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Abstract This paper addresses the drone-aided deliv-
ery and pickup planning of medication and test kits for
patients with chronic diseases who are required to visit
clinics for routine health examinations and/or refill
medicine in rural areas. For routine healthcare ser-
vices, the work proposes two models: the first model
is to find the optimal number of drone center locations
using the set covering approach, and the second model
is the multi-depot vehicle routing problemwith pickup
and delivery requests minimizing the operating cost of
drones in which drones deliver medicine to patients
and pick up exam kits on the way back such as blood
and urine samples. In order to improve computational
performance of the proposed models, a preprocess-
ing algorithm, a Partition method, and a Lagrangian
Relaxation (LR) method are developed as solution
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approaches. A cost-benefit analysis method is devel-
oped as a tool to analyze the benefits of drone-aided
healthcare service. The work is tested on a numerical
example to show its applicability.
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1 Introduction

According to the Centers for Disease Control and Pre-
vention (CDC), chronic diseases are a major concern
in terms of their economic and social aspects among
the government and patients [1]. The cost of chronic
diseases is an overwhelming component of overall
healthcare expenses. In the United States (US), about
117 million people have had one or more chronic dis-
eases in 2012, which means that about half of all
adults are carrying chronic diseases that include heart
disease, diabetes, arthritis and obesity [2]. Patients
with chronic diseases are required to visit medical
institutions for routine checkups or medicine refills.
These periodic visits incur out-of-pocket expenses and
medical costs that can be several times higher com-
pared to patients without chronic diseases (Fig. 1).
In Fig. 1, patients with a chronic disease (1 CD =
$2,915) spend almost 2.5 times more than those
without chronic diseases (0 CD = $1,177) due to
regular clinic visits, prescriptions, home health vis-
its and inpatient stays. In general, the presence of
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Fig. 1 Annual medical cost
with number of chronic
conditions, 2010, US [3]

more chronic diseases increases a patient’s burden. In
addition to the costs mentioned above, incidental costs
are accrued such as transportation expenses to attend
medical appointments and time off from work to seek
medical service or take routine tests. These factors re-
sult in additional out-of-pocket expenses for patients.

The additional out-of-pocket expenses represent a
greater burden for patients living in rural areas than for
those living in urban areas. Rural areas have distinct
barriers to accessing healthcare such as transportation
to/from medical facilities and general availability of
medical facilities [4]. Even though residents of rural
areas have the same types and number of chronic diseases
as those in urban areas, they face more out-of-pocket
expenses due to their different geographical limita-
tions. Even if they are willing to pay more to treat their
diseases, they cannot easily access clinics due to lack of
medical facilities within their vicinity [5]. This varia-
tion among populations is called health disparities [6].

To alleviate financial burdens and health dispari-
ties, the Federal Communications Commission (FCC)
had proposed a project to develop the telemedicine
infrastructure to enhance healthcare accessibility [7].
Using this broadband infrastructure, patients in rural
areas can receive medical service without facing
restrictions regarding time and space. Pilot programs
combined with homecare delivery service are under-
way across the U.S. that allow teams of doctors to
monitor and share patients’ previous medical informa-
tion and test results.

Despite the introduction of these programs, many
limitations still exist in telemedicine and homecare
delivery service for patients living in rural areas. First,
telemedicine is no substitute for in-person hands-on
care or delivering medicine. Although telemedicine
can monitor and provide enrolled patients with qual-
ified medical service through two-way streams of
voice-and-video, it cannot deliver medicine and exam
kits to patients. Second, it does not provide addi-
tional transportation methods for rural patients to visit
healthcare facilities. The lack of transportation is one
of factors for the failure of medication adherence [8].
Finally, in order to implement these programs widely
and continuously, the participation of many providers
is required. The population of rural residents is smaller
than urban populations, and rural residents are more
likely to be uninsured than urban residents [9]. As a
result, the providers often hesitate to invest in projects
like this because returns on investment from rural
areas are estimated to be smaller when compared to
urban areas. Even if the providers are willing to invest
in such healthcare projects, it is often difficult to find,
recruit and retain caregivers due to the geographical
conditions. Moreover, according to American Associ-
ation of Retired Persons, 89% of Americans over the
age of 50 want to receive healthcare service in their
own homes [10]. As they get older and face increased
problems with mobility, they may have difficulty vis-
iting medical clinics and prefer to be seen in a more
comfortable place such as their own home. This trend
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is requiring providers to hire more caregivers to satisfy
their patients’ demands.

This paper aims to determine ways to overcome
limitations of the current healthcare delivery methods
in rural areas and to alleviate health disparities provid-
ing patients in rural areas with drone-aided healthcare
delivery and pickup services. Drones as a substi-
tute for currently limited transportation and caregivers
can deliver routine test kits, refill drugs and pick up
patients’ exam kits such as blood and urine samples.
Drones reduce the travel time and workload of a care-
giver sharing simple care tasks. Compared to other
transportation modes such as a postman and com-
mercial courier services, drones can be a competitive
alternative for delivery and pickup of time-sensitive
items, regardless of the ground level road conditions.
We note, however, that drones may not be dispatched
in severe weather conditions and this aspect is beyond
the scope of this paper. In our proposed work (Fig. 2),
drones are utilized to deliver and pick up exam kits
and medicine for patients located in rural areas while
caregivers visit with patients who need in-person
hands-on care. Therefore, the patients who need to
obtain test kits or medicine do not need to drive,
hence a saving on transportation expenses. Since the
workload of the already limited available caregivers
is reduced, they can concentrate on in-person hands-
on care; thereby improving the quality of a caregiver’s
service.

