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Abstract

This article introduces a planner-driven flexible stochastic decision making model to develop

radiation treatment plans for cancer patients under patient-setup uncertainty. The clinical

goal is to deliver the prescribed amount of radiation dose to the target tissue(s) while sparing

the organs nearby. However, it is difficult to achieve the goal because organs are often closely

located in the body. Therefore, some tissues may receive a higher radiation dose than desired.

To minimize such violations and allow to make a trade-off between tumor coverage and

healthy tissue sparing, we present a chance constrained programming (CCP) optimization

method. A planner can use the CCP approach to specify how much clinical violation can

be allowed for a specific patient. Assuming that the uncertain dose distribution follows a

known (or estimated) probability distribution function, the CCP model was tested using five

clinical cases. The resulting treatment plans were compared with the plans generated by

the conventional robust worst-case optimization method using dose-volume histograms. Our

results support the CCP approach over the robust optimization method in terms of healthy

tissues sparing and the clinical target dose requirements. Overall, the risk-based CCP model

is not only flexible to accommodate the planners risk profile and to meet patient specific

treatment goals, but has potential to compromise for overly-conservative treatment plans

generated by robust optimization methods.
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1. Introduction

Fig. 1. Illustration of a radiation therapy treatment planning.

According to the American Cancer Society, there were around 17.0 million new cancer

cases diagnosed in 2018, and radiation therapy is used in more than half of the cases, some in

conjunction with chemotherapy or surgery (AmericanCancerSociety, 2018). Radiation ther-

apy delivers radioactive particles to the tumor region to damage the DNA of the cells (see

Figure 1). It is often unavoidable that the radiation can also harm healthy cells which may

lead to radiation-induced side-effects (complications). The goal of radiation treatment plan-

ning is to shrink tumors (Erridge et al., 2003; Knap et al., 2010) and kill cancer cells, while

minimizing negative effects on healthy organs. This can be achieved by optimally choosing

the amount of radiation to be delivered to the cancerous region. Two common radiation

delivery modalities are photon-based intensity modulated radiation therapy (IMRT) (Lim

and Cao, 2012), and proton-based intensity-modulated proton therapy (Cao et al., 2017;

Bai et al., 2018). Both methods decompose one open beam into many “beamlets” for each

angle. The intensity of each beamlet can be modulated to achieve the optimal treatment

effect; hence, clinical practitioners must determine how much radiation to deliver through
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each beamlet (i.e., beamlet intensity or weight) so that the target volume receives the pre-

scription dose while healthy tissues receive a minimal or no dose. This is commonly known

as a fluence map optimization (FMO) problem. Over the past few years, several mathe-

matical models have been developed for the FMO problem (Romeijn et al., 2003; Zaghian

et al., 2014; Cao et al., 2017). However, in the presence of uncertainties in radiation therapy,

solving the FMO problem is computationally challenging because it often involves millions

of continuous and discrete variables.

Various uncertainties occur in treatment planning, such as in patient positioning, organ

motion, breathing motion, dose calculation, beam energy, and others. Among these uncer-

tainties, patient setup error is one of the most critical factors that can result in unpredictable

treatment outcomes. Radiation therapy is often administered daily over a period of several

weeks. For each treatment session, the patient needs to be set up on the treatment couch in

the exact same position for each treatment. Due to the repeated positioning of patients, the

actual and planned position of the patient with respect to the treatment can differ between

each visit. As a consequence of patient setup error, the radiation dose received by each voxel

can be different from the planned dose. Many existing studies highlight the importance

of robustness in radiation treatment planning (Baum et al., 2006; Unkelbach and Oelfke,

2004; Bortfeld et al., 2008; Chan et al., 2006; Chu et al., 2005; Olafsson and Wright, 2006;

Pflugfelder et al., 2008; Liu et al., 2012; Chan and Mǐsić, 2013; Fredriksson et al., 2011) and

uncertainties are addressed using different models and assumptions (Shepard et al., 1999;

Reemtsen and Alber, 2009).

As an extension of the deterministic (or nominal) optimization method, robust opti-

mization (RO) is commonly used for incorporating the uncertainties in treatment planning

optimization problems. An RO approach constructs a single solution that is feasible for

all possible realizations of the parameter within an assumed uncertainty set. Chan et al.

(2006) proposed a robust formulation of the treatment planning optimization problem using

probability density functions of the uncertainty in breathing motion. Other studies have

included scenario-based worst-case RO approaches (Pflugfelder et al., 2008; Liu et al., 2012;

Fredriksson et al., 2011).

