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Abstract

Commercial drones are expected to be widely used in the near future. They are generally

powered by batteries to fly aerial areas. Flying time performance is known to change de-

pending on air temperature. Hence, this paper proposes a robust optimization approach to

find the optimal flight schedule (i.e., the number of drones and flight paths) in the flight

network considering uncertain battery duration. A regression model is first developed to es-

timate battery duration as a function of air temperature. Three flight duration uncertainty

sets (polyhedral, box, and ellipsoidal) are explored based on the regression model, and the

robust optimization model is solved for each of the three sets. A decision tool is developed

to analyze performance of the sets, and to help a decision maker select an appropriate uncer-

tainty set that is most appropriate for a specific application of interest. The tool considers

both minimizing the total operating cost and minimizing the probability of not completing

the scheduled flights. Numerical results are presented to illustrate the proposed method.
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1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, receive a tremendous amount

of attention from civilian, commercial, and military sectors across the globe as means of

monitoring situations and delivering demands. Examples include British Petroleum (BP)’s

test on drones to monitor its pipelines and oil fields at Prudhoe Bay in Alaska (Nichols,
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2014; Benham, 2015); Amazon’s preparation to use drones for package delivery (Stolaroff,

2014); and Nepal’s use of drones to monitor areas damaged by the April 2015 earthquake

(Daly, 2015). These applications suggest that drones can be flown at any time throughout

the year and can be flown in harsh environments.

Batteries power drones’ wing rotations. Colder temperatures greatly reduce drone battery

performance (Leng et al., 2015), and this in turn reduces the drone flight time (Hsu, 2013).

If there seems to be significant changes in temperature over a drone operating period in the

same area and if the performance is affected by the temperature, concerns must be raised

about the scheduling of drone flights to avoid potential failure of scheduled delivery. Different

discharge curves of a lithium-ion battery under varying temperatures (from −10◦C to 50◦C)

are shown in Figure A in Appendix A.

The capacity (% rated) in Figure A represents the amount of energy that can be extracted

from the battery under given surrounding temperatures against a nominal amount (100%)

of the battery’s energy. The figure shows that performance of the battery is reduced when

the temperature is below 20◦C, and there is a 25% reduction in battery capacity at −10◦C

(100% → 75%). Thus, if not accounted for during the planning stages of the drone flight,

temperature-induced reductions in battery performance may result in drones failing to return

to their launch sites and/or meet service demands. To compensate for the reduced flight

time, drone flight planners must either increase the number of drones or employ higher-

performance batteries to meet all planned demands in temperatures below 20◦C.

Changes in temperature are uncertain and the uncertainty in temperature change is

mostly expressed as a range (Kunreuther et al., 2013). A range of temperature changes can

be obtained using observed data. However, a comprehensive relation between temperature

and battery capacity has not been well addressed in the literature (Rao et al., 2003; Lu

et al., 2013). Many researchers have reported experimental data suggesting approximate

relationships between the two, and some ranges of the battery capacity change have been

provided corresponding to temperature changes. To identify optimal and feasible drone

flight schedules for real-world applications, researchers must account for the uncertainties in

temperature changes and battery capacity changes.

Hence, in this paper, we propose a robust optimization approach to addressing the uncer-
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tainty in battery capacity changes corresponding to air temperature changes and identifying

specific drone flight paths that cover all demands in uncertain environments. We also in-

troduce the use of two measurements (cost ratio and probabilistic guarantee) to assess the

performance of uncertainty sets. Although robust optimization does not need probabilistic

distribution information, decision makers may require probabilistic guarantees to determine

which uncertainty set is needed to minimize the probability of not completing the scheduled

flights in reality (Li et al., 2012).

To solve this problem, we perform the work that follows the processes shown in Figure 1.

First, we identify uncertain factors and its information, in which the factors are not stochastic

and have no available distributional information, and identify the best method to solve this

kind of problem. Second, we develop a mathematical formulation model to represent the

features of a drone flight schedule that would accomplish the aim of this work. Third, given

uncertainty sets, we derive the robust counterpart (deterministic expression) for each set.

Scenarios (the ranges of battery capacity changes) are obtained by regression analysis using

forecasted data and the experimental relation between temperature and battery capacity.

Using the counterpart of the robust problem and scenarios, we obtain a robust solution

(drone flight schedule) and the corresponding optimal value (total operating cost). Finally,

we analyze the optimal values of the three sets using cost ratios and probabilistic guarantees

of varying uncertain set sizes.

Fig. 1. Framework for solving the problem
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This paper contributes to the existing body of literature as follows:

• To present a robust optimization approach (Bertsimas et al., 2011) to handle uncertain

flight duration of a drone for a given flight path in a network environment.

