Vn is

Vn =
πn/2

Γ(n/2 + 1)
.

In order to prove the inequality (23), it is sufficient to show that CDF Ψ(ξ), ξ ∈ [−1, 1], is

given by

Ψ(ξ) = 1/2 + (1/2)sign(ξ)

∫ |ξ|
0

(2
nVn
nVn+1

)(1− x2)n/2dx. (30)

With the change of variable z = x2, the equation (30) can be written as follows

Ψ(ξ) = 1/2 + (1/2)sign(ξ)Ψbeta(ξ
2),

where Ψbeta denotes the CDF of a beta(1/2;n/2+1) PDF.

Considering (26), we have

Ψ{[θL −E(D̃−T (w))]/υσ(D̃−T (w))} ≥ α−T .

By substituting Ψ(.), we have

1/2 + (1/2)sign(M−T )Ψbeta(M
−
T

2
) ≥ α−T ,

where M−T = {[θL −E(D̃−T (w))]/υσ(D̃−T (w))}. Hence,

sign(M−T )Ψbeta(M
−
T

2
) ≥ 2α−T − 1

It follows that

{
θL −E(D̃−T (w))

υσ(D̃−T (w))
}2 ≥ Ψ−1beta(1− 2α−T ),

which yields

E(D̃−T (w)) + υ
√

Ψ−1beta(1− 2α−T )σ(D̃−T (w)) ≤ θL.

This inequality completes the proof for equation (23). Similarly, constraints (24) and (25)
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can be expressed following the process shown above.

3.3.1. CCP-U (I)

In order to maximize the confidence level of treatment plans, the objective function of

model (19) is imposed on constraints (23)-(25). The resulting model can be reformulated

as shown in model (31) because Ψ−1beta(y) is a monotonically increasing function of y.

max λ−T k(α−
T ) + λ+T k(α+

T ) + λOARk(α+
OAR) (31)

s.t.

E(D̃T (w))−
√
k(α−

T ) σ(D̃T (w)) ≥ θL ∀T

E(D̃T (w)) +
√
k(α+

T ) σ(D̃T (w)) ≤ θU ∀T

E(D̃OAR(w)) +
√
k(α+

OAR) σ(D̃OAR(w)) ≤ ϕ ∀OAR

kα−
T
, kα+

T
, kα+

OAR
≥ 0

w ≥ 0,

where kα = υ2Ψ−1beta(1− 2α) for α ∈ {α−T , α
+
T , α

+
OAR}.

3.3.2. CCP-U (II)

It is known that the confidence for the solution of beamlet intensities is inversely pro-

portional to the tightness of the constraints. The larger θL and the smaller θU and ϕ are,

the tighter the constraint is. Model (32) is developed to optimize the thresholds of the con-

straints with a pre-specified probability. The logic behind this model is similar to that of

model (22) explained in Section 3.2.2, but proposed here under the uniform distributional
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assumption of uncertainties.

min − λ−T θL + λ+T θU + λ+OAR ϕ (32)

s.t.

E(D̃T (w))− υ
√

Ψ−1beta(1− 2α−T ) σ(D̃T (w)) ≥ θL ∀T

E(D̃T (w)) + υ
√

Ψ−1beta(1− 2α+
T ) σ(D̃T (w)) ≤ θU ∀T

E(D̃OAR(w)) + υ
√

Ψ−1beta(1− 2α+
OAR) σ(D̃OAR(w)) ≤ ϕ ∀OAR

θL ≤ θL ≤ θ̄L
θU ≤ θU ≤ θ̄U
ϕ,w ≥ 0

4. Experiments and results

4.1. Clinical example

Data from one patient with prostate cancer treated at The University of Texas MD

Anderson Cancer Center were used to illustrate the results of the proposed CCP models.

Target volume and normal structures were manually contoured on the axial slices of the

planning computed tomography scan by a physician. The anatomy was discretized into

voxels of size 2.5mm ×2.5mm ×2.5mm. Treatments were delivered using six fixed coplanar

photon beams at angles of 30◦, 90◦, 120◦, 150◦, 240◦, and 270◦. These angles were given a

priori as input to the optimization model. A prescription dose of 76 Gy was used for

treatment planning.