This study proposes two planning models: strategic
planning (SP) and operational planning (OP). The pur-
pose of the SP model is to find the optimal locations
for drone centers to provide its services to all patients
in a given area. In the OP model, taking service range
from centers into consideration, the optimal number of
drones per drone center and their optimal delivery and
pickup schedules are determined to satisfy the specific
demands of patients within possible flying times. This
study also suggests a cost-benefit ratio method for sen-
sitivity analysis to help decision makers in providing
an economically viable healthcare delivery service to
patients using drones.

This paper contributes to the existing body of liter-
ature as follows:

– To propose a concept of drone-aided healthcare
delivery and pickup service for chronic disease
patients in rural areas: drones can provide aerial
healthcare delivery and pickup services to assist
the limited number of caregivers and reduce the
out-of-pocket expenses for the patients in rural
areas who need routine healthcare services.

– To develop two planning models in drone-aided
healthcare delivery and pickup service: strategic
planning to optimally decide where to place drone
centers and how many centers, and operational
planning for optimal drone flight schedule for
each center.

Fig. 2 Proposed concept of drone-aided healthcare delivery and pickup service in rural area
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– To provide decision makers with an economic
analysis tool (cost-benefit analysis method) for
using drones in healthcare delivery: decision mak-
ers can analyze their investments on aerial deliv-
ery and pickup service using drones.

– To provide a preprocessing algorithm and bounds
generation methods to reduce computational time
to solve the proposed models.

The paper is organized as follows. A literature
review is presented in Section 2. Section 3 describes
the problem in detail and presents the mathemati-
cal models applied to find a solution. In Section 4,
the preprocessing algorithm and the bounds gener-
ation methods are introduced to improve computa-
tional performance. The cost-benefit analysis method
is described in Section 5. In Section 6, an example
is used to illustrate the effectiveness of the proposed
model in practice and a cost analysis is also conducted.
Finally, Section 7 concludes with a discussion of the
highlights in this paper and the potential extension of
this work.

2 Literature Review

The aging population and increasing numbers of
patients have presented a huge economic burden on
not only themselves, but the government and providers
as well [11, 12]. Because of this, there have been many
different healthcare models and methods produced
over the years.

For example, the homecare model [13] provides
patients with certain types of care in their own homes.
Homecare emerged over a century ago when the home
was one of the workplaces for nurses. This model
has evolved and developed over time due to changes
in the demands of patients and technology [14, 15].
The homecare model has many challenges such as
temporal precedence, demanding skilled treatments,
increasing operating cost and unmet service level
[16–19].

In rural areas, furthermore, homecare services have
faced many difficulties obtaining benefits due to dif-
ferent environments encountered than those within
urban areas. Some of the factors may be due to lower
population, a lack of transportation, medical facilities

and pharmacies as well as long distances between
patients and medical facilities [20, 21].

Video-based treatment (called videoconferencing)
is another model that provides two-way video services
and voice contact between patients and doctors or
patients and their relatives. Using devices with a touch
screen, patients can easily consult with doctors or rel-
atives when they need to [22]. This method enables
patients who are far from urban areas or centralized
hospitals to receive video therapy, recovery support
and specialty services. Doctors can collect and share
patients’ data and information (such as blood pressure
and heart rate) to make an accurate and rapid diagnosis
with specialists in other areas.

The Medical Home model, which was first intro-
duced in 1967 for pediatricians, has been applied in
many states [23]. This service is performed mainly
to perform primary care and is patient-centered, com-
prehensive, team based, coordinated, accessible, and
focused on quality and safety. The medical team
for a patient shares his/her medical information to
ensure the patient receives pertinent care at the right
time and place in the manner that best suits his/her
needs. Hence, the patient does not have to retake
tests because the information is being shared and pro-
vided by the different healthcare providers. Therefore,
the patients have access to relevant medical services
which in turn, saves time and money [24].

Overall, these models and methods are not applica-
ble to all patients and face many barriers for patients
who require periodic hands-on care due to limited
physical situations [25]. Patients living in rural areas
have limited or no access to transportation methods or
caregivers who are able to deliver or pick up medicine
and test kits for them. Recently, some researchers have
proposed the use of drones for healthcare services
[26–28]. However, they are not applicable to patients
who need routine healthcare services as we consider in
this paper. Therefore, a new healthcare model should
be developed to ease the burden for patients with
chronic diseases living in rural areas.

3 Problem Description and Formulations

The proposed decision-making process to deliver and
pick up medical supplies for patients with chronic
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Fig. 3 Decision-making process

diseases in rural areas is shown in Fig. 3. Based on
patient data that ranged from schedules for hands-on
care, regular checkups and medicine refills as well
as their residences, patients can be divided into two
groups: one group that needs in-person hands-on care
and the other who needs only simple testing or drug
refills. This study focuses on the second group of
patients where drones can provide simple test kits and
drugs. Next, the locations and number of centers are
determined to cover all patients within this second
group. The property of this process is a long-term
SP. Once the locations of the centers are determined,
implementation of a SP begins requiring time, money
and efforts. Lastly, the optimal number of drones and
their routes are determined to deliver and pick up
orders in a short-term OP.