However, a drawback of RO is in the selection of the uncertainty set that contains all
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possible realizations of the unknown parameter in the optimization model. Because it is

difficult to estimate the uncertainty set, the treatment plans are often developed under the

worst-case scenario (Pflugfelder et al., 2008; Chan and Mǐsić, 2013; Fredriksson et al., 2011).

As an immediate consequence, the treatment plans can be severely conservative for the

tumor region, which leads to overdose on the surrounding healthy tissues (Chen et al., 2012;

Casiraghi et al., 2013; Fredriksson and Bokrantz, 2014).

In an attempt to overcome the limitations of RO and to potentially improve sparing of

healthy tissues, Zaghian et al. (2018) proposed a stochastic programming approach, specif-

ically, chance-constrained programming (CCP). A key feature of CCP is to give treatment

planners control of the probability that the constraints can hold under uncertainties. Hence,

with the CCP approach a user can specify a level of confidence (1−α) ∈ [0, 1] for violating

the constraints, where higher confidence levels result in greater avoidance of constraint vio-

lations. As a result, treatment planners can bring their own experience in to the treatment

planning and have better control of tumor coverage and radiation damage to healthy tissues.

A similar approach has been reported by An et al. (2017) to develop an intensity-modulated

proton therapy plan using conditional-value-at-risk chance constraints. The minor draw-

back was that their comparison was based on the planning treatment volume-based method

whereas RO is proposed to be a better approach in handling the uncertainties (Liu et al.,

2012).

In CCP, an adjustable safety parameter is introduced for each of the constraints to

certify the level of satisfaction on the probabilistic constraints with high confidence. These

confidence levels represent prescribed safety tolerances or violation probabilities, which can

provide additional information for decision makers in treatment planning. As a result, a

treatment plan can be developed on the basis of the decision maker’s risk preference for

constraint violation while optimizing the treatment goal. In practice, the treatment goal is

to spare the OARs (organs-at-risk) while delivering the prescribed dose to the tumor.

Most existing radiation treatment planning optimization models in RO do not allow

constraint violation under uncertainty. But, the CCP approach allows the decision maker to

adjust the level of conservatism of the robust solutions by specifying the level of constraint

violations when the probability is derived with respect to sparing health organs. Therefore,
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the goal of the present study is to provide flexible treatment plans in terms of OAR sparing

while satisfying the clinical target dose requirements. The presented model controls the

frequency of constraint violations and provides optimized treatment plans along with user-

defined confidence levels with the following objectives:

• Demonstrate the effectiveness of the CCP approach in creating treatment plans that

are flexible to the dose requirements of the clinician-approved trade-offs among different

organs (target and OARs).

• Provide a feasibility study of the clinical implementation of the CCP approach in

radiation treatment planning under uncertainty.

We performed the experiments with five clinical cases from patients who received radiation

treatment for cancer to verify the impact of using the confidence-based FMO model on the

optimized plan quality in terms of healthy tissue sparing.

The rest of this paper is organized as follows. In Materials and Methods, we briefly

describe our FMO model in terms of the set of fixed parameters and then explain how chance

constraints for treatment planning can be constructed. Under distributional assumptions of

uncertainty, the deterministic equivalence of the CCP framework is also elaborated. The

results for two patients with prostate cancer, one with pancreatic cancer, one pediatric

patient, and one patient with lung cancer are shown and discussed in the Results. We

conclude the paper with the Discussion.

2. Materials and Methods

We begin by briefly reviewing the FMO problem in radiation therapy and discussing

the deterministic constraints in our optimization problem. Next, we incorporate parame-

ter uncertainty into optimization by formulating a probabilistic version of the optimization

problem. The CCP approach is then described to solve the stochastic model.

2.1. Nominal formulation

The core task of FMO in radiation treatment planning is to find the optimal value of the

beamlet intensity for all beamlets. Therefore, we define decision variables representing the
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intensity of beamlet j ∈ J as wj, and the decision vector of all beamlet intensities as w.

The dose distribution is expressed as Di(w) as a linear function of the variable wj (Shepard

et al., 1999; Lim, 2008) as follows:

Di(w) =
∑
j∈J

dijwj = dT
i w, ∀i ∈ {T ∪ O},

where dij denotes the dose per intensity contribution to voxel i from beamlet j. The input

parameters for radiation treatment planning models proposed in the present study are defined

in Table 1. A cold spot is defined as a fraction of voxels in a structure receiving less than the

desired prescribed radiation dose. A hot spot is defined as a fraction of voxels in a structure

receiving more than the prescribed dose.