Because our study focused on treatment planning considering a random setup error, we

set up the experiment using two possible maximum shift positions from the original position

of the patient (nominal position): ±5 and ±7.5 mm. In the case of a ±5 mm shift, five

scenarios (0,±2.5 mm, and ±5 mm) were considered. Without loss of generality, the data

were generated by sampling from a probability distribution of a random error, specifically,

normal and uniform distributions. Similarly, seven scenarios were constructed in the case

of ±7.5 mm setup error. Then, the first and second order moments of the corresponding

random dose distributions were calculated. Using the statistical information, treatment

plans were developed and the deterministic (nominal) and CCP models were compared in

terms of plan quality and robustness, confidence level, and homogeneities.
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4.2. Plan quality and robustness

In this section, the quality and robustness of plans developed by deterministic and CCP

models are compared. For the sake of comparison, all plans were renormalized to have at

least 95% of target covered by the prescribed dose, which is a common practice at MD

Anderson. Dose-volume indices (Dv and Vd) were used to evaluate the quality of the plans,

where Dv denotes the amount of dose received by more than v percent of the organ, and

Vd denotes the percentage of the organ volume receiving dose of more than d Gy.

A dose-volume histogram (DVH) is a quantitative tool for assessing the appropriateness

of a given radiation therapy plan (Drzymala et al., 1991). To compare the robustness of

plans generated using different methods, families of DVHs corresponding to different setup

scenarios were plotted along with the nominal DVH. The resulting envelopes were used

to assess the sensitivity of the plans under the uncertainties. However, evaluation and

comparison of the robustness of different methods using the envelope may not be accurate

enough, so the DVH family band width method (Trofimov et al., 2012) was used. The

width of the DVH band (∆) is inversely proportional to the robustness of the method.

Here, ∆(Dv) denotes the width of the DVH band at volume v, and ∆(Vd) denotes the width

of the DVH band at dose d. This robustness evaluation technique effectively determines

the robustness of the plans in the presence of uncertainty.

In Figures 1 and 2, the DVHs corresponding to the nominal dose distribution are

displayed along with the DVH bands for the deterministic and chance-constrained models.

Target coverage and OAR sparing provided by nominal plans were clinically acceptable for

all plans. However, the target coverage provided by the plan based on the deterministic

model was notably less robust than the target coverage of the plans generated using chance-

constrained models. The DVH bands for the target were wider for the deterministic plan

than for those of the chance-constrained models, indicating that CCP outperformed the

deterministic model under setup uncertainty. In addition, the robustness of plans created

using CCP models under two different distributional assumptions was similar. Both the

deterministic model and the CCP approach were similarly robust in regard to normal tissue

sparing.
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(a) Deterministic (b) CCP-N (c) CCP-U

Figure 1: Dose-volume histogram (DVH) bands for target dose distributions covering all setup uncertainties for the organs at risk (the rectum and bladder)
resulting from the deterministic approach (a), CCP under the normality assumption (CCP-N; b), and CCP under the uniformity assumption (CCP-U; c).
The width of the DVH band is inversely proportional to the robustness of the method. The solid lines indicate DVHs for the nominal dose distribution
(i.e., without consideration of uncertainties).

(a) Deterministic (b) CCP-N (c) CCP-U

Figure 2: Dose-volume histogram (DVH) bands for dose distributions to organs at risk covering all setup uncertainties for the target volume, resulting from
the deterministic approach (a), CCP under the normality assumption (CCP-N; b), and CCP under the uniformity assumption (CCP-U; c). The width of
the DVH band is inversely proportional to the robustness of the method. The solid lines indicate DVHs for the nominal dose distribution (i.e., without
consideration of uncertainties).
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Figure 3: D95 or D5 minus prescribed dose from deterministic (Det), CCP-N, and CCP-U models under
random setup scenarios. The height of the boxes shows the band width, i.e., ∆(D95) in the DVH family of
setup errors. The larger the band width, the less robustness in dose distribution.