We have developed the optimal scheduling model
by making some assumptions using rotor wing drones
that can fly up to 60 mph [29]. First, maximum flight
times are not affected by the amount of load to be
carried by a drone because most delivery items in
this application are light weighted and have mini-
mal impact on the flight time. Second, flight times
between two nodes (two patients or a center and a
patient) include actual flight time and average land-
ing/pickup times of an item(s). Third, the drones are
equipped with a proper device to land and pick items
as intended.

3.1 Strategic Planning (SP)

The purpose of this planning is to decide the minimum
number of drone centers based on the patient’s resi-
dence data. The plan should ensure that all selected
centers are able to reach all patients regardless demand
levels and the number of chronic diseases experienced.
All patients are placed at equal priority to receive ser-
vice regardless of their circumstances. Unlike other
services, healthcare services experience failure at a
higher cost which is why selected centers must be
mapped in a way where all patients are covered by
at least one center. Hence, the solution to this prob-
lem requires geographical locations of all participating
patients.

We propose to use the set-covering approach to
solve this problem [30]. The set-covering problem
determines the locations and optimal number of cen-
ters to cover all patients. The candidate sites for
centers are assumed to be the locations of currently
existing local medical institutes and some vacant lots
that are adjacent to roads in order to avoid infeasible
locations such as the middle of a lake or the top of a
mountain. The criterion for deciding center locations
is the maximum possible service distance (MPSD,
i.e. the maximum possible one-way flight time of
a drone) determined by the battery life of drones
[31, 32].
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The following notation is used in developing the SP
model.

Sets
I Set of patients (i ∈ I )
Rc Set of candidate locations of centers (r ∈Rc)
Ri Set of centers covering patient i, i.e.,

Ri ⊆ Rc

Parameters
cr Initial cost to open a center at location r

dir Distance between patient i and location r

MPSD Maximum Possible Service Distance deter-
mined by maximum flight time of drones

Decision Variable
xr 1 if location r is selected as a center, 0

otherwise

The goal of the SP model is to determine drone cen-
ter locations with the minimum initial investment cost.
Hence, our base model to accomplish this goal is given
below:

Minimize ZSP =
∑

r∈Rc

crxr (1)

Subject to:
∑

r∈Ri

xr ≥ 1, ∀i ∈ I (2)

xr ∈ {0, 1},

The objective function (1) is to minimize the initial
cost of setting up drone centers. Let Ri in Constraint
(2) be the set of centers covering a patient i (i.e., Ri =
{r|dir ≤ MPSD}). Constraint (2) ensures that each
patient is served by at least one center.

3.2 Operational Planning (OP)

The goal of OP is to find the optimal number of drones
and their routes for delivery and pickup orders. Once
the locations of each center are decided, the number
of drones per center can be determined by the number
of patients served. The number of patients assigned to
each center can be determined as a result of SP, but
does not guarantee the assignment of patients to be

optimal since some patients can be covered by more
than one center. Therefore, the flight routes of drones
are required by the OP to decide the number of drones
allocated to each center.

Determination of the optimal number of drones for
a given area is based on the worst case scenario (i.e.,
the largest estimated number of patients to be served at
one schedule time window). The specific hourly flight
routes for other cases are planned using OP model
within the optimal number of drones.

The goal is to minimize the number of drones while
covering all patients. We assume the cost for operating
and maintaining a drone remains the same regardless
of the flight distance (time) and loading amount which
includes delivery and pickup packages.

Each patient is served only once by a drone and
there is no priority in visiting patients. Each drone has
to return to base after completing an assigned task.
Some limitations of drones include flight time (range)
and loading amount. In developing a drone’s route,
one must check the possible loading amount at each
patient site. When finding the path, the net loading
amount (i.e., net loading amount = delivery amount -
pickup amount) is considered.

The following notation is used in developing the OP
model.

Sets
I Set of patients (i, j ∈ I )
R Set of selected centers from SP model (i.e.,

R ⊆ Rc)
K Set of drones (k ∈ K)

Parameters
pk Operating cost of drone k

Pi Pickup amount at patient i
Di Delivery amount to patient i
Tk Maximum flight time of drone k

M Sufficiently large number

Decision Variables
xijk 1 if drone k flies from patient i to j , 0 otherwise
hk 1 if drone k is utilized to serve, 0 otherwise
Lik Net loading amount on drone k when taking off

from patient i
μi The order of sequence of visiting patient i in a

path
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The mathematical model of OP is expressed below:

Minimize ZOP =
∑

k∈K

pkhk (3)

Subject to:
∑

i∈I∪R

∑

k∈K

xijk = 1, ∀j ∈ I (4)

∑

j∈I∪R

∑

k∈K

xijk = 1, ∀i ∈ I (5)

xiik = 0, ∀i ∈ I ∪ R, k ∈ K (6)∑

j∈I

xrjk −
∑

i∈I

xirk = 0, ∀r ∈ R, k ∈ K (7)

