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An Optimization Approach to Minimize the
Expected Loss of Demand Considering Drone

Failures in Drone Delivery Scheduling
Maryam Torabbeigi1, Gino J. Lim2, Navid Ahmadian3, Seon Jin Kim4

Abstract—This study proposes a drone-based delivery schedul-
ing method considering drone failures to minimize the expected
loss of demand (ELOD). An optimization model (DDS-F) is
developed to determine the assignment of each drone to a subset
of customers and the corresponding delivery sequence. Because
solving the optimization model is computationally challenging,
a Simulated Annealing (SA) heuristic algorithm is developed to
reduce the computational time. The proposed SA features a fast
initial solution generation based on the Petal algorithm, a binary
integer programming model for path selection, and a local neigh-
borhood search algorithm to find better solutions. Numerical
results showed that the proposed approach outperformed the
well-known Makespan problem in reducing the ELOD by 23.6%
on a test case. Several case studies are conducted to illustrate
the impact of the failure distribution function on the optimal
flight schedules. Furthermore, the proposed approach was able to
obtain the exact solutions for the test cases studied in this paper.
Numerical results also showed the efficiency of the proposed
algorithm in reducing the computational time by 44.35%, on
average, compared with the exact algorithm.

Index Terms—Drone, Unmanned Aerial Vehicle, Failure, Ex-
pected Loss Of Demand, Simulated Annealing

I. INTRODUCTION

Drones are able to perform tasks that were traditionally
operated by manned systems. These drone applications include
various civilian fields, such as security enhancement [1],
damage assessment [2, 3], health-care services [4, 5], border
patrol operations [6, 7], and communication relay [8]. Among
different applications, the delivery of lightweight parcels is
one of the most rapidly growing civilian applications observed
in recent years [9]. Unlike ground transportation vehicles,
drones can operate regardless of the existence or accessibility
of roads. The use of drones can protect humans from exposure
to dangerous areas. Drone-based delivery will be a faster
alternative to ground transportation and it can be more cost-
effective as well [10–12]. Therefore, parcel delivery by drones
is gaining more attention among courier companies, such as
Amazon, DHL, and UPS [13–15].

As the research community has focused on path planning
and logistics using drones, the reliability of drone-based
delivery has not received its well-deserved attention [16].
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Drone failures are inevitable, and they occur mainly due to
mechanical issues, environmental conditions, cyber-physical
attack, collision, or human errors [17, 18]. The mishap rate
of unmanned vehicles is much higher than manned vehicles
[16, 19], and this prevents them from being operated widely
in civilian applications. A drone malfunction can result in
mission interruptions and loss of packages, as well as the
drone itself, which will lead to customer dissatisfaction [20].
Unreliable drones should not be operated in congested areas.
Because of the overall weight and substantial power, civilian
injury could occur if they were to fall from the sky [21]. They
pose a great risk for people on the ground, and therefore,
safety and reliability in drone delivery must be placed at high
priority.

The current research on drone failures has revolved around
component-based fault diagnosis studies and entire drone
health evaluation studies [22]. The safety evaluation and
safety enhancement for particular components of drones are
extensively studied. The desired flight path is compared with
the actual flight path in the existence of a fault in drone
components. The residuals obtained from the mathematical
model are usually used as an evaluation metric to detect a fault.
The fault detection is studied on different drone components,
such as the sensor [23, 24], actuator [25–27], accelerometers
and inclinometers [28], communication system [29] and bat-
tery [30]. However, these studies not only focus solely on
drone health evaluation, but use a uniform health indicator for
determining faults in all drone components [22, 31].

Studies have typically focused on one drone to capture faults
and failures [22–31]. However, the impact of drone failures
in the delivery network has not been well investigated. To
fill this gap in the literature, this paper focuses on delivery
networks operated by a fleet of drones. The primary goal
is to develop a reliable delivery schedule considering drone
failures to minimize failed package delivery to customers. In
a delivery network, the reliability is observed at the network
level as opposed to a component level, i.e., a drone. The
drone failure probability can be estimated based on existing
approaches for evaluating drone health, such as component-
based fault diagnosis studies or entire drone health evaluation
studies. Unlike typical drone routing problems, the decision to
assign each drone to a subset of customers affects the delivery
network reliability introduced in this paper. For example, one
may wish to assign a more reliable drone to customers with
high or sensitive demands. Other factors affecting the delivery
network reliability include the delivery sequence, the amount
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of customers’ demand, and the total travel distance [20].
In ground transportation network problems, such as the

Vehicle Routing Problem (VRP) [32, 33], two common defini-
tions of network reliability are [34] (1) connectivity reliability:
the probability of at least one path existing between a pair of
locations without disruption or heavy congestion [35], and (2)
travel time reliability: the probability of traveling between a
pair of locations within a specified time period [36–38].