Table 1

Input parameters for radiation treatment planning models

Symbol Definition

T A set of voxels in the clinical target volume

O A set of voxels in an organ-at-risk

J A set of all beamlets

λ+T Penalty coefficient for hot spots on the target

λ−T Penalty coefficient for cold spots on the target

λO Penalty coefficient for hot spots on an organ-at-risk

α+
T Risk level for having cold spots on the target

α−T Risk level for having hot spots on the target

α+
O Risk level for having hot spots on an organ-at-risk

The deterministic FMO model in radiation therapy (Lim et al., 2008) can be represented

as follows in constraints (2)-(6):

min − λ−T θL + λ+T θU + λ+O ϕ (1)

s.t.

Di(w) ≥ θL ∀i ∈ T (2)
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Di(w) ≤ θU ∀i ∈ T (3)

Di(w) ≤ ϕ, ∀i ∈ O (4)

θL ≤ θL ≤ θ̄L, θU ≤ θU ≤ θ̄U (5)

ϕ,w ≥ 0, (6)

in which various dose constraints are involved in the design of treatment plans. Here, θL (Gy)

and θU (Gy) represent cold spot and hot spot control variables on the target, respectively,

and ϕ (Gy) is the hot spot control variable on an organ-at-risk. Note that a cold spot is a

portion of tissue that receives less than the desired radiation dose, and a hot spot is a portion

of tissue that receives a dose higher than the desired dose (Lim et al., 2008). Constraint

(2) ensures a high likelihood of eradicating the tumor, whereas constraint (4) ensures a high

likelihood that the functionality of critical structures is retained. Constraint (3) is to avoid

overdose on the target. In this optimization model, our goal is to find the beamlet intensities

in such a way that deviations of the variables, θL, θU , and ϕ, can be minimized from their

target values, i.e., min θU − θL, minϕ. Parameters λ+T , λ−T , and λ+O are for assigning different

priority factors in the objective to penalize overdosing of the target, underdosing of the

target, and overdosing of the OAR over the limit ϕ, respectively. In Constraint (5), θ and θ̄

represent lower and upper bounds for variables θL and θU , respectively.

2.2. CCP formulation

Under setup uncertainty, the random dose delivered to voxel i is denoted by

D̃i(w) = d̃
′

iw,

where d̃i denotes the random dose contributed by all beamlets per unit weight and is received

by voxel i. A classic approach to the solution of constraints (2)-(4) under random uncertainty

is to enforce the constraints in probability by introducing a risk level α, which is called a

chance-constrained linear program.

To construct chance constraints for radiation treatment planning optimization under

patient setup uncertainty, we introduce αi as a desired safety factor of each structure i, and
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we rewrite the constraints in probability as follows:

P{D̃T (w) ≥ θL} ≥ 1− α−T (7)

P{D̃T (w) ≤ θU} ≥ 1− α+
T (8)

P{D̃O(w) ≤ ϕ} ≥ 1− α+
O. (9)

The dose calculated using any feasible solution of constraints (7)-(9) will be between the

lower and upper boundary control parameters prescribed for each structure, with a specified

confidence level for each voxel. Typically, the same dose is prescribed to all voxels in the

target, so we assume equal confidence levels for all voxels in the same structure for each

set of constraints. In other words, the resulting dose of any feasible solution of constraints

(7)-(9) is greater than θL with confidence level (1− α−T )% and less than θU with confidence

level (1−α+
T )% for the target voxel, and it is also less than ϕ with confidence level (1−α+

O)%

for each OAR voxel, in the face of uncertainty.

Unfortunately, there is often a conflict between the lower and upper bound constraints,

which will lead to an infeasible solution in practice. To avoid infeasibility of the optimization

problem, we may allow some or all of these constraints to be violated up to a certain level.

We can easily penalize the violations of the lower and upper bounds on the amount of dose

received by each voxel in the objective function. In this regard, assuming that confidence

levels (1− αi) are given, we developed model (10), in which θL, θU , and ϕ are considered as

decision variables.

min − λ−T θL + λ+T θU + λ+O ϕ (10)

s.t.