• To provide decision makers with analysis tools to help select an appropriate model

configuration under flight time duration uncertainty: (1) a cost ratio to show how

much additional cost may incur when the schedule is developed considering uncertain

flight durations, and (2) a probabilistic guarantee to evaluate a feasibility for a robust

solution in a given configuration.

• To provide a simple approach to find the minimum flight time to guarantee feasibility

of satisfying demands under uncertainty. A given minimum flight time may not be

sufficient to complete a planned flight schedule due to a significant temperature change.

The rest of this paper is organized as follows. A literature review is presented in Section

2. Section 3 describes the problem in detail and presents the robust optimization model

applied to find the solution, in which three robust counterparts are introduced. A method to

find ranges of uncertain deviations is also described in Section 3. In Section 4, a case study

is used to illustrate the effectiveness of the proposed model in practice, and an analysis of

the results of the three sets, conducted using two performance measurements, is described.

Finally, Section 5 includes a discussion of the highlights in this paper and the potential

extension of this work.

2. Literature Review

There has been an increasing interest of using drones for commercial delivery services

and for monitoring border lines, power lines, fires, soil erosion, volcanic activity, and security

management (Kim and Lim, 2018; Kim et al., 2017; d’Oleire Oltmanns et al., 2012; McGo-

nigle et al., 2008; Cho et al., 2015; Merino et al., 2005). Kim et al. (Kim and Lim, 2018)

proposed a drone-aided border line surveillance method with a new battery charging system,

which is a novel approach to extend the battery capacity during flights without considering

flight environments. Lim et al. (Lim et al., 2016) and Deng et al. (Deng et al., 2014) pro-

posed a method of using multiple drones to inspect power lines and assumed a fixed flight
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time. d’Oleire-Oltmanns et al. (d’Oleire Oltmanns et al., 2012) presented a method of using

drones to monitor soil erosion in Morocco and also specified a fixed flight time. Cho et al.

(Cho et al., 2015) suggested drone-aided security operations in the oil and gas industry, in

which the optimal flight schedule for drones being used for port facilities’ surveillance was

obtained with a fixed flight time. Torres-Sánchez et al. (Torres-Sánchez et al., 2013) and

Bellvert et al. (Bellvert et al., 2014) demonstrated using drones for image acquisition to

receive data in real time and to improve a data quality.

The vast majority of the literature have proposed the drone flight scheduling problem

based on nominal (i.e., deterministic) flight times and speeds without considering flight

environments. Others have taken external factors affecting flight times into consideration.

For example, Kim et al. (Kim et al., 2017) considered both symmetric and asymmetric flight

times to reflect real flight environments such as winds and obstacles, which can affect the

flight time between two nodes. Al-Sabban et al. (Al-Sabban et al., 2013) presented Markov

decision processes for planning drone flights under uncertain wind direction conditions, in

which time-varying wind was considered. Langelaan et al. (Langelaan et al., 2011) described

a method of estimating three-dimensional wind fields to figure out how the wind affects the

drone flight times.

Although the effect of wind has been investigated by several researchers, the effect of air

temperature on drone scheduling has not been well addressed. Therefore, this paper aims

to develop an optimization approach to schedule drone flights with temperature-induced

reductions of battery performance.

3. Problem Description and Model Formulation

3.1. Problem Description

This paper presents the robust optimization approach to address the impact of changes

in air temperature on drone battery capacity. Significant changes in air temperature during

drone operation over an area can impact a planned flight schedule (the number of drones

and specific flight paths of each drone) due to changes in battery capacity associated with

air temperature. Therefore, the effects of changes in air temperature on battery capacity
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need to be considered in the planning phase. The aim of this work is to find optimal drone

flight schedules that minimize operating costs while satisfying given demands.

This work considers multiple depots as initial launch points, and each demand is met

by one drone that returns to the initial launch point. Once the drones return to the initial

launch point, they are re-utilized for the following schedule after battery replacement. The

operating cost of a drone is incurred when the drone is utilized, and the amount of the cost

is fixed as a constant value regardless of the drone’s flight distance. The operating cost often

includes expenses associated with control center operation, drone maintenance, personnel,

and drone’s depreciation cost. As per their specifications, most commercial drones have to

return to their initial launch point within 1 hour. Hence, in this work, drone flight schedules

are on an hourly basis. The battery is assumed to be a lithium battery, whose performance is

easily affected by surrounding air temperature (Lu et al., 2013; Rao et al., 2003). The use of

isolated capsules and other techniques to reduce the influence of air temperature on battery

capacity are beyond of the scope of this paper. The maximum possible drone flight distance

is determined by battery capacity and is proportional to the maximum possible drone flight

time (1 min = 1 mile). Note that flight times (or distance) between two nodes are given

input to the optimization model, and it considers an external force such as wind changes.

We use the following notation to develop the drone scheduling model (DSM).