Road connectivity reliability considers unexpected events,
such as traffic congestion or bad weather, that makes roads
inaccessible. According to the Federal Aviation Administration
(FAA) regulations, drones should not fly above 400 feet [39].
Currently, the possibility of air traffic within 400 feet from the
ground is negligible. Therefore, the road connectivity reliabil-
ity definition may not be applied to the drone network. The
travel time reliability in VRP is usually shown by including
time window constraints and uncertainty in travel time. This
can be applicable to the drone delivery network but does not
reflect the impact of drone failures.

This study explores a new concept based on reliability
calculation [40] to evaluate the reliability of a drone delivery
network. A mathematical model is developed to determine
more reliable paths for drone-based delivery networks. Al-
though Sawadsitang et al. [16] considered failure probabilities
for drone take-off and flight, their work was limited to a drone
making one round trip between the depot and the customer.
Another work by Torabbeigi et al. [20] adopted the idea of
drone delivery network reliability. However, the drawback of
their approach was that the drone delivery reliability was
calculated after the routing was determined. Motivated by
the drawbacks mentioned above, this paper introduces an
optimization approach selecting reliable routes for drones to
carry multiple packages on each trip. As such, the sequence of
visiting customers and the assignment of drones to customers
becomes an important factor. Contributions of this paper are
as follows:

1) To propose a new method to schedule flight paths for
a group of drones considering the probability of drone
failure.

2) To develop a mathematical model to obtain the optimal
assignment of customers to drones and the flight sequence
of each drone to maximize the reliability of drone-based
delivery.

3) To propose a computationally efficient simulated anneal-
ing (SA) method coupled with the Sweep [41] and Petal
algorithm [42].

The rest of this paper is organized as follows. Section II
explains the method to calculate the expected loss of demand
(ELOD). Section III formally describes the problem, followed
by the optimization model formulation. Section IV presents
the proposed heuristic algorithm. In Section V, several case
studies and an analysis of the results are discussed. Finally,
Section VI concludes the paper with a potential extension of
this work.

II. EXPECTED LOSS OF DEMAND (ELOD) CALCULATION

In this paper, a drone is allowed to visit multiple customers
to unload packages along the flight path. Therefore, each

flight path consists of several segments (the flight between
two consecutive stops). If a drone fails during transportation,
the remaining customers along the flight path will not receive
what was ordered. The amount of lost demand depends on
the location of the failure and the amount of payload that
the drone carries. The amount of lost demand will be more
considerable if the drone fails closer to the depot as opposed
to if it fails near the final flight segments. No demand will
be lost if the drone fails in the final flight segment returning
back to the depot after completing deliveries to all assigned
customers. Therefore, the expected loss of demand is defined
as the multiplication of the carried payload and its associated
failure probability over all the flight segments in a flight path.

A. General ELOD Calculation

We begin this section by explaining how to calculate the
ELOD for the flight path of one drone. This concept will be
used in the mathematical model formulation in Section III to
find the optimal routing strategy of drones to minimize the
network ELOD. Suppose a drone leaving the depot is to visit
n customers in sequence and return back to the depot. In the
network setting, this flight path consists of n+ 1 nodes and a
sequence of n+1 flight segments. The first flight segment is the
flight from the depot to the first customer, and the last flight
segment n + 1 is for the drone to return back to the depot
after visiting the last customer. All flights connecting two
customers can be defined as flight segment i ∈ {2, 3, .., n}.
The corresponding failure probability of flight segment i is
denoted as pi−1,i = P (0 < t < ti−1,i), where variable t is
the time of failure and ti−1,i is the flight time between location
i− 1 and i.

Considering a sequence of flight segments in a path, a failure
could happen in a flight segment if it did not occur in all
of the previous flight segments. To capture this, parameter
fi is defined as the probability of no failure in the previous
flight segments up to flight segment i, and zi is defined as the
probability of a failure in flight segment i. For flight segment
i, values of fi and zi depend on all of the previous flight
segments, and they are calculated as:

fi = fi−1 · qi−1,i, i ∈ {1, 2, ..., n+ 1} (1)
zi = fi−1 · pi−1,i, i ∈ {1, 2, ..., n+ 1}, (2)

where qi−1,i = 1− pi−1,i, f0 = 1, and z0 = 0.
The payload amount of a drone in a flight segment is the

demand of remaining customers along the flight path. Param-
eter dj is to show customer j’s demand, and Di represents
the payload amount in flight segment i. Therefore, Di is the
summation of demand from customer i through customer n as
in (3).