To further evaluate the robustness of IMRT plans for target coverage, DVH family

band widths from six models were compared using two key dose-volume indices of target

coverage, D95 and D5. D95 is a measure to assess target coverage, and D5 is used to assess

hot spots on the target. Figure 3 compares the deterministic, CCP-N, and CCP-U models

in controlling the robustness of target coverage under uncertainty. The band widths for D5

show that the deterministic model better controlled hot spots on the target than did the

CCP models: the second bar is smaller than the fourth and sixth bars, which correspond to

the CCP-N and CCP-U models, respectively. However, the band widths for D95 show that

the CCP models controlled the cold spots under uncertainties much better than did the

deterministic model; the band widths corresponding to the CCP models (third and fifth

bars) are much smaller than that of the deterministic model (first bar). Similarly, Figure

1 demonstrates that the radiation dose (x-axis) received by 95% of target voxels (y-axis)

was much closer to the 76 Gy prescribed dose for the CCP models. It should be noted

that avoiding cold spots on the target is generally a higher priority in clinical practice

that avoiding hot spots. Dose-volume indices of OARs and the corresponding DVH family

band widths are not shown in Figure 3 because the OAR sparing and the corresponding

robustness of all three methods were similar, as shown in Figures 1 and 2.
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4.3. Discussions related to robust optimization

An inter-comparison of the dose coverage of IMRT plans using CCP and those using

robust optimization is discussed in this section. The worst-case dose robust optimization

method was utilized by substituting the worst-case dose distribution for the nominal dose.

To form the worst-case dose distribution, for a voxel inside the target, the minimum dose

to this voxel from all dose distributions corresponding to a range of uncertainty scenarios

was selected, and for any voxels outside the target, the maximum dose of the voxel was

selected.

The robust optimization was performed assuming a maximum of setup error scenario

(±5mm). Then, the robustness of the robustly optimized plans was evaluated under max-

imum setup errors of both ±5 mm and ±7.5 mm. To ensure a fair comparison between

the robustly optimized plans and the chance-constrained plans, we also evaluated the ro-

bustness of IMRT plans generated using CCP models for maximum setup errors of both

±5 mm and ±7.5 mm. The corresponding DVH family bands for the target derived from

the robust optimization and two CCP methods are illustrated in Figure 4.

Figure 4a represents the DVH family band from robustly optimized plans that were

evaluated for the same uncertainty set as that considered in the robust optimization. In

this figure, the nominal plan (black line) was more homogeneous than were the nominal

CCP plans (black lines in Figures 4b and 4c), and the target was robustly covered, as

indicated by the narrow DVH family band (shaded area). However, when we assumed that

uncertainties may occur to a greater extent and therefore evaluated the robustness of the

same plan for a wider range of setup scenarios (up to ±7.5 mm), the target coverage was

not as robust as before. As shown in Figure 4d, the DVH band from a robustly optimized

plan evaluated for a maximum shift of ±7.5 mm was wider than the band of the same

plan evaluated for a maximum shift of ±5 mm (Figure 4a). More specifically, there were

a lot more cold spots on the target when uncertainties were in a wider range, which is not

acceptable in clinical practice. This situation arises as a result of the underlying assumption

behind the robust optimization method: that the real uncertainty set is well defined and

contains the uncertainty scenarios. In reality, this assumption is flawed, so the robustly

optimized plan might not be robust in the face of real uncertainties.

However, the DVH family bands were much narrower in Figures 4e and 4f than in

Figure 4d, indicating that the target coverage of IMRT dose distributions generated by the

CCP-N and CCP-U models was more robust than that of the robustly optimized plan for

setup errors in the ±5mm and ±7.5mm maximum range.
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(a) RO - evaluated for ±5mm (b) CCP-N - evaluated for ±5mm (c) CCP-U - evaluated for ±5mm

(d) RO - evaluated for ±7.5mm (e) CCP-N - evaluated for ±7.5mm (f) CCP-U - evaluated for ±7.5mm

Figure 4: Dose-volume histogram (DVH) bands for dose distributions covering all setup uncertainties for the target volume, resulting from robust optimiza-
tion (RO; left column), CCP under the normality assumption (CCP-N; center column), and CCP under the uniformity assumption (CCP-U; right column).
The robustness of the plans was evaluated for two setup uncertainty ranges, up to ±5 mm and ±7.5 mm in the top and bottom rows, respectively. The
width of the DVH band is inversely proportional to the robustness of the method. The solid lines indicate DVHs for the nominal dose distribution (i.e.,
without consideration of uncertainties).
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4.4. Confidence levels

In probabilistic approaches such as CCP-N (I) and CCP-U (I), solutions can be pro-

vided using the statistical confidence levels associated with the probabilities of satisfaction

for constraints. When these confidence levels are treated as variables, the corresponding

optimal levels of confidence can be achieved based on a planner’s preference on fixed values

of hot-spot (θU ) and cold-spot (θL) control parameters on the target and of the hot-spot

control parameter on the OAR (ϕ) in the optimization model. Ultimately, a planner can

use this method to generate a treatment plan with an acceptable confidence level. Table

2 shows the optimized confidence levels for two choices of control parameters (θL and θU )

in the CCP-N (I) and CCP-U (I) models.