Indices

I Set of customer nodes (i, j ∈ I)

C Set of center (depot) nodes (c ∈ C)

K Set of drones (k ∈ K)

Parameters

pk Operating cost of drone k

dci, dij Flight distance (time) between a center (c) and a node (i) or between nodes

(i, j)

tk Maximum flight duration of drone k

Decision Variables Our aim is to determine optimal drone flight paths while minimizing

the total operating cost (i.e., the total number of drones). Accordingly, we define de-
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cision variables as:

xijk 1 if drone k flies from node i to j, 0 otherwise

hk 1 if drone k is utilized to serve, 0 otherwise

µi Sequence of visiting node i in a path

3.2. Formulation of the DSM

The deterministic formulation of the DSM is expressed below:

Minimize z =
∑
k∈K

pk × hk (1)

Subject to:
∑
i∈I∪C

∑
k∈K

xijk = 1, ∀j ∈ I (2)

∑
j∈I∪C

∑
k∈K

xijk = 1, ∀i ∈ I (3)

xiik = 0, ∀i ∈ I ∪ C, k ∈ K (4)∑
j∈I

xcjk −
∑
i∈I

xick = 0, ∀c ∈ C, k ∈ K (5)

∑
c∈C

∑
j∈I

xcjk = hk, ∀k ∈ K (6)

∑
i∈I

∑
c∈C

xick = hk, ∀k ∈ K (7)

∑
i∈I∪C

xiuk −
∑

j∈I∪C

xujk = 0, ∀u ∈ I, k ∈ K (8)

∑
i∈I∪C

∑
j∈I∪C

dij × xijk ≤ tk, ∀k ∈ K, tk ∈ UT (9)

µi − µj + n
∑
k

xijk ≤ n− 1, ∀i, j ∈ I (10)

xijk, hk ∈ {0, 1}, µi ≥ 0, n = |I|.

The objective function (1) minimizes the sum of the operating cost of the drones, which

helps to minimize the number of drones. Constraints (2) and (3) ensure that each customer

node is served only once. Constraint (4) is set to prevent a drone from revisiting the same

customer or center, and Constraint (5) ensures a drone to return to where it departed from.

Constraints (6) and (7) describe the utilization condition of the drones. Constraint (8) is
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used to conserve the flow of drone flight at customer nodes as well as centers. The maximum

possible flight time of drone k is represented in Constraint (9), in which parameter tk is

an uncertain value belonging to a bounded set UT . The Miller-Tucker-Zemlin formulation

(Miller et al., 1960; Öncan et al., 2009) is used in Constraint (10) to eliminate sub-tours.

3.3. Uncertainty Sets

We consider closed (bounded) uncertainty sets which are constructed as deviations from

an expected value (t0k) of battery capacity (tk) in Constraint (9). This means that the battery

capacity can vary within a given set of uncertainty associated with temperature changes. The

deviations are fixed and identified by a number of scenario vectors (tsk), which are allowed to

have negative deviation values. For a given number of scenario vectors s (∈ S), the general

uncertainty set (UT ) is a linear combination of scenario vectors with weight ys ∈ Y :

UT = {tk | t0k +
Ω∑

s=1

yst
s
k, ∀ys ∈ Y }

Hence, Constraint (9) can be written as follows:

∑
i

∑
j

xijk dij − t0k ≤
Ω∑

s=1

yst
s
k. (11)

To enforce that the inequality holds for all ys (∈ Y ), it suffices to impose it for

minys∈Y

Ω∑
s=1

yst
s
k

One of the challenges of applying the robust optimization approach to solve a problem

is yo find an appropriate uncertainty set describing the problem well (i.e., choosing a proper

uncertainty set). If the selected set of uncertainty is too large, then it can yield robust solu-

tions that are too conservative to ensure feasibility under any circumstances. Consequently,

it may result in an unnecessarily higher cost. Hence, the cost ratio and the probabilistic

guarantee are suggested to choose the best uncertainty set in Section 4.4.

For uncertainty set (Y ), we examine three uncertainty sets proposed by Bertsimas et al.

(2011):
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1. Polyhedral set: Y1 = {y | ys ≥ 0,
∑Ω

s=1 ys ≤ 1} : UT1

2. Box set: Y2 = {y | |ys| ≤ 1, s = 1, ...Ω} : UT2

3. Ellipsoid set: Y3 = {y |
∑Ω

s=1 y
2
s ≤ 1} : UT3

The box set will be appropriate if uncertain changes in battery capacity are assumed to

remain in a given range of two extreme values. The ellipsoid set should be used the pattern

of deviations from a nominal battery capacity can be captured by quadratic surfaces based

on historical data and statistic tests (Gorissen et al., 2015). The polyhedral uncertainty set

is a special case of ellipsoidal uncertainty (Bertsimas et al., 2011)

The robust counterpart, a deterministic equivalent value corresponding to each uncer-

tainty set, is needed to get robust solutions. The robust counterparts of the three uncertainty

sets are derived as follows:

Proposition 1. Under the uncertainty set UT1, the robust counterpart is equivalent to the

following constraint (i.e., by replacing Constraint (9) with the following constraint):∑
i

∑
j

xijkdij − t0k ≤ min{min
s∈S

tsk, 0}, ∀k ∈ K (12)

Proof. See Appendix B for details.