∑

r∈R

∑

j∈I

xrjk = hk, ∀k ∈ K (8)

∑

i∈I

∑

r∈R

xirk = hk, ∀k ∈ K (9)

∑

i∈I∪R

xiuk −
∑

j∈I∪R

xujk = 0, ∀u ∈ I, k ∈ K (10)

∑

i∈I∪R

∑

j∈I

xijkDj = Lrk, ∀r ∈ R, k ∈ K (11)

Lrk − Dj + Pj − M(1 − xrjk) ≤ Ljk, ∀r ∈ R, j ∈ I, k ∈ K (12)

Ljk ≤ Lrk − Dj + Pj + M(1 − xrjk), ∀r ∈ R, j ∈ I, k ∈ K (13)

Lik − Dj + Pj − M(1 − xijk) ≤ Ljk, ∀i, j ∈ I, k ∈ K (14)

Ljk ≤ Lik − Dj + Pj + M(1 − xijk), ∀i, j ∈ I, k ∈ K (15)

Lrk ≤ Ckhk, ∀r ∈ R, k ∈ K (16)

Lik ≤ Ckhk, ∀i ∈ I, k ∈ K (17)∑

i∈I∪R

∑

j∈I∪R

xijk dij ≤ Tk, ∀r ∈ R, k ∈ K (18)

μi − μj + m
∑

k

xijk ≤ m − 1, ∀i, j ∈ I (19)

xijk, hk ∈ {0, 1}, μi ≥ 0, m = |I |, R ⊆ Rc,

The objective function (3) is to minimize the sum
of operating cost of drones, which helps to mini-
mize the number of drones. Constraints (4) and (5)
ensure that each patient is served only once. Con-
straint (6) is set to prevent a drone from revisiting the
same patient or center and Constraint (7) guarantees
a drone will return to where it departed from. Con-
straints (8) and (9) describe the utilization condition

of the drones. Constraint (10) is used to conserve the
flow of drone flight at both patients as well as cen-
ters. The aforementioned specifications of a drone are
expressed in Constraints (11)–(18). The initial load
amount on drone k at center r (Lrk) is determined
by the demands of patients who are visited by drone
k (Constraint (11)). Checking the net loading amount
at each patient’s site before taking off is a necessary
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condition reflecting the drone’s property. Constraints
(12) and (13) are set for visiting the first patient j

from a center to describe the varying load due to dif-
ferent delivery (Dj ) and pickup (Pj ) amounts (i.e.,
net loading amount) and Constraints (14) and (15)
are set for serving the next patients. Constraints (16)
and (17) limit the loading amount on a drone to pre-
vent overloading. The maximum possible flight time
is also represented in Constraint (18). The Miller-
Tucker-Zemlin formulation [33] is used in Constraint
(19) to eliminate sub-tours.

Furthermore, the SP model ensures that each
selected center has at least one patient to serve. This
logical constraint is expressed below:

∑

j∈I

∑

k∈K

xrjk ≥ 1, ∀r ∈ R (20)

where for each selected center (r), at least one drone
is assigned to serve patients. Constraint (20) is added
in this OP model.

4 Solution Approach

The OP model is similar to the Multi-Depot Vehicle
Routing Problem (MDVRP) that requires a consid-
erable effort to obtain a good solution. This section
presents a preprocessing algorithm (Section 4.1) to
reduce the search space first and bounds generation
methods (Section 4.2) to help improve convergence of
the solution algorithm to find a solution.

4.1 A Preprocessing Algorithm

Drones have a limited loading capacity and flying
time. These restrictions motivated us to develop a
preprocessing algorithm to eliminate easily identifi-
able and infeasible situations from the search space.
As a result, computational performance of the mod-
els can be improved due to a reduced search space.
To eliminate redundant and infeasible paths, two fac-
tors are considered to further reduce the search space:
(1) flight distance between consecutive flight loca-
tions, i.e., between a depot and a patient or between
two patients in case of stopping at multiple locations,
and (2) loading amounts at a depot and/or destina-
tions. Considering a real flight environment, winds
and obstacles can influence the actual flight time.

Hence, we consider two cases for estimating flight dis-
tance: symmetric and asymmetric. In the symmetric
distance case, flight times between two adjacent loca-
tions are considered the same (i.e., dij = dji), while it
is treated unequal (dij �= dji) in the asymmetric case.

Algorithm 1 A preprocessing algorithm to generate
paths with symmetric flight distances

Inputs:
A set of patients I , (i, j ∈ I ), and a set of centers
R, (r ∈ R).
Flight distance information between two
locations (i.e., dir and dij ).
Delivery and pickup amounts at each patient
location (i.e., Di and Pi).
Drone (k) information: maximum loading
capacity (Ck) and flight distance (Tk).