Table 2: Confidence levels (1 − α) of the plans generated by CCP models

(a) Tight bounds

Model
Target

Rectum Bladder
Under-dose Over-dose

CCP-N (I) 0.93 0.93 1 1

CCP-U (I) 0.85 0.85 0.88 0.84

(b) Loose bounds
1% decrease in lower bound (θL) and 2% increase in upper bounds (θU and ϕ)

Model
Target

Rectum Bladder
Under-dose Over-dose

CCP-N (I) 1 1 1 1

CCP-U (I) 0.92 0.94 0.93 0.93

In a chance-constrained setting, the constraints are not expected to hold with a lower

probability when the hot-spot control parameters (θU and ϕ) are increased or the cold-

spot control parameter (θL) is decreased. This characteristic of the CCP approach was

verified, and the results are shown in Tables 2a and 2b for tight and loose ranges of

control parameters, respectively. Comparing the first rows of Tables 2a and 2b, which

correspond to the CCP-N (I) model, all confidence levels either increased or remained the

same when looser bounds were used (Table 2b). The confidence levels for target constraints

increased from 0.93 using tight bounds to 1 using loose bounds, and the confidence levels

corresponding to rectum and bladder remained the same. Similarly, the results of the CCP-

U (I) model are compared in the second rows of Tables 2a and 2b. The confidence levels

for satisfaction of the target constraints increased from 0.85 using tight bounds to 0.92 for
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under-dose and 0.94 for over-dose using loose bounds. For OARs, the confidence levels

increased from 0.88 for rectum and 0.84 for bladder with tight bounds to 0.93 with loose

bounds. Hence, the confidence levels for satisfaction of the loosely bounded constraints

(Table 2b) were consistently equal to or higher than the corresponding confidence levels

for more tightly bounded constraints (Table 2a).

4.5. Optimized bounds

It is always helpful to know what probability of satisfaction for clinical constraints un-

der uncertainty is guaranteed. A high confidence level for the satisfaction of the treatment

planning constraints is desirable in radiation therapy treatment planning, as in any opti-

mization problem. The proposed models CCP-N (II) and CCP-U (II) ensure the feasibility

of the constraints by optimizing the hot- and cold-spot control parameters.

Table 3: Cold- and hot-spot control parameters (θL and θU ) optimized by the CCP-N (II) model for four
different penalty coefficient (λ) settings (95% confidence level)

λ−
T , λ+

T

θL = 0.97, θ̄L = 1 θL = 0.95, θ̄L = 1 θL = 0.9, θ̄L = 1
θU = 1, θ̄U = 1.1 θU = 1, θ̄U = 1.1 θU = 1, θ̄U = 1.15
θL θU θL θU θL θU

1, 1 0.97 1.048 0.95 1.026 0.9 1

10, 1 1 1.08 1 1.08 1 1.08

1, 10 0.97 1.042 0.95 1.021 0.9 1

10, 10 0.97 1.042 0.95 1.021 0.93 1

Before verifying that the models behave in the way expected, we explored the proper

values for penalty coefficients in the objective function. Thus, four different settings for

penalty coefficients (λ) were used, and the corresponding optimal cold- and hot-spot control

parameters for the target are shown in Tables 3 and 4 for the CCP-N (II) and CCP-U (II)

models, respectively. The columns in Tables 3 and 4 correspond to three different settings

of lower and upper bounds on θL and θU , while the confidence levels are fixed to 95% and

90% for the CCP-N (II) and CCP-U (II) models, respectively.