P{D̃T (w) ≥ θL} ≥ 1− α−T , ∀i ∈ T

P{D̃T (w) ≤ θU} ≥ 1− α+
T , ∀i ∈ T

P{D̃O(w) ≤ ϕ} ≥ 1− α+
O, ∀i ∈ OAR

Constraints (5)− (6),

Next, we solve the CCP model (10) by treating uncertain parameters as continuous

random variables with a known probability density function.
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2.3. CCP models under distributional assumptions

One of the computational challenges in solving a CCP model comes from the fact that

the chance constraints may not be convex (Nemirovski and Shapiro, 2006). However, a

CCP model can be made convex in a few special cases. For example, if the uncertainty

parameter (d̃i) has a log-concave probability density, the corresponding chance constraints

will be convex (Zaghian et al., 2018).

In this section, we consider two special probability distribution functions of random pa-

rameter d̃i, normal and uniform distribution. We focus on the normal distribution because it

is widely used and has attractive analytical properties that facilitate further analysis (Chan

et al., 2009). As follows from the central limit theorem (Bertsekas and Tsitsiklis, 2002), a

large set of independent identically distributed random variables approach a normal distribu-

tion regardless of the underlying probability distribution. So, the normality assumption will

also help extend the analysis to multiple sources of uncertainty. Thus, we constructed the

deterministic equivalent of a CCP framework on the basis of the normality assumption of a

random parameter (Zaghian et al., 2018) (see Appendix A) as well as a uniform distribution

(see Appendix B). Note that we used normal and uniform probability distributions that are

widely used in practice as an example to describe the setup uncertainty (Chan et al., 2009;

Engelsman et al., 2005).

3. Clinical cases and planning details

We evaluated the relative performance of the CCP models on the basis of treatment plan

information obtained from five cancer patients (two patients with prostate cancer, one with

pancreatic cancer, one pediatric patient, and one patient with lung cancer) who received

radiation therapy at The University of Texas MD Anderson Cancer Center.

By assuming that the setup uncertainty ranged between −5 mm and +5 mm (Manning

et al., 2001; Wong et al., 2005), we generated four representative scenarios in addition to the

nominal scenario (Liu et al., 2012; Casiraghi et al., 2013) for the patient setup uncertainty.

The first- and second-order moments of the uncertain dose contributions were calculated for

each case under normal and uniform distributional assumptions. Under these assumptions,

the respective minimum and maximum doses to the target were 95% (θL = 0.95) and 105%
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(θ̄U = 1.05) of the prescribed dose in all plans. The values of weight factors λ−T , λ+T , and

λ+O are often selected on the basis of the planner’s preference. Table 2 lists the planning

parameters for the five clinical cases analyzed in the present study. For each case, the

number of beams, number of voxels within each volume, and the corresponding dose-volume

requirements were provided.

Table 2

Anatomical structures and dose requirements for five clinical cases used in our analysis

Cancer Case 1 Volume NO. of Beams Constraints

Prostate I (IMRT) Target: 1000 6 Prescription: 76 Gy

Receiving ≥ 96% of θL

Receiving ≤ 105% of θU

OAR (rectum): 5848

OAR (bladder): 10603

Prostate II (IMRT) Target: 6375 6 Prescription: 76 Gy

Receiving ≥ 95% of θL

Receiving ≤ 105% of θU

OAR (rectum): 5719

OAR (bladder): 7850

Pancreas (IMRT) Target: 1244 12 Prescription: 54 Gy

Receiving ≥ 99% of θL

Receiving ≤ 101% of θU

OAR (liver): 50391

OAR (spinal cord): 489 Max dose: 45 Gy

OAR (left kidney): 9116

OAR (right kidney): 5920

Lung (IMPT) Target: 5716 3 Prescription: 70 Gy

Receiving ≥ 95% of θL

Receiving ≤ 107% of θU

OAR (heart): 8287

OAR (spinal cord): 481

OAR (esophagus): 389

Pediatric (IMPT) Target: 9307 3 Prescription: 64 Gy

Receiving ≥ 95% of θL

Receiving ≤ 105% of θU

OAR (brainstem): 1118

OAR (optic chiasm): 17
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Different treatment plans were generated for each of the clinical cases: one with the

deterministic approach, one with the robust worst-case optimization and the others using

the CCP treatment planning models. The models were solved using a commercial linear

optimization solver, CPLEX (IBM Analytics, Accessed April 11, 2018). Note that the beam

angles were optimized (Lim et al., 2014) and confirmed by clinicians in advance.

A family of dose-volume histograms (DVHs) for the comparison of different models were

applied. We used the DVH family band width method (Trofimov et al., 2012) that displayed

all DVHs of the five dose distributions corresponding to the four scenarios of setup uncer-

tainty in addition to the nominal scenario. DVH indices comparing tumor dose coverage,

homogeneity, and OAR sparing are also discussed in detail in the next section.