Step 1 - Search space reduction:
for all (patient i, j ∈ I and center r ∈ R)
if distance dir >

Tk

2
Eliminate arc (xirk) from the path generation
(i.e., xirk = 0)

end if
if distance dij >

Tk

2
Eliminate arc (xijk) from the path generation
(i.e., xijk = 0)

end if
end for
Step 2 - Calculate the maximum number of
patients in a path:
Calculate the maximum number of patients
(MNPk) to be served on a path using Di , Pi ,
and Ck:

MNPk =
⌊

Ck

max[mini (Di),mini (Pi )]
⌋

, ∀k ∈ K

Symmetric Flight Distance Assumption Algorithm 1
is developed under the symmetric flight time assump-
tion, and it has two main steps. Step 1 follows two
separate screening processes to identify and eliminate
flight leg assignments that are not possible considering
the maximum flight distance (Tk). The first screening
process is associated with flights between a center and
a patient only. In this case, flight leg (i, r) is elim-
inated from the search space (xirk = 0) if distance
from center r to patient i is greater than a half of
the maximum flight distance, i.e., dir >

Tk

2 . The sec-
ond elimination process is for flights involving more
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than one patient in one path. Hence, leg (i, j) will be
eliminated from the search space (xijk = 0) if dis-
tance from patient i to patient j is greater than a half
of the maximum flight distance, i.e., dij >

Tk

2 . This
logic can be easily proved by the triangular inequality:
dri+djr ≥ dij >

Tk

2 [34].
Step 2 calculates the maximum number of patients

that a path can take in one complete flight path. Given
Di, Pi , and Ck , the maximum number of patients
(MNPk) in a path is defined as

MNPk =
⌊

Ck

max{mini (Di),mini (Pi)}
⌋
, ∀k∈K.

(21)

For example, the loading capacity of drone k is
assumed to be 100 (=Ck), the minimum delivery
amount among all patients is 10 (=mini (Di)), and
the minimum pickup amount among all patients is 20
(= mini (Pi)). Then, the drone can visit at most five
patients on a path.

Algorithm 2 A preprocessing algorithm to generate
paths with asymmetric flight distances

Inputs:
A set of patients I , (i, j ∈ I ), and a set of centers
R, (r ∈ R).
Flight distance information between two
locations (i.e., dir and dij ).
Delivery and pickup amounts at each patient
location (i.e., Di and Pi).
Drone (k) information: maximum loading
capacity (Ck) and flight distance (Tk).

Step 1 - Search space reduction:
for all (patient i ∈ I and center r ∈ R)
if distance (dri + dir ) > Tk

No more than one arc between arc (r, i) and arc
(i, r) can be selected on a path (i.e., xrik + xirk

≤ 1)
end if

end for
Step 2 - Calculate the maximum number of
patients in a path:

Calculate the maximum number of patients
(MNPk) to be served on a path using Di , Pi , and
Ck:

MNPk =
⌊

Ck

max[mini (Di),mini (Pi )]
⌋

, ∀k ∈ K

Asymmetric Flight Distance Assumption Algorithm 2
is for the case of asymmetric flight distance, in which
flight times between two locations are assumed to be
different depending on the flight direction. The differ-
ence betwen Algorithm 2 and Algorithm 1 is in Step 1.
Because dri �= dir , if the total distance of a round trip
flight time exceeds Tk (i.e., (dri + dir ) > Tk), then
it is impossible for drone k to return back to center r

using leg (i, r). Hence, the two legs cannot be selected
in one path at the same time (i.e., xrik + xirk ≤ 1).

4.2 Tighter Bounds on the Objective Function

The proposed OP model is the MDVRP, which is
known to be NP–hard in general [35]. Hence, we
propose bound generation methods to help reduce
computational time to solve the problem that is specif-
ically designed for this application. We claim that an
optimal solution is found when the gap between an
upper bound and a lower bound on the objective func-
tion falls below a prespecified threshold value ε > 0.
In Section 4.2.1, a Partition method is introduced to
find an upper bound and Section 4.2.2 proposes a
method to find a lower bound.

4.2.1 Upper Bound Generation

The OP problem formulation is a minimization prob-
lem. Hence, any feasible solution can be used to
generate an upper bound of the minimization problem.
Although it may not be easy to find a feasible solution
for some IP problems [36], we have developed a Parti-
tion method to efficiently generate a feasible solution
to the OP model.

Partition Method 1
Step 1
Find an optimal solution (number and loca-

tions, R) of drone centers using the SP model
(Section 3.1).
Step 2
Partition all patients in the planning area (A) into
|R| sub-areas:A1, A2, . . . , An, if |R|=n (i.e.,A =
n⋃

i=1
An).

Step 3
Solve the OP model for each sub-area

(Section 3.2).
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The Partition method is comprised of three steps.
First, an optimal solution is found by solving the SP
model. The solution details the number of drone cen-
ters (R) and their locations. Second, based on the
solution found in Step 1, partition all patients into R

sub-regions. Finally, the OP model is solved for each
of the sub-areas and a feasible solution is found that
gives an upper bound on an optimal value of ZOP .

Proposition 1 Let Z∗
OP−A denote an optimal value

of ZOP for the planning area (A) and Z∗
OP−An

be an

optimal value of ZOP for the nth sub-area (An), then
the following inequality holds true:

Z∗
OP−A ≤

∑

n

Z∗
OP−An

(22)

Proof To prove the above, we consider two cases: 1)
there is no patient that is covered by two or more cen-
ters (i.e., each patient is covered by only one center)
and 2) there are patients who are covered by two cen-
ters or more (i.e., at least one patient is covered by two
centers or more).