Di =

n∑
j=i

dj . i ∈ {1, 2, ..., n}, (Dn+1 = 0) (3)

Both zi, i ∈ {1, 2, ..., n+1} and fn+1 form a probability mass
function (see Appendix A), and they are used to calculate the
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ELOD as defined below:

ELOD =

n+1∑
i=1

zi Di =

n∑
i=1

zi Di + zn+1 · 0 =

n∑
i=1

zi Di

(4)

In Formula (4), variable zi depends on the flight segments
prior to segment i, while Di depends on the flight segments
after segment i. An equivalent form of ELOD is provided
by Equation (6), which only requires the information of the
previous flight segments up to the current segment. Equation
(6) is based on the customers’ demand, and it does not depend
on the carried payload within the flight segments.
j∑
i=1

zi =

j∑
i=1

fi−1 pi−1,i =

j∑
i=1

fi−1 (1− qi−1,i) =

j∑
i=1

fi−1

−
j∑
i=1

fi−1 qi−1,i =

j∑
i=1

fi−1 −
j∑
i=1

fi = f0 − fj

→
j∑
i=1

zi = 1− fj (5)

ELOD =

n∑
i=1

zi Di =

n∑
i=1

zi(

n∑
j=i

dj) =

n∑
i=1

n∑
j=i

zi dj =

=

n∑
j=1

dj(

j∑
i=1

zi) =

n∑
j=1

dj (1− fj) (6)

B. An Illustration of ELOD Calculation

We illustrate the procedure of ELOD calculation using a
small example in Figure 1, which consists of one depot and
two customers being served by one drone. The amount of
carried payload and the probability of failure in each flight
segment are shown above and below the arcs, respectively.

Figure. 1: An example flight path consisting of one depot, two
customers, and one drone

Let us examine each flight segment for path "Depot→ i→
j → Depot" in Figure 1 to calculate the failure probability
and ELOD associated with each of the three segments. The
final results are summarized in Table I.

1) Flight Segment 1: The drone departing from the depot
carries the total demand for customers i and j. Hence, the
demand of both customers will be lost if the drone fails in
this flight segment. The probability of failure is p0i = P (0 <
t < t0i), where index 0 is the depot.

2) Flight Segment 2: The drone continues the delivery for
the next customer j after successfully completing the task for
customer i. Hence, the probability of failure for this segment
is the multiplication of (1) probability of no failure in the

TABLE I: A summary of ELOD calculations for Figure 1

Segment f D Segment ELOD
depot→ i p0i di + dj p0i (di + dj)
i → j q0i pij dj q0i pij (dj)
j→ depot q0i qij pj0 0 q0i qij pj0· 0

previous flight segment (q0i = 1− p0i) and (2) probability of
failure in the current segment (pij = P (0 < t < tij)).

3) Flight Segment 3: The delivery mission is completed
without a failure for both customers, and the drone returns
back to the depot. The corresponding probability of failure in
this segment is pj0 = P (0 < t < tj0).

Therefore, the network ELOD for this single path problem
is calculated as:

Network ELOD

= ELODDepot→i + ELODi→j + ELODj→Depot

= p0i · (di + dj) + q0i pij dj + q0i qij pj0 · 0
= p0i (di + dj) + q0i pij dj (7)

III. PROBLEM DESCRIPTION AND FORMULATION

This work considers one depot, multiple customers, and a
group of drones to deliver packages. Each customer has a
certain demand and is served by exactly one drone. Our aim
is to find the optimal drone flight schedule for a delivery
network to minimize the network ELOD for a given drone
failure probability distribution. A drone starts its flight path
from the depot, visits the assigned customers in sequence, and
returns to the depot. The maximum operation time of drone
is the maximum flight time of a drone with one full charge of
battery. The flight time and the total amount of payload depend
on the type of drones. A mixed integer linear programming
(MILP) model for drone flight schedules is presented in this
section. The following notation is used to develop the drone
delivery schedule model with drone failures (DDS-F model):

Sets
L set of drones (l ∈ L)
N set of nodes, node 0 is the depot (i, j ∈ N, c ∈ N −

{0})
Parameters
αijl probability of no failure in flight segment (i, j) by

drone l
dc customer c demand
M sufficiently large number
n number of customers
otl maximum operation time of drone l
tijl travel time from node i to node j by drone l
wl maximum weight capacity of drone l
Variables
fc probability of no failure arriving at customer c
xijl 1 if drone l goes directly from node i to node j, 0

otherwise
yc the order of visiting customer c in the path
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The DDS-F model is similar to VRP models with the
addition of constraints regarding the limitations of flight time
and carried payload. For flight segment (i, j), the probability
of a drone arriving at customer j without a prior failure can
be calculated as:

If xijl = 1, then fj = fi · Pl(t > tij), ∀i, j ∈ N, l ∈ L,
(8)

where f0 = 1. This “if-then" statement is formulated as a
constraint stated in Inequality (9) by adding parameter “M”,
which is a large number.