4. Results

4.1. Plan quality and robustness

Plans optimized by the chance-constrained and nominal (or deterministic) optimization

models for one of the patients with prostate cancer are compared in Figures 2a-2f. The

DVHs corresponding to the nominal dose distribution (i.e., no uncertainty) are displayed

along with the DVH bands for deterministic and chance-constrained models. The solid

line indicates DVHs for the nominal dose distribution and the shaded area shows the DVH

family band plotted on the basis of various shifted setup scenarios. For all plans, the nominal

DVHs (solid lines) were almost equally good, which shows that the clinical constraints were

satisfied. However, Figure 2a shows that the band of the DVH along the target is wider for

the deterministic model than for the CCP models (DVHs in Figures 2c and 2e), which shows

that the target coverage of the deterministic model was worse than that of the CCP models.

Moreover, as would be expected, the DVH bands on OARs that are illustrated on the

right side of Figure 2 are reduced by the CCP approach under two different distributional

assumptions. In fact, these figures explain how controlling the violation of the clinical con-

straints using CCP models resulted in improved OAR sparing compared with the determin-

istic model. Overall, this comparison demonstrates that by incorporating setup uncertainty

information in the optimization, the sensitivity of the plans against errors can be reduced.
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Fig. 2. Dose-volume histogram bands for target and organs-at-risk dose distributions covering all setup

uncertainties, resulting from (a, b) the deterministic approach, (c, d) chance-constrained programming under

the normality assumption, and (e, f) chance-constrained programming under the uniformity assumption. The

straight vertical line at dose 76 Gy and around 78 Gy is the direct result of using a linear programming

(LP)-based model that imposes a linear penalty on all deviations and focuses more on minimizing the upper

limit and maximizing the lower limit for the target (Zaghian et al., 2017).
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4.2. Robust optimization:

The plans were optimized to evaluate the robustness of treatment plans using CCP and

RO under random setup errors, and corresponding DVHs for the target and OARs were

analyzed for each of the setup scenarios.

Fig. 3. Lung cancer dose-volume histogram bands for planned target volume (PTV) and organs-at-risk dose

distributions covering all setup uncertainties, resulting from (a) the deterministic approach, (b) robust opti-

mization, (c) chance-constrained programming under the normality assumption, and (d) chance-constrained

programming under the uniformity assumption.

Figure 3 shows the DVH family band for the lung cancer case, based on treatment plans

developed using the deterministic approach, RO, and CCP under normal (CCP-N) and CCP

under uniform probability distributions (CCP-U). Figures in Appendix C show the results

for the two prostate cancer cases, the pancreatic, and the pediatric cancer cases, respectively.
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The DVHs in Figure 3 show that all nominal plans (black line) met the clinical prescription

criteria in both covering the tumor and sparing OARs, and the target was robustly covered

for all plans, as indicated by the narrow DVH family band (shaded area) compared with the

deterministic approach. Based on the experiments presented in the paper, the confidence-

based CCP models outperformed the robustly optimized plan by improving the protection of

critical organs under the nominal and setup scenarios. The shaded area around the nominal

DVHs of the spinal cord in the robust plan (Figure 3b) is wider than that in the CCP plans

(Figure 3c and 3d). As shown in Figures 3c and 3d, the maximum doses to the normal cells

around the target from the CCP plans met the tolerances without sacrificing the robustness

of the plan to setup uncertainty, which demonstrates the flexibility of the CCP approach

compared to the RO method in creating clinically reasonable plans.

To further illustrate the performance of the biologically-based CCP models, we explored

the effect of CCP models on sparing of normal tissues around the tumor for the five clinical

cases. Table 3 reports radiation dose statistics associated with OAR DVHs for each case

based on the plans optimized by the CCP models and worst-case RO approach. The values

in the nominal scenario as well as the average and worst-case values considering all setup

scenarios are presented. The table shows that the proposed CCP models delivered smaller

radiation doses to the normal organs than the RO approach for all cases for each of the three

measures: nominal, worst-case, and average dose.

Table 3 shows the radiation dose statistics on healthy organs for all cancer cases as

explained by An et al. (2017): D1 (Gy), the amount of dose received by more than 1% of

the organ. The CCP approach reduced the nominal dose of D1 for the rectum in Prostate

case I as compared to RO: 75.64 Gy for CCP-N and 72.39 Gy (vs. 76.46) in case of CCP-U.