As presented in the second row of Tables 3 and 4, imposing a larger penalty on cold

spots resulted in increasing the cold-spot control parameter (θL) to avoid cold spots on the

target. Similarly, a higher penalty on the hot spots resulted in a smaller hot-spot control

parameter (θU ), as shown in the third rows of Tables 3 and 4. For the remainder of the
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Table 4: Cold- and hot-spot control parameters (θL and θU ) optimized by the CCP-U (II) model for four
different penalty coefficient (λ) settings (90% confidence level)

λ−
T , λ+

T

θL = 0.97, θ̄L = 1 θL = 0.95, θ̄L = 1 θL = 0.9, θ̄L = 1
θU = 1, θ̄U = 1.15 θU = 1, θ̄U = 1.15 θU = 1, θ̄U = 1.15
θL θU θL θU θL θU

1 ,1 0.97 1.101 0.95 1.079 0.9 1.022

10, 1 1 1.135 1 1.135 1 1.135

1,10 0.97 1.097 0.95 1.074 0.9 1.018

10,10 0.97 1.097 0.95 1.074 0.9 1.018

experiments in this section, both penalty coefficient parameters λ−T and λ+T were set to 10

on the basis of these trials.

Next, the confidence levels were changed, and for each specified level of confidence,

the bounds of the constraints were optimized using models CCP-N (II) and CCP-U (II).

Tables 5 and 6 illustrate the results for three different levels of confidence for each of the

models, CCP-N (II) and CCP-U (II), respectively. In addition, for each confidence level,

three different settings of lower and upper bounds on θL and θU were analyzed; these are

shown in three columns in Tables 5 and 6. It was also assumed that the confidence level

for the rectum and bladder was fixed to 95% and 90% for the CCP-N (II) and CCP-U (II)

models, respectively.

For both models, it is consistently demonstrated that if the treatment planner intends

to meet the constraints with higher confidence in the face of randomness, the bounds on

the constraints must either remain the same or be loosened. For example, in Table 5, as

the confidence level increases by moving down the rows, the cold-spot control parameter θL

remains constant in the first and second columns and decreases in the third. As a result,

we can conclude that when the confidence level is increased, the lower boundaries on the

constraints either remain the same or become smaller. On the other hand, θU increases

in the first and second columns and remains the same in the third column. Similarly,

increasing the expected level of confidence on the satisfaction of the constraints does not

tighten the upper bounds of the constraints. Table 6 can be discussed in a similar fashion.

As a result, considering models CCP-N (II) and CCP-U(II) will allow the treatment planner

to better choose between different choices of treatment plan.
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Table 5: Target constraint bounds (θL and θU ) of the plans generated by the CCP-N (II) model for different
confidence levels (95% confidence level for OARs)

1 − αT

θL = 0.97, θ̄L = 1 θL = 0.95, θ̄L = 1 θL = 0.9, θ̄L = 1
θU = 1, θ̄U = 1.1 θU = 1, θ̄U = 1.1 θU = 1, θ̄U = 1.15
θL θU θL θU θL θU

0.935 0.97 1.039 0.95 1.018 0.933 1

0.95 0.97 1.042 0.95 1.021 0.93 1

0.97 0.97 1.048 0.95 1.027 0.925 1

Table 6: Target constraint bounds (θL and θU ) of the plans generated by the CCP-U (II) model for different
confidence levels (90% confidence level for OARs)

1 − αT

θL = 0.97, θ̄L = 1 θL = 0.95, θ̄L = 1 θL = 0.9, θ̄L = 1
θU = 1, θ̄U = 1.15 θU = 1, θ̄U = 1.15 θU = 1, θ̄U = 1.15
θL θU θL θU θL θU

0.86 0.97 1.082 0.95 1.06 0.9 1.004

0.88 0.97 1.089 0.95 1.066 0.9 1.01

0.9 0.97 1.097 0.95 1.074 0.9 1.018

5. Conclusion

The inclusion of uncertainties in radiation therapy treatment planning has been widely

recognized as essential. We found CCP to be an effective approach to controlling uncertain-

ties in treatment planning optimization. The proposed stochastic programming framework

optimizes the quality, robustness, and homogeneity of the plans as well as the confidence

level of the constraints in the face of patient setup uncertainties. Depending on the assump-

tions that we made regarding the probability distribution of random dose contributions,

two different sets of deterministic equivalents of the treatment planning chance constraints

developed. Then, for each set of deterministic counterparts, two CCP optimization models

were explored to optimize either the confidence or homogeneity of the plans, according

to the treatment planner’s preference. All proposed CCP models were tested using data

for a real prostate cancer patient and shown to more efficiently control uncertainties in

treatment planning optimization than did a deterministic approach.As a future study, the

CCP model could be extended for the case when partial information on the probability

distribution, such as mean and variance, is available.
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Chan, T. C., & Mǐsić, V. V. (2013). “Adaptive and robust radiation therapy optimization for lung

cancer.” European Journal of Operational Research, 231(3), 745–756.