Proposition 2. Under the uncertainty set UT2, the robust counterpart is equivalent to the

following constraint (i.e., by replacing Constraint (9) with the following constraint):∑
i

∑
j

xijkdij − t0k ≤ −
Ω∑

s=1

|tsk|, ∀k ∈ K (13)

Proof. See Appendix C for details.

Proposition 3. Under the uncertainty set UT3, the robust counterpart is equivalent to the

following constraint (i.e., by replacing Constraint (9) with the following constraint):∑
i

∑
j

xijkdij − t0k ≤ −
√

(t1k)2 + ...+ (tΩk )2, ∀k ∈ K (14)

9



Proof. See Appendix D for details.

3.4. Using Regression Analysis to Find tsk

This section describes the data analysis required to obtain scenarios and intervals (tsk) for

the models introduced in Section 3.3. Battery capacity changes corresponding to temperature

changes are not known exactly or comprehensively. As a result, we use forecasted weather

data and experimental battery discharge rates (Figure A) to estimate the relation. The

framework for finding tsk is shown in Figure 2.

Fig. 2. Framework for finding tsk

First, both historical and forecast temperature data for a specified area in which the

drones will operate are collected. On the basis of the assumptions listed in Section 3.1, low

hourly temperature data are needed to obtain the drones’ hourly flight plans. Using the

two sets of data, we can estimate the future hourly temperature over the area. The initial

estimated hourly temperatures are adjusted for the drones’ flight altitude (Kattel et al.,

2013; FAA, 2016).

Second, we obtain a model of the relation between battery capacity changes and air tem-

perature changes (i.e., the adjusted hourly temperature changes). To estimate the relation

between the two, we use the regression analysis method, in which the independent variable is

temperature and the dependent variable is rated battery capacity. The method is illustrated

with an example of an existing battery discharge rate.
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Last, we use the estimated relation model to convert the adjusted hourly temperatures

into hourly rated battery capacity. The converted hourly capacity values are then used to

generate scenarios (deviations of nominal flight time) in the next section.

4. Numerical Experiments

This section consists of four parts. First, we describe a case study and historical data

to estimate an hourly air temperature change over time. The regression model is then

developed using the data, and bounds of flight times are obtained accordingly. Second, we

test the proposed robust models in the area corresponding to the historical data. Third, we

propose a method to obtain feasible solutions when the original model is infeasible due to

an insufficient minimum flight time assumption to complete a planned flight in the model.

Outputs from the three sets are discussed in terms of cost ratio and probability guarantee,

and the best uncertainty set is identified in the last part. All models are implemented

in GAMS (GAMS Development, 2015) and solved by CPLEX 12.6.2 (IBM, 2015), and all

experiments are performed on a server running RedHat Linux 64-bit with an Intel Xeon

processor and 16GB of RAM.

4.1. Case Study

The selected case study includes 12 checkpoints and 2 drone centers (initial launch points)

located just north of Austin, TX. The mission of the drones is to patrol all 12 checkpoints

every hour from 7 a.m. to 6 p.m. All drones are the same type, and the drones’ nominal flight

time and distance are 35 minutes and 35 miles (not maximum flight range), respectively. The

drones’ flight altitude is 400 feet above, and each drone’s per-flight operating cost is $35.

The collected raw data represents hourly temperature data in the selected area on January

17, 2016 (NOAA, 2015). Detailed temperature data including the minimum temperature per

hour are given in Figure E. The lapse rate is applied to obtain the adjusted temperature

(Kattel et al., 2013); adjusted temperature = raw minimum temperature - temperature

decrease with altitude 400 feet. The raw temperatures and the corresponding adjusted

temperatures are shown in Table 1.
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Table 1

Hourly temperature changes north of Austin, TX, on January 17, 2016, and corresponding battery capacity

changes

Time

7 a.m. 8 9 10 11 12 p.m. 1 2 3 4 5 6 p.m.