The average dose of D1 (Gy) on the bladder was also reduced when the CCP approach was

used on each of the nominal, worst-case, and average scenario. We observed similar results

for Prostate case II shown in Table 3. For the Pancreas case, the maximum nominal doses

of D1 on healthy organs were 35.42 Gy and 28.46 Gy for liver and spinal cord using the RO

model, respectively. Those values were reduced to 22.48 Gy and 28.05 Gy using CCP-N, and

to 23.51 Gy and 28.10 Gy using the CCP-U model for the liver and spinal cord, respectively.

Similar results were observed by comparing the results of maximum dose (D1 (Gy)) on the
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liver and spinal cord for worst-case and average case scenarios. For this case, the maximum

radiation dose on the spinal cord was slightly lower for CCP plans, whereas there were

significant improvements in protecting the liver by reducing the amount by at least 12.94

Gy when compared to the RO plan. For a better illustration of the dose volume histogram

plotted for the liver in the Pancreas case, the percentage of the liver volume receiving more

than 30 Gy, V30%, was compared for all the plans. Both CCP-N and CCP-U reduced V30%

by 2.18% and 2.03%, respectively, over the robust plan. It can be seen that the CCP plans

delivered the least amount of dose to the healthy tissue, especially, in the liver. For the case

of the lung cancer, the CCP result in a slightly higher dose of D1 (Gy) (maximum dose) for

the heart. However, this was a necessary compromise to provide a plan with better sparing

of the spinal cord, which can be severely damaged if it is over-dosed.

Both CCP under the normality assumption and CCP under the uniformity assumption

appeared to provide better control than the RO approach in terms of sparing of normal

tissues, which can be achieved by controlling the tolerance levels assigned to each structure’s

dose requirements and studying the relationship between dose requirements and plan conser-

vatism. In a CCP setting, the confidence level of satisfying the target dose requirement can

be adjusted on the basis of the physician’s preference to avoid overly conservative treatment

plans. As a result, with the CCP method the OAR protection can be improved, and this

will prevent side effects due to radiation and lead to better quality of life for patients.
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Table 3

Comparison of chance-constrained models (CCP-N and CCP-U with α = 95%) and the worst-case robust op-

timization (RO) method on healthy organ sparing. The values are derived from the dose-volume histograms.2

Prostate I Prostate II Pancreas

Rectum Bladder Rectum Bladder Liver Spinal Cord

CCP-N D1 (Gy) D1 (Gy) D1 (Gy) D1 (Gy) V30% D1 (Gy) D1 (Gy)

nominal 75.64 77.27 77.35 77.19 0.23 22.48 28.05

worst-case 75.93 77.27 77.36 77.31 0.35 23.20 28.24

average 75.74 77.22 77.33 77.22 0.26 22.76 28.12

CCP-U

nominal 72.39 77.25 76.97 77.69 0.38 23.51 28.10

worst-case 72.88 77.29 77.06 77.72 0.46 24.34 29.33

average 72.51 77.24 76.98 77.69 0.39 23.71 28.36

RO

nominal 76.46 77.27 77.39 78.24 2.41 35.42 28.46

worst-case 77.45 77.38 77.76 78.24 2.73 36.60 32.00

average 76.71 77.28 77.46 78.24 2.50 35.88 29.84

Lung Pediatric

Heart Spinal Cord Brainstem Optic Chiasm

CCP-N D1 (Gy) D1 (Gy) V40% D1 (Gy) D1 (Gy)

nominal 85.03 49.88 5.40 60.92 14.38

worst-case 85.03 61.88 6.44 61.24 14.68

average 84.50 51.18 5.02 61.07 14.44

CCP-U

nominal 81.23 44.52 2.70 60.92 14.38

worst-case 82.22 59.52 2.91 61.24 14.64

average 81.23 47.63 2.74 60.91 14.44

RO

nominal 81.05 50.21 6.02 61.24 14.38

worst-case 81.15 61.79 11.23 61.24 14.70

average 81.10 53.26 6.44 61.23 14.50

Next, we evaluated the robustness of the CCP plans in terms of tumor dose coverage.

Table 4 shows the tumor DVH indices achieved by our confidence-based CCP models and

2D1 denotes the amount of dose received by more than 1% percent of the organ, and V30% denotes the

percentage of the organ volume receiving dose of more than 30 Gy.
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worst-case RO approach. For each clinical case, the first row shows the dose homogeneity

index (HI) that is often used as an objective measure of treatment plan quality (Yoon et al.,

2007). HI is calculated by

HI =
D95

D5

, 0 ≤ HI ≤ 1,

where D5 and D95 are the dose coverage at 5% and 95% volume of the target: the larger

(closer to 1) the value of HI, the better the dose homogeneity.