In Case 1, all sub-areas are distinctly divided
without an overlap where each sub-area problem is
the same as a single-depot vehicle routing prob-
lem. Hence the sum of the optimal values of all
sub-areas (

∑
n Z∗

OP−An
) is the same as the optimal

value (Z∗
OP−A) of the planning area (i.e., Z∗

OP−A =∑
n Z∗

OP−An
).

In Case 2, the sum of the optimal values of all
sub-areas (

∑
n Z∗

OP−An
) is one of the feasible val-

ues because all patients are served by a drone from
a center. But, there is no guarantee that this feasible
value (

∑
n Z∗

OP−An
) is the optimal value of the plan-

ning area (Z∗
OP−A). As a result, this feasible value

provides an upper bound of Z∗
OP−A (i.e., Z∗

OP−A ≤∑
n Z∗

OP−An
).

4.2.2 Lower Bound Generation

A Lagrangian Relaxation (LR) approach is used to
generate a lower bound on ZOP . We pose two ques-
tions when applying LR: (1) which constraints to
relax? and (2) how to find the Lagrangian multi-
pliers? Typically, the sub-tour elimination constraint
(Constraint (19)) is the complicating constraint in

vehicle routing problems [37]. Hence, the objective
function of the OP model can be rewritten by moving
the constraint to the objective function as below:

L(φ) = min
∑

k∈K

pkhk +
∑

i∈I

∑

j∈I

φij [μi − μj

+ m
∑

k

xijk − (m − 1)], (23)

where, φij ∈ R is the Lagrangian multiplier, φij ≥
0, ∀i, j ∈ I [38]. The reformulated objective function
is solved with the remaining constraints (4)–(18) to
find the Lagrangian multipliers and the corresponding
lower bound using the subgradient algorithm outlined
in Algorithm below.

Subgradient Algorithm (φ)

Initialization
Initial values of UBD (Section 4.2.1), θ , and φ;

Repeat
Set φprev = φ;
Solve the Lagrangian dual problem (23) with
constraints (4)–(18) to obtain a lower bound
(LBD).
Calculate Gij , a gradient of L(φ)

Calculate step size Sij = θ × (UBD−LBD)

||Gij ||2
Update Lagrangian multiplier: φij = φnew

ij =
max(0, φprev

ij + SijGij ),∀i, j ∈ I

Until satisfying the convergence condition
(‖φnew − φprev‖1 < ε)

Output: φ∗ and L(φ∗)

5 Cost-Benefit Analysis Methodology

The costs associated with the drone center and its
operation are mostly the responsibility of providers.
The beneficiaries of the proposed healthcare deliv-
ery system are the patients and the providers, but it
is not easy to quantify the benefits for the providers.
To address this concern, the cost-effectiveness anal-
ysis (CEA) is widely used to compare the relative
costs and the effects of two or more interventions
in healthcare [39] in which the quality-adjusted life-
year (QALY ) is used to evaluate the effectiveness in
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healthcare instead of through monetary values. How-
ever, it is not easy to evaluate QALY from patients
with chronic diseases [40]. Hence, the cost-benefit
analysis method (B/C ratio) is used to analyze the
varying parameters to represent other interventions.
Therefore, this section focuses on the costs health-
care providers incur and the benefits to patients (i.e.,
driving cost and copayment).

The Life Cycle Costs of each drone center is shown
in Table 1. Initial investment costs for centers (cr ) and
drones (ck) are required at the beginning of this inter-
vention. The operation and maintenance (OM) cost is
incurred as a proportion (α) to the initial investment
cost every year. In addition to the labor cost (clabor ),

other costs (β) associated with labor such as recruit-
ment, retainment, training, and insurance, are listed in
Table 1. After the expected life years of centers (N1)
and drones (N2), the increase (γ ) in the re-acquisition
cost of drones is reflected whereas no increase is
reflected in the cost of centers.

As shown in Table 1, the cost evaluation periods
are different and the life cycles of centers and drones
are not the same. Usually, the life span of a centers
(N1) is longer than the life span of the drones (N2).
To facilitate the analysis, the analysis period assumes
the duration of expected life of centers (N1) to be the
same for drones. The following factors are expressed
in terms of annual cost as shown below:

Acquisition Cost (cr + ck) × (A/P, i%, N1) = (cr + ck) × i(1 + i)N1

(1 + i)N1 − 1
(24)

Operation & Maintenance Cost α(cr + ck) (25)

Labor Cost (1 + β)clabor (26)

Drone re-acquisition Cost γ ck × (A/F, i%, N2) = γ ck × i

(1 + i)N2 − 1
(27)

Annual interest rate is assumed at i%, and no inflation
or deflation is assumed for the life cycle of the centers.
Equation 24 expresses the annual amount of the ini-
tial investment on centers and drones using the capital
recovery concept [41], which is the annual equivalent
of the initial investment cost (cr and ck). Equation 25
is the OM cost of all centers and drones and Eq. 26 is
the labor cost which includes indirect labor cost, too.
The re-acquisition cost of drones will incur every N2

years during the analysis period of N1 years, in which
the future repurchase expenses can be divided into
annual expenses (27). These costs incur every year
during the N1 period.