Raw Temp.(◦C) 5.1 5.0 6.8 9.7 11.3 14.8 17.6 17.5 17.4 18.4 17.8 16.2

Adjusted Temp.(◦C) 4.55 4.45 6.25 9.15 10.75 14.25 17.05 16.95 16.85 17.85 17.25 15.65

Est. Battery Cap (%) 92 92 93 95 97 99 100 100 100 100 100 99

Deviation (%) -8 -8 -7 -5 -3 -1 0 0 0 0 0 -1

Next, using the data shown in Figure A, we conduct regression analysis to obtain a model

of the relation between temperature and battery capacity. The resulting regression model is

Capacity = 0.8814 + 0.0091× Temperature− 0.0001× Temperature2 (15)

The R-squared value of the model is 0.9756 and the p-values for all parameters are less

than 0.006. Because there does not exist a relation model between the temperature and the

battery capacity change in the literature, the regression model (15) is used to estimate the

temperature-induced reduction (i.e., deviation) in battery performance as shown in Table 1.

For example, the maximum deviation of battery capacity between 7 and 8 a.m. is estimated

to be 8% (= 100% - 92%).

4.2. Numerical Results

Using the results described in Section 4.1, we solved the DSM for 7 random scenarios

(see Table 2).
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Table 2

Number of required drones at each time for three uncertainty sets

Time

7 a.m. 8 9 10 11 12 p.m. 1 2 3 4 5 6 p.m. Total

Set 1:

No. of drones 7 7 7 6 6 6 5 5 5 5 5 6 7

Cost ($) 245 245 245 210 210 210 175 175 175 175 175 210 2,450

Set 2:

No. of drones INF INF INF INF 9 6 5 5 5 5 5 6 N/A

Cost ($) N/A N/A N/A N/A 315 210 175 175 175 175 175 210 N/A

Set 3:

No. of drones 9 9 9 7 6 6 5 5 5 5 5 6 9

Cost ($) 315 315 315 245 210 210 175 175 175 175 175 210 2,695

Deterministic:

No. of drones 5 5 5 5 5 5 5 5 5 5 5 5 5

Cost ($) 175 175 175 175 175 175 175 175 175 175 175 175 2,100

INF : infeasible instance, N/A : an optimal value could not be found.

Compared with drone operation under the deterministic assumption, drone operation un-

der each uncertainty set requires more drones and higher operating costs. Under Uncertainty

Set 1, seven drones are needed, and the resulting daily cost of drone operation is $2,450. At

least some of the 7 drones are assigned to patrol 12 checkpoints every hour. Under Uncer-

tainty Set 2, given the nominal flight time of 35 minutes, drones operating between 7 a.m.

and 10 a.m. cannot return to a center. They require a nominal flight time of longer than

35 minutes to complete the patrol missions. Compared with Uncertainty Set 1, Uncertainty

Set 3 results in more drones and greater operating costs. Therefore, Uncertainty Set 2 (i.e.,

a simple bound set) appears to be most conservative among the three uncertainty sets for

the test problems used for this section. It turns out that the solution under Uncertainty

Set 2 is feasible for any demand realizations for sets 1, 2 and 3, whereas the solution under

Uncertainty Set 1 is only feasible for the assumed uncertainty set (i.e., polyhedral set).

The drones’ hourly flight paths under Uncertainty Set 1 are shown in Figure 3. Detailed

flight paths under Uncertainty Set 3 are given in Figure F.

As shown in Table 2, 7 drones are required to conduct the mission from 7 to 9 a.m., but

after these times, 5 or 6 drones are sufficient. Although the numbers of required drones are

the same, the flight routes may be different. For example, the numbers of drones from 10
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(a) From 7 a.m. to 9 a.m. (b) From 10 a.m. to 11 a.m.

(c) At 12 p.m. (d) From 1 p.m. to 5 p.m.

(e) At 6 p.m.

Fig. 3. Hourly flight paths under Uncertainty Set 1

a.m. to 12 p.m. and at 6 p.m. are the same (6 drones), but the detailed flight paths taken at

12 p.m. (Figure 3(c)) and 6 p.m. (Figure 3(e)) are different from the paths taken 10 to 11

a.m. (Figure 3(b)). We can choose one of the two different routes to patrol the checkpoints

during the above times.

The numerical results showed that the optimization approach considering uncertain bat-

tery durations provided more conservative solutions than the nominal counterpart to ensure

feasibility under any realizations of the temperature changes and the corresponding battery

capacity reductions, at a higher costs. In Figure 4, we compared the optimal solution of

14



deterministic model with the one from the robust optimization model under Uncertainty Set

1, which is the least conservative among three sets. In practice, it might be impossible to

patrol 12 checkpoints from 7 a.m. to 12 p.m. if the optimal deterministic solution is used

(only five drones). As the amount of the temperature-induced reduction in battery capacity

increases, the failure rate of returning to an initial depot increases under deterministic as-

sumption. If we schedule the drone flights based on the deterministic assumption, three out

of five drones may fail to return to its initial depot under the reduction scenarios ranging

from 3% to 8%.