αijlfi −M · (1− xijl) ≤ fj ≤ αijlfi +M · (1− xijl),
∀i, j ∈ N, l ∈ L

(9)

where αijl = Pl(t > tij). When variable xijl is equal to 1,
Inequality (9) is of the form αijl fi ≤ fj ≤ αijl fi, which
means fj = αijl fi. When variable xijl is equal to 0, variable
fj can be any value between −M and M . As the variable fj
represents the probability of no failure, it only receives a value
between [0, 1]. Hence, parameter M can be set to 1 without
loss of generality. Inequality (9) is used as Constraints (19) and
(20) in the DDS-F model. The resulting MILP formulation for
the DDS-F model is provided as follows:

Min
∑

c∈N−{0}

(1− fc) dc (10)

∑
i∈N\{c}

∑
l∈L

xcil = 1, ∀c ∈ N \ {0} (11)

∑
i∈N\{c}

∑
l∈L

xicl = 1, ∀c ∈ N \ {0} (12)

∑
i∈N\{c}

xicl =
∑

j∈N\{c}

xcjl, ∀c ∈ N \ {0}, l ∈ L (13)

∑
c∈N\{0}

x0cl = 1, ∀l ∈ L (14)

∑
c∈N\{0}

xc0l = 1, ∀l ∈ L (15)

∑
c∈N\{0}

∑
i∈N

dc xcil ≤ wl, ∀l ∈ L (16)

∑
i∈N

∑
j∈N

tijl xijl ≤ otl, ∀l ∈ L (17)

yu − yv + n
∑
l∈L

xuvl ≤ n− 1, ∀u, v ∈ N \ {0} (18)

αicl fi −M(1− xicl) ≤ fc, ∀i ∈ N, c ∈ N \ {0}, l ∈ L
(19)

fc ≤ αicl fi +M(1− xicl), ∀i ∈ N, c ∈ N \ {0}, l ∈ L
(20)

xijl ∈ {0, 1}, fi ≥ 0, f0 = 1, ∀i, j ∈ N, l ∈ L

The objective function is the minimization of network
ELOD for all flight paths. Constraints (11) and (12) state that
each customer should be served once and by exactly one drone.
Constraint (13) is the flow balance equation. Constraints (14)
and (15) show that all drones should start and finish their

flight at the depot. The amount of commodity that each drone
can carry is limited, to its weight capacity via Constraint
(16). The drone total flight time is also limited as stated in
Constraint (17). Constraint (18) prevents the sub-tours in the
network according to the Miller-Tucker-Zemlin formulation
[43]. Constraints (19) and (20) are related to the ELOD
calculation and are obtained from Inequality (9).

IV. SOLUTION METHOD

The DDS-F model is a variant of the Vehicle Routing Prob-
lem, which is known to be NP-hard [44]. Exact algorithms for
solving VRP models only work well for small-scale problems.
Hence, meta-heuristic methods are often utilized to find near-
optimal solutions to save time for medium- and large-scale
problems. Simulated Annealing (SA) [45] is a commonly used
meta-heuristic algorithm to solve drone scheduling problems
[46, 47], and it is adopted in this paper. To develop a solution
approach using SA, Section IV-A explains the solution repre-
sentation and the procedure to calculate the minimum ELOD
value corresponding to the solution. Section IV-B introduces
the proposed SA-based solution approach coupled with (1) the
Petal algorithm for generating various feasible flight paths,
(2) a binary integer programming (BIP) model to select the
best feasible solution among the candidates, and (3) a local
neighborhood search to search for a better solution as the final
clean-up. Therefore, the solution will be a local optimal, which
may not be a global optimal.

A. Solution Representation and ELOD Calculation

The solution of the optimization model consists of flight
paths for each of the drones starting from and terminating at
the depot (location 0). Each drone visits a subset of customers
in sequence to complete the delivery task. The proposed
algorithm to solve this problem starts by sorting the customers
in an ordered list in each iteration. The Petal algorithm [42]
consisting of a three step procedure is used to determine
a feasible path with the minimum network ELOD for the
given list of customers (S) in each iteration: 1) generate
feasible contiguous subsets from the given list of customers
(Section IV-A1), 2) determine the flight path and the ELOD
for each of the subsets (Section IV-A2), and 3) choose a set
of flight paths with the minimum total ELOD to cover all
customers (Section IV-A3). Figure 2 shows these three steps.