Additional benefits for patients come from the
receipt of care from drone centers: reduction of driv-
ing cost (b1) and copayment (b2). The amount of
B1 corresponds to the driving cost incurred whenever
patients drive to visit clinics or a pharmacy. The driv-
ing cost is calculated by multiplying the average driv-
ing distance of patients living in rural areas by driving
cost/mile. The amount of b2 is also the same as the
amount of copayment for every visit. These reductions
are made through the drones’ delivery and pickup
instead of a patient visiting medical facilities or phar-
macy themselves. Using b1 and b2, the benefits are
described as below:

Reduction of Driving Cost Nmb1 × (F/A, ie%, D) = Nmb1 × (1 + ie)
D − 1

ie
(28)

Reduction of Copayment Nmb2 × (F/A, ie%, D) = Nmb2 × (1 + ie)
D − 1

ie
, (29)



J Intell Robot Syst

where N is the number of service schedules per
day and m is the average number of patients in
each service schedule. And ie indicates the effec-
tive interest rate reflecting the compounding period
of interest rates and one year is assumed to have
D days. Equations 28 and 29 describe the annual

saving amounts of driving cost and copayment,
respectively. From an economic perspective, the B/C

ratio should be at least 1 to determine the support
and feasibility of implementing the proposed frame-
work. The value of B/C is calculated using Eq. 30
below:

< B/C > = Benefits

Costs
= Reduction of Costs

Incurred Costs

= Reduction of Driving Cost + Reduction of Copayment

Capital Recovery + Operation & Maintenance + Drone re-acquisition + Labor

= Nm(b1 + b2) × (1+ie)
D−1

ie

(cr + ck) × i(1+i)N1

(1+i)N1−1
+ α(cr + ck) + γ ck × i

(1+i)N2−1
+ (1 + β)clabor

(30)

6 Numerical Experiments

This section is divided into three parts. The first part
tests the proposed models on a sample network. The
two models and the algorithms are implemented in
GAMS [42]. In the second part, a cost-benefit anal-
ysis is presented as a criterion for decision makers
to analyze their investments on aerial delivery and
pickup service by drones. In the last part, computa-
tional performance of the OP model is discussed to
show the benefits of using the proposed bounds dis-
cussed in Section (4.2). All experiments are made on
a server running RedHat Linux 64-bit with an Intel
Xeon processor and 16GB RAM.

6.1 A Numerical Example

Figure 4 is a numerical example used to illustrate the
models proposed in Section 3. A real-world example

Table 1 Life cycle costs of drones and centers

Cost Description Remark

Acquisition Centers cr Initial Investment
Drones ck Initial Investment

Operation/ α(cr + ck) Yearly
Maintenance

Labor Direct clabor Yearly
Others βclabor Yearly

Re-acquisition Centers rr Expected Life: N1 yrs
Drones γ ck Expected Life: N2 yrs

is obtained based onMilam and Robertson Counties in
Texas, US. There are 9 candidate sites (from C1 to C9)
for centers and 40 patients (from 1 to 40) to be served
by drones in the same service schedule. The candidate
sites for centers are a subset of existing local medical
institutes. Actual patient locations can be slightly dif-
ferent due to patient information confidentiality. The
cost of establishing a drone center is assumed to be
same for all candidate sites. Two types of drones are
utilized: Type I can fly up to 32miles (=32minutes),
load up to 10 lbs and requires $32 to operate per drone
per flight whereas Type II has inferior specifications of
25 miles (=25 minutes), 8 lbs and $25, respectively.

The SP model is applied to find the optimal num-
ber of centers and their locations. The result is shown
in Fig. 5, in which three sites (i.e., C1, C5 and C6)
are eliminated from the candidate pool for centers.
The eliminated centers are redundant and have service
area that overlap with C2 and C7. The travel distance
between the eliminated centers and patients who sur-
round those centers is greater than C2 and C7. Hence,
6 out of 9 candidates are selected as the centers for
serving patients.

To identify the optimal number of drones per
selected center, the OP model is solved and the results
are shown in Table 2. All 40 patients are assigned
to 6 centers considering their locations and requested
amounts. In order to satisfy all demands from the
patients, the OP model determined that 19 drones are
needed. The resulting drone operation cost is $573
(= 96 + 50 + 64 + 114 + 128 + 121).
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Fig. 4 Area under consideration; Milam and Robertson Counties, Texas, US

The specific routes of 19 drones for visiting 40
patients are shown in Fig. 6 (solid arrows: Type
Idrones, dashed arrows: Type II drones). Some of
the drones serve only one patient and other drones
serve up to three patients on one flight. The num-
ber of patients being served in a path varies with the
drone’s specifications (i.e., loading amount and flying

distance) and patient data (i.e., distances and level of
demand). The patients who are covered by more than
one center are assigned to only one center considering
the neighboring patients and the distance between the
centers and patient. Figure 7 shows the covered range
(i.e., dotted circle) of each center. For example, patient
6 is covered by three centers, C2, C4 and C7. Patient

Fig. 5 The selected drone centers from the SP model
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Table 2 The optimal
number of drones
in each center

Center Assigned Patients Number of Drones Cost($)

Total 40 patients 19 (Type I : 14, Type II : 5) 573

C2 p1, p2, p3, p4, p5, p6, p8, p9 3 (Type I : 3) 96

C3 p12, p16, p17 2 (Type II : 2) 50

C4 p13, p14, p15, p18, p19 2 (Type I : 2) 64

C7 p7, p10, p11, p23, p24, p25 4 (Type I : 2, Type II : 2) 114

C8 p20, p21, p22, p29, p30, p31, p32, p33, p34 4 (Type I: 4) 128

C9 p26, p27, p28, p35, p36, p37, p38, p39, p40 4 (Type I :3, Type II : 1) 121

6 is closer to C4 than to C2 and C7. But, patient 6 is
assigned to C2 because serving patient 5 and patient 6
together on the same path from C2 is the optimal route
to minimize total cost (the number of drones).