Fig. 4. Robustness of the proposed method compared with deterministic method

4.3. Recovery of Feasible Solutions

The infeasible cases (INF ) in Table 2 are due to the violation in Constraint (13), in which

a drone’s projected total flight distance exceeded its maximum flight time (distance). One

way to overcome this issue to equip the drones with enhanced batteries, which will enable

a longer flight time. Furthermore, using a conservative estimate on the nominal total flight

time to complete a tour in the scheduling model can help avoid the infeasibility issue. To

estimate the minimum required nominal flight time to ensure feasibility, we use the longest

round-trip flight distance between a center and a node (checkpoint). Specifically, we obtain

the minimum required nominal flight time (t0k) satisfying Constraint (13) under Uncertainty
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Set 2 using the equation below:

Objective min t0k

Subject to: Max(dci + dic) +
Ω∑

s=1

|tsk| ≤ t0k, ∀c ∈ C, i ∈ I (16)

where dci is a flight distance from a center to a node, and dic is a flight distance from a node

to a center. The second term in Constraint (16) is the robust counterpart under Uncertainty

Set 2, in which the deviation of capacity also increases proportionally, corresponding to the

nominal flight time of enhanced batteries (i.e., the value of deviations of battery capacity is

determined by the estimated battery capacity reduction rate in Section 4.1). For the case

study, the minimum nominal value under Uncertainty Set 2 is 47.25 minutes. The number of

required drones with high-performance batteries and a nominal flight time of 47.25 minutes

are shown in Table 3.

Table 3

Number of required drones using high-performance batteries (nominal flight time, 47.25 minutes)

Time

7 a.m. 8 9 10 11 12 p.m. 1 2 3 4 5 6 p.m. Total

Set 1 3 3 3 3 3 3 3 3 3 3 3 3 3

Set 2 6 6 5 4 3 3 3 3 3 3 3 3 6

Set 3 4 4 3 3 3 3 3 3 3 3 3 3 4

Deterministic 3 3 3 3 3 3 3 3 3 3 3 3 3

Note: All data are no. of drones.

4.4. Uncertainty Sets and Performance Measurements

Two measurements (cost ratio and probabilistic guarantee) are introduced to assess per-

formance of each of the three uncertainty sets. First, the cost ratio is calculated as zr−zd
zd

in which zr is the optimal objective function value of a robust optimization model and zd is

the optimal objective function value of the deterministic problem. This ratio illustrates how

much extra cost will be incurred when adopting the robust approach over the deterministic

optimization model. As a result, the schedule will be more robust against the failure to safe

return of drones which can immediately cause unmet demand.

16



Table 4

Cost ratios under a nominal flight time of 35 minutes

Time

Set 7 a.m. 8 9 10 11 12 p.m. 1 2 3 4 5 6 p.m. Total

1 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 0 0 0.2 0.17

2 N/A N/A N/A N/A 0.8 0.2 0 0 0 0 0 0.2 N/A

3 0.8 0.8 0.8 0.4 0.2 0.2 0 0 0 0 0 0.2 0.28

Note: N/A indicates that a cost ratio could not be found due to infeasible instance.

Table 5

Cost ratios under a nominal flight time of 47.25 minutes

Time

Set 7 a.m. 8 9 10 11 12 p.m. 1 2 3 4 5 6 p.m. Total

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0.67 0.33 0 0 0 0 0 0 0 0 0.25

3 0.33 0 0 0 0 0 0 0 0 0 0 0 0.03

The cost ratios are calculated as shown in tables 4 and 5. For example, the cost ratio at

7 a.m. under Set 1 in Table 4 is 0.4. This ratio means that operating drones under battery

duration uncertain, modeled based on Uncertainty Set 1, will cost 40% more than that of

the deterministic assumption. This is a direct result of adding 2 more drones for an early

morning schedule when there are fluctuations in air temperature (see Table 2). However,

the ratios remain at 0 during 1 p.m. and 5 p.m. because no significant air temperature

fluctuations were forecasted for these time period. The column Total on Set 1 shows the

ratio of 0.17. Hence, Uncertainty Set 1 will incur an additional 17% cost (i.e., $2,100 →

$2,450, 0.17= 2,450−2,100
2,100

) compared with the total operating cost under the deterministic

assumption. Cost analysis of other sets can be explained similarly. Note that, under Set 2

as shown in Table 2, no feasible solutions were found between 7 and 10 a.m. so that the cost

ratios could not be determined for these infeasible instances and they are labeled as N/A.

As mentioned in Section 4.3, the infeasible instances are due to insufficient battery dura-

tion to complete a task under an assumed uncertainty set. To ensure flight time feasibility,

we obtained the minimum nominal flight time (47.25 minutes) using the method introduced

in Section 4.3. In Table 5, the cost ratio at 7 a.m. under Set 2 is 1 (100%). It means that

the number of required drones under Uncertainty Set 2 is twice as many drones as under the
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deterministic assumption (see Table 3).