Charnes, A., & Cooper, W. W. (1959). “Chance-constrained programming.” Management Science,

6(1), 73–79.

Charnes, A., & Cooper, W. W. (1963). “Deterministic equivalents for optimizing and satisficing

under chance constraints.” Operations Research, 11(1), 18–39.

27



Chu, M., Zinchenko, Y., Henderson, S. G., & Sharpe, M. B. (2005). “Robust optimization for inten-

sity modulated radiation therapy treatment planning under uncertainty.” Physics in Medicine

and Biology, 50(23), 5463–5477.

Drzymala, R. E., Mohan, R., Brewster, L., Chu, J., Goitein, M., Harms, W., & Urie, M. (1991).

“Dose-volume histograms.” International Journal of Radiation Oncology* Biology* Physics,

21(1), 71–78.

Fredriksson, A., Forsgren, A., & H̊ardemark, B. (2011). “Minimax optimization for handling range

and setup uncertainties in proton therapy.” Medical Physics, 38(3), 1672–1684.

Fredriksson, A., Forsgren, A., & H̊ardemark, B. (2015). “Maximizing the probability of satisfying

the clinical goals in radiation therapy treatment planning under setup uncertainty.” Medical

Physics, 42(7), 3992–3999.
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Henrion, R., & Möller, A. (2012). “A gradient formula for linear chance constraints under Gaussian

distribution.” Mathematics of Operations Research, 37(3), 475–488.

Hoeffding, W. (1963). “Probability inequalities for sums of bounded random variables.” Journal of

the American Statistical Association, 58(301), 13–30.

Kali, P., & Wallace, S. W. (1994). “Stochastic programming.” New York: Springer.

Lagoa, C. M., Li, X., & Sznaier, M. (2005). “Probabilistically constrained linear programs and

risk-adjusted controller design.” SIAM Journal on Optimization, 15(3), 938–951.

Li, P., Arellano-Garcia, H., & Wozny, G. (2008). “Chance-constrained programming approach to

process optimization under uncertainty.” Computers & Chemical Engineering, 32(1), 25–945.

Lim, G. J., Choi, J., & Mohan, R. (2008). “Iterative solution methods for beam angle and flu-

ence map optimization in intensity modulated radiation therapy planning.” OR Spectrum,

30(2), 289–309.

Lim, G. J., & Cao, W. (2012). “A two-phase method for selecting IMRT treatment beam angles:

branch-and-prune and local neighborhood search.” European Journal of Operational Research,

217(3), 609–618.

Liu, W., Li, Y., Li, X., Cao, W., & Zhang̊ardemark, X. (2012). “Influence of robust optimization in

intensity-modulated proton therapy with different dose delivery techniques.” Medical Physics,

39(6), 3089-3101.

Liu, W., Zhang, X., Li, Y., & Mohan, R. (2012) “Robust optimization of intensity modulated

proton therapy.” Medical Physics 39(2): 1079–1091.

Lomax, A. J., Boehringer, T., Coray, A., Egger, E., Goitein, G., Grossmann, M., ... & Roser, W.

28



(2001). “Intensity modulated proton therapy: a clinical example.” Medical Physics, 28(3), 317–

324.

Narkiss, G., & Zibulevsky, M. (2005). “Sequential subspace optimization method for large-scale

unconstrained problems.” (CCIT Report #559). Haifa, Israel: Technion-Israel Institute of

Technology, Department of Electrical Engineering.

Nemirovski, A., & Shapiro, A. (2006). “Convex approximations of chance-constrained programs.”

SIAM Journal on Optimization, 17(4), 969–996.

Olafsson, A., & Wright, S. (2006). “Efficient schemes for robust IMRT treatment planning.” Physics

in Medicine and Biology, 51(21), 5621–5642.

Pflugfelder, D., Wilkens, J., & Oelfke, U. (2008). “Worst case optimization: a method to account for

uncertainties in the optimization of intensity modulated proton therapy.” Physics in Medicine

and Biology, 53(6), 1689.

Pintér, J. (1989). “Deterministic approximations of probability inequalities.” Zeitschrift für Oper-

ations Research, 33(4), 219–239.
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