6.2 Cost-Benefit Analysis

As shown in Table 3, various scenarios of parameters
are presented with associated B/C ratios.

In order to measure the value of savings on driv-
ing cost (B1), $ 0.58/mile is used as the driving
cost/mile based on the American Automobile Asso-
ciation’s Driving Cost [43]. To get the support and
feasibility of implementing the proposed framework

(B/C ratio ≥ 1), the B/C ratio shows that at least
40 patients (m ≥ 40) are sustained at every service
schedule (from the 2nd to 4th rows in Table 3). If the
number of patients in eight service schedules (N) is
less than 40 patients (i.e., m < 40), the longer aver-
age service distance is needed to get the value of B/C

ratio of more than 1 (from the 5th to 7th rows in
Table 3). We consider that one service schedule is left
as a buffer against drone defects and unplanned deliv-
ery or pickup services and additional drones are also
prepared in case as well (from the 8th to 10th rows
in Table 3). Hence, the B/C ratio indicates that the
longer average service distance is also required to get
the support of implementing this scenario.

Fig. 6 The assignment of drones to patients: solid arrows for Type I drones and dashed arrows for Type II drones
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Fig. 7 Covered areas by 6 centers

6.3 Computational Performance

This section presents the computational performance
of the bounds generation methods (i.e., Partition
method and LR algorithm) proposed in Section 4.2.
For the subgradient algorithm, the value of θ is
in the range of 1 to 4 (i.e., θ ∈ [1, 4]) and the
stopping criteria (convergence) is less than 1% (i.e.,
ε = 0.01). The two OP models (with and without
the bound generation methods) are executed with a

stopping criterion of 5% gap which is calculated as
100 × UpperBound−LowerBound

UpperBound
.

Figure 8 shows the progression of convergence
of the model as a function of time. The result is
based on a test case with 2 centers and 12 patients.
Dashed lines represent the OP model without the
bound generation methods, while solid lines are asso-
ciated with having the bound generation methods in
the model. Both cases (with and without the bound
generation methods) showed a quick convergence

Table 3 B/C ratio with varying conditions

ck($M) b1($) N m Benefit($M) Cost($M) B/C Remark

0.18 18 8 40 3.704 3.672 1.0089

39 3.612 3.672 0.9837 Number of Patients

38 3.519 3.672 0.9585

0.18 19 8 38 3.592 3.672 0.9784

20 3.666 3.672 0.9984 Avg. Distance

21 3.739 3.672 1.0184

0.24 22 7 40 3.511 3.711 0.9463 Avg. Distance with

24 3.646 3.711 0.9827 additional drones and

25 3.714 3.711 1.0009 reduced service schedules

cr (Center) = $12 M, clabor = $1.536 M, b2(Copay) = $30, N1 = 20 yrs, N2 = 2 yrs, α = β = 0.1, γ = 1, and i% = 0.01
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Fig. 8 Objective value vs. CPU time on a test case

of the upper bounds within 30 seconds. But, a big
difference was observed on the convergence of the
lower bound between these two approaches. The OP
model displayed a substantial speed gain when the
bounds were provided as compared to the slower con-
vergence without the bounds. Overall, the OP model
satisfied the stopping criterion in 63 seconds (4.8%
gap) when the bound generation methods were used,
but it took almost four times longer without the bounds
(5% gap). As a result, the OP model found the solu-
tion about 5 times faster when the bound generation
methods were used on this particular example.

7 Conclusion

In this paper, a new approach for healthcare delivery
service was introduced to alleviate healthcare dispari-
ties in rural areas using an aerial delivery and pickup
method. This new model was used for reducing the
out-of-pocket expenses of patients with chronic dis-
eases, thus enhancing the healthcare environments of
rural areas, improving the quality of healthcare ser-
vice, and reducing the burden of limited caregivers. To
achieve these purposes, two planning methods were
presented: first, the SP determined the location and
number of centers that covered all patients and also
eliminating redundant and infeasible candidate sites.
Second, the OP found the optimal number of drones

in each center, considering all schedules in a given
area. The cost-benefit analysis method was introduced
as a decision-making criterion for stakeholders. It was
implemented using different cost and benefit values as
the criteria for deciding this project. Finally, the com-
putational analysis was conducted to compare the per-
formance of the problem using the Partition method
and LR algorithm which produced better performance
than the model without these components.

An extension of this work may include variable
flight times that are associated with a different battery
consumption rate according to the loaded amounts and
travel distances. Priority can be assigned to the model
in delivery routing and scheduling.
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