The two tables showed that the robust optimization approach requires a higher operating

cost to deal with uncertainty in battery capacity than the deterministic approach does. In

the case in which the battery with a nominal flight time of 35 minutes is used (Table 4), the

additional amounts of cost are 17% and 28% under Uncertainty Sets 1 and 3, respectively.

Thus, the ellipsoid uncertainty set (Set 3) is more conservative than the polyhedral set (Set

1). In all feasible cases in which the battery with a nominal flight time of 47.25 minutes is

used (Table 5), the box uncertainty set (Set 2) is more conservative than the ellipsoid set

(Set 3).

Second, the probabilistic guarantee requires that the optimal solution of the robust prob-

lem with an uncertain set must satisfy the deterministic constraint (original constraint) with

a probability of at least the probabilistic guarantee value (Ben-Tal and Nemirovski, 2000;

Bertsimas and Sim, 2004). According to Ben-Tal et al. (Ben-Tal and Nemirovski, 2000) and

Bertsimas et al. (Bertsimas and Sim, 2004), the probability bounds for three uncertainty

sets are given as follows:

1. Polyhedral set: 1−e−
Γ2

(2|Ji|) , where Γ is the size of the polyhedron and |Ji| is the number

of uncertain parameters in the i-th constraint.

2. Box set: 1− e−∆2

2 , where ∆ is the size of the box.

3. Ellipsoid set: 1− e−Φ2

2 , where Φ is the radius of the ellipsoid.

In the polyhedral uncertainty set, the number of uncertain parameters is 1 (|Ji|=1). There-

fore, the probability bound of the polyhedral set is the same as the bound of the ellipsoid

set if the three sets have the same size (e
− Γ2

(2|Ji|) = e−
∆2

2 = e−
Φ2

2 if Γ = ∆ = Φ). Therefore,

the values of the probability of satisfaction under Sets 1, 2, and 3 are the same, especially

in this example.

Figure 5 shows a comparison of the probability of satisfaction with the size of Uncertainty

Set 1 when a battery with a nominal flight time of 35 minutes used. First, the probability

of satisfaction also monotonically increases as the set size increases. Second, the cost ratio

remains flat at 0.117 until the set size reaches 0.7 and then shows an increasing pattern until
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Fig. 5. Probability of satisfaction and cost ratio as a function of size of polyhedral uncertainty set (Uncer-

tainty Set 1).

1.3. After that, it reaches a stationary state. Compared with Set 2 and Set 3, Set 1 (the

polyhedral uncertainty set) has lower cost but the same probability of satisfaction

As one can see from these two measurements, there is a trade-off between the level

of satisfaction (or robustness) and the associated cost. As the probability of satisfaction

increases, the corresponding cost tends to increase. Decision makers can use this trade-off

to find an appropriate uncertainty set size accomplishing a targeted satisfaction probability

within a budget limit.

5. Conclusion

This paper introduced a robust optimization approach to the drone-scheduling problem

to address the uncertainty of drone battery capacity caused by air temperature changes.

We have explored three different uncertainty sets to describe the uncertainty of the battery

capacity changes in the robust optimization model to find an solution (number of drones and

their paths) and its corresponding objective value (minimum operating cost).

A regression model was developed to estimate the temperature-induced reduction (i.e.,

deviation) in battery performance. The proposed robust optimization model was then tested
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using a case study. The results showed that the robust optimization approach should be

used rather than the traditional deterministic optimization model in order to minimize the

failure rate of drones to return to an initial depot. The box uncertainty set (Set 2) worked

well for any demand realizations that were tested under sets 1, 2 and 3. Hence, using the

box uncertainty set may be appropriate if one wants to ensure the return of drones to the

depot in any realizations of battery capacity change. However, the polydehral set (Set 1)

outperformed the other sets in terms of the cost ratio and the probability of satisfaction by

incurring a lower cost for the same satisfaction level in all cases studied in this paper.