To quantify the plan robustness under uncertainty, we listed the width of the DVH band

at D5 and D95 in the second and third rows. The nominal HI values for all clinical cases

except the patient with lung cancer were equally high, and the DVH band-widths from the

CCP models were better than those from the RO model (as shown in Figure 3 and figures in

Appendix C). For the patient with lung cancer, the nominal HI values were slightly lower for

the CCP plans, whereas the indices of DVH band width from the CCP models outperformed

those from the RO plan. This means that the target coverage of the plans generated by the

CCP models under two different distributional assumptions was more robust when compared

with the RO plan for shifted setup uncertainty.
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Table 4

Homogeneity index for clinical cases examined in our analysis.

Case3 CCP-N CCP-U RO

Prostate cancer I

HI (nominal) 0.96 0.95 0.96

D5 DVH band 0.05 0.05 0.05

D95 DVH band 0.01 0.05 0.01

Prostate cancer II

HI (nominal) 0.96 0.96 0.96

D5 DVH band 0.03 0.05 0.05

D95 DVH band 0.01 0.02 0.02

Pancreatic cancer

HI (nominal) 0.97 0.97 0.97

D5 DVH band 0.10 0.15 0.26

D95 DVH band 0.15 0.20 0.35

Lung cancer

HI (nominal) 0.88 0.88 0.90

D5 DVH band 0.15 0.13 0.15

D95 DVH band 3.00 3.54 9.19

Pediatric cancer

HI (nominal) 0.86 0.86 0.86

D5 DVH band 0.12 0.15 0.16

D95 DVH band 0.05 0.03 0.04

4.3. Sensitivity Analysis

This section discusses the sensitivity of CCP models to the choice of a distribution. We

designed an experiment to test the performance of the proposed model when the assumed

dose distribution for treatment planning was different from the true distribution, which is

not known in advance. For example, treatment plans may have been developed based on

the assumption that the set up error follows a normal distribution (CCP-N) when, in fact,

the true probability distribution was Uniform. The parameter values resulting from those

experiments on Prostate case I are shown in Table 5.

3HI:homogeneity index, DVH: dose-volume histogram
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Table 5

Cold- and hot-spot control parameters on target (θL and θU ) and hot-spot control parameter on OARs (ϕ)

optimized for Prostate I.

Assumption Approach θL (Gy) θU (Gy) ϕ (Gy)

Normally distributed
CCP-N 76.00 77.52 76.00

CCP-U 72.20 81.32 79.04

Uniformly distributed
CCP-N 76.00 82.08 78.28

CCP-U 74.48 76.00 74.48

First, we compare the treatment plans under the two distributional assumptions in terms

of the uniformity of the planned dose distribution on the target (Lim et al., 2007). In

radiation therapy, the uniformity is the difference between the maximum dose and the min-

imum dose received on the target, which is measured by θU − θL. Ideally, we wish to

achieve a treatment plan whose gap is close to zero. In Table 5, when the random data

was assumed to follow a normal probability distribution, the uniformity value of the CCP-N

based treatment plan (i.e., 1.52 Gy = 77.52− 76.00) is smaller than the CCP-U based plan

(9.12 Gy = 81.32−72.20). However, when the random data was assumed to follow a uniform

probability distribution, we observed the opposite result as the uniformity value of CCP-N

(6.08) is larger than that of CCP-U (1.52).

Next, we compared the performance of the proposed model (CCP-N/CCP-U) with the

maximum threshold on OARs obtained based on the respective distributional assumption.

As it is shown from the last column of Table 5, the plan by CCP-N resulted in a consistently

lower upper threshold limit on OARs (ϕ = 76.00 Gy) than did CCP-U (ϕ = 79.04 Gy) under

the normal probability distribution assumption. A similar observation was made when the

random parameter was assumed to follow a uniform distribution (from the last two rows in

Table 5).

5. Discussion

In the present work, we explored the CCP optimization framework using five clinical cases.