An extension of this work may include a study of real-time rescheduling based on real-

time battery capacity reduction, in which the service priority of remaining demands can be

considered. For example, an alternative flight path can be developed to minimize unmet

demands if the remaining battery capacity falls below a threshold value due to temperature

changes.
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Appendix A

Discharge curves for a lithium-ion battery at different temperatures

Fig. A. Discharge curves for a lithium-ion battery at different temperatures (Tech, 2016)

Appendix B

Proof of Proposition 1

Using the definition of the uncertainty set, Y1 = {y | ys ≥ 0,
∑Ω

s=1 ys ≤ 1}, we obtain

the primal LP and its dual as follows:

< Primal > < Dual >

Objective min
Ω∑

s=1

yst
s
k max − ω

Subject to:
Ω∑

s=1

ys ≤ 1, −ω ≤ tsk, s = 1, ...Ω

ys ≥ 0 ω ≥ 0

From the weak duality theorem (Bazaraa et al., 2011), the condition

∑
i

∑
j

xijk dij − t0k ≤
Ω∑

s=1

yst
s
k
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is equivalent to ∑
i

∑
j

xijk dij − t0k ≤ −ω

for some dual feasible ω. The above means that∑
i

∑
j

xijk dij − t0k ≤ 0 and
∑
i

∑
j

xijk dij − t0k ≤ tsk

Therefore, we obtain Constraint (12).

Appendix C

Proof of Proposition 2

Using the definition of the uncertainty set, Y2 ={y | |ys| ≤ 1, s = 1, ...Ω}, we obtain

the primal LP and its dual as follows:

< Primal > < Dual >

Objective min
Ω∑

s=1

yst
s
k max -1T (ω1 + ω2)

Subject to: ys ≤ 1, −ω1 + ω2 = tsk, s = 1, ...Ω

ys ≥ -1 ω1, ω2 ≥ 0

where 1 is a column vector (Ω× 1) with all entries 1.

We can consider two cases for all scenarios: tsk > 0 and tsk ≤ 0. In the case of tsk > 0, the

objective function value of dual problem is −tsk whereas the value of the objective function

of dual problem is tsk in the case of tsk ≤ 0. Therefore, from the weak duality theory (Bazaraa

et al., 2011), we obtain the Constraint (13).
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Appendix D

Proof of Proposition 3

Using the definition of the uncertainty set, Y3 ={y |
∑Ω

s=1 y
2
s ≤ 1}, we obtain the primal

LP as follows:

< Primal >

Objective min

Ω∑
s=1

yst
s
k

Subject to:
Ω∑

s=1

y2
s − 1 ≤ 0

The feasible region of the primal problem is bounded. Hence, a global minimum solution

must exist. From the Karush-Kuhn-Tucker (KKT) optimality necessary conditions (Gordon

and Tibshirani, 2012), we obtain the Constraint (14).

Note that the feasible region is bounded (
∑Ω

s=1 y
2
s ≤ 1), so a global minimum must exist.

First, the Lagrangian function is constructed using the constant µ:

L(y, µ) = y1t
1
k + y2t

2
k + · · ·+ yΩt

Ω
k + µ(y2

1 + y2
1 + · · ·+ y2

Ω − 1)

The first condition of KKT optimality (f ′(y?s) + µ?g; (y?s) = 0) is satisfied:

dL(y, µ)

dys
= tsk + 2µys = 0,

dL(y, µ)

dµ
= y2

1 + y2
1 + · · ·+ y2

Ω − 1 = 0

Hence, y?s = − tsk√
(t1k)2 + (t2k)2 + · · ·+ (tΩk )2

and µ? =

√
(t1k)2 + (t2k)2 + · · ·+ (tΩk )2

2

The remaining three conditions are also satisfied:

g′(y?s) ≤ 0, µ? ≥ 0, and µ?g′(y?s) = 0

with the values of y?s and µ?
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Appendix E

Raw hourly data in Austin, TX

Fig. E. Raw hourly data in Austin, TX (NOAA, 2015)

• 1st column: the identification number of the observation site

• 4th column: the local standard time date of the observation.

• 5th column: the local standard time hour of the observation.

• 12th column: the minimum air temperature in ◦C during the hour.
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Appendix F

Hourly flight paths under Uncertainty Set 3

(a) From 7 a.m. to 9 a.m. (b) At 10 a.m.

(c) At 11 a.m. (d) At 12 p.m.

(e) From 1 p.m. to 5 p.m. (f) At 6 p.m.

Fig. F. Hourly flight paths under Uncertainty Set 3
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Gorissen, B. L., Yanıkoğlu, İ., den Hertog, D., 2015. A practical guide to robust optimization.

Omega 53, 124–137.

Hsu, J., 2013. Rise of the Drones: Unmanned Aircraft Sneak Into the Arctic.

http://www.livescience.com/39194-drones-monitor-arctic.html (Last accessed on

June 21, 2016).

IBM, 2015. CPLEX Optimizer. http://www.ibm.com/.

Kattel, D., Yao, T., Yang, K., Tian, L., Yang, G., Joswiak, D., 2013. Temperature lapse rate

in complex mountain terrain on the southern slope of the central himalayas. Theoretical

and applied climatology 113 (3-4), 671–682.

Kim, S. J., Lim, G. J., 2018. Drone-aided border surveillance with an electrification line

battery charging system. Journal of Intelligent & Robotic Systems, 1–14.
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