Treatment plans were optimized for robustness, quality, and homogeneity under patient setup
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errors. In practice, the treatment goal is to spare the OARs while delivering the prescribed

dose to the tumor. However, these conflicting objectives are often difficult to achieve. In a

worst-case scenario, critical organs will necessarily receive more doses when a plan robustly

covers the target. Conversely, the target will not receive a sufficient radiation dose when a

plan robustly spares a nearby critical structure. Thus, the level of the plan conservatism

needs to be determined under uncertainty, and this can be decided by adjusting the tolerance

levels introduced in the CCP approach. Our results showed that the confidence-based CCP

model was a user-centric optimization tool that can help obtain a good balance between the

plan quality and robustness. Our analysis covered five clinical cases under two probability

assumptions of random setup uncertainty using the same clinical limitations and directions.

Our numerical results for the clinical cases showed that the CCP approach was capable of

controlling the robustness of the model while attaining high-quality solutions. We believe

that the CCP plans demonstrated here will be applicable to many different types of clinical

cases under different probability assumptions of uncertainty.

Appendix A

CCP model under Normal distribution (CCP-N)

First, consider dose contribution vector d̃i is assumed to be normally distributed with

mean E(d̃i) and standard deviation σ(d̃i). So, we have

min − λ−T θL + λ+T θU + λ+O ϕ (11)

s.t.

E(D̃T (w))− Φ−1(1− α−T )σ(D̃T (w)) ≥ θL ∀ T

E(D̃T (w)) + Φ−1(1− α+
T )σ(D̃T (w)) ≤ θU ∀ T

E(D̃O(w)) + Φ−1(1− α+
O)σ(D̃O(w)) ≤ ϕ ∀O

θL ≤ θL ≤ θ̄L, θU ≤ θU ≤ θ̄U

ϕ,w ≥ 0

as a deterministic equivalent of CCP model (10). The cumulative distribution of a normal

standard probability density is represented with Φ(·).
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Appendix B

CCP model under uniform distribution (CCP-U)

Similarly, under uniform distributional assumption, the deterministic linear equivalents

of the chance constraints (10) are provided.

Assuming, vector d̃i−E(d̃i) is distributed uniformly in the ellipsoid ε = {ξ = Qz : ‖z‖ ≤

1}, where Q = υΓf ,Γ = σ2(d̃i) � 0, υ =
√
n+ 3,Γf ∈ Rn, and υ is a full rank factor such

that Γ = ΓfΓT
f , the deterministic equivalence of model (10) can be formulated as follows:

min − λ−T θL + λ+T θU + λ+O ϕ (12)

s.t.

E(D̃T (w))− υ
√

Ψ−1beta(1− 2α−T ) σ(D̃T (w)) ≥ θL ∀ T

E(D̃T (w)) + υ
√

Ψ−1beta(1− 2α+
T ) σ(D̃T (w)) ≤ θU ∀ T

E(D̃O(w)) + υ
√

Ψ−1beta(1− 2α+
O) σ(D̃O(w)) ≤ ϕ ∀O

θL ≤ θL ≤ θ̄L, θU ≤ θU ≤ θ̄U

ϕ,w ≥ 0

where Ψbeta(·) is the cumulative distribution of a β(1/2;n/2 + 1) probability density.

Models (11) and (12) were developed to optimize the thresholds (θL, θU , and ϕ) of the

constraints while guaranteeing the constraints hold a pre-specified probability.
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Appendix C

Dose-volume histogram for the prostate cancer cases, the pancreatic, and pedi-

atric cancer cases

Fig. C. Prostate cancer (case I) dose-volume histogram bands for target and organs-at-risk dose distributions

covering all setup uncertainties, resulting from (a) robust optimization, (b) chance-constrained programming

under the normality assumption, and (c) chance-constrained programming under the uniformity assumption.
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Fig. C. Prostate cancer (case II) dose-volume histogram bands for target and organs-at-risk dose distribu-

tions covering all setup uncertainties, resulting from (a) the deterministic approach, (b) robust optimization,

(c) chance-constrained programming under the normality assumption, and (d) chance-constrained program-

ming under the uniformity assumption.
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Fig. C. Pancreatic cancer dose-volume histogram bands for target and organs-at-risk dose distributions

covering all setup uncertainties, resulting from (a) the deterministic approach, (b) robust optimization, (c)

chance-constrained programming under the normality assumption, and (d) chance-constrained programming

under the uniformity assumption.
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Fig. C. Pediatric cancer dose-volume histogram bands for target and organs-at-risk dose dose distributions

covering all setup uncertainties, resulting from (a) the deterministic approach, (b) robust optimization, (c)

chance-constrained programming under the normality assumption, and (d) chance-constrained programming

under the uniformity assumption.
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