1) Create a Set of Contiguous Subsets: For a given list of
customers (S) to serve, a contiguous subset (CS) is a subset of
the customers to be visited by a drone. Because there can be
numerous different possible contiguous subsets, Algorithm 1
is developed to efficiently create the subsets while satisfying
the feasibility requirements on the weight capacity and the
total operation time of drones (Constraints (16) and (17)).

The algorithm is initialized, which includes the number of
customers (n), the list of customers to serve (SS), and empty
sets of CS and a temporary set F . The contiguous subsets
are generated on a cyclic order of customers to ensure the full
inclusion of combinations for creating the CS. This is done
by repeating the list of customers except for the last one, i.e.,
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Figure. 2: Process of optimal solution calculation for a given sequence of customers

Algorithm 1 Create contiguous subsets from a given ordered list
of customers

Define:
S[i:j]= An ordered list from element i to j

Input:
n= number of customers.
SS=[S[1:n] : S[1:n-1]]
c=1, CS={}, F={};

While (c 6 n)
k = c;
Add kth customer in SS to F;
While (F feasible regarding Weight capacity and Flight time)

Add set F to CS;
k = k+1;
Add kth customer in SS to F;

End While
F={}; c = c+1;

End While
Output:

CS: A contiguous subset of customers

SS = [1, 2, · · · , n, 1, 2, · · · , n−1]. First, the first customer in
SS is added to F, i.e., F = SS[1]. Second, the inner While-
loop is executed to construct a feasible CS. The loops are
continued until all the customers in S are checked, i.e., c = n.
Then, the algorithm stops and returns the CS.

2) Flight Path and ELOD Calculation for Contiguous Sub-
sets: The order of visiting customers in each subset should be
optimized to result in the minimum ELOD value. The optimal
flight path for each of the contiguous subsets can be found by
solving the DDS-F model with one drone (see the DDS-F-1
problem in Appendix B). Because a contiguous set contains
a much smaller subset of customers to be served by a drone,
the computational burden for solving the optimization model
is substantially reduced. Since the capacity and the operational
time of drones are limited, most of the drones are able to serve

only a few customers. A contiguous subset with one customer
corresponds to a flight path starting from the depot to visit
the customer and then to return back to the depot. As shown
in Figure 3, a contiguous subset with two customers i and
j have two possible flight paths (Path I and Path II), and the
feasibility of each path is checked in Step 3 of Algorithm 1. A

Figure. 3: Two possible flight paths for two customers and one drone

path with a lower ELOD value will be preferred for the drone
delivery. The ELOD value for flight path I (ELODI ) is lower
than the ELOD for flight path II (ELODII ) if Inequality (22)
holds true:

〈ELODI < ELODII〉 (21)
→ (1− α0il) di + (1− α0ilαijl) dj <

(1− α0jl) dj + (1− α0jlαijl) di (22)

The optimization model is modified to solve the path finding
problem for each contiguous subset more efficiently (see DDF-
F-1 in Appendix B). Equations (6) and (8) will determine the
ELOD value for the contiguous subsets after the determination
of the flight paths.

3) Final Flight Paths Section: We now have multiple fea-
sible flight paths to consider and their corresponding objective
function values. The final selection of contiguous subsets to
serve customers for the limited number of drones should be
made such that: (1) all the customers are included in exactly
one subset, which means each customer is served by one
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drone, (2) the number of selected subsets is equal to the
number of drones, and (3) the flight schedule for all drones
must result in the minimum ELOD. This selection problem
can be viewed as partitioning the customers into m groups
(i.e., m drones). Therefore, we propose a Binary Integer
Programming (BIP) model to solve this problem using the
following notation.

Sets
P Set of flight paths (p ∈ P )
Parameters
m Number of drones,
σp ELOD for the flight path p,
θpj 1 if flight path p includes customer j, 0 otherwise,

(j ∈ N − {0}).
Variables
fp 1 if flight path p is selected, 0 otherwise.

Min
∑
p∈P

σpfp (23)∑
p∈P

θpjfp = 1 ∀j ∈ N − {0} (24)∑
p∈P

fp = m (25)

fp ∈ {0, 1} ∀p ∈ P

The objective function (23) minimizes the summation of
ELOD for the selected flight paths. Constraint (24) states that
each customer must be included on only one of the selected
flight paths. Constraint (25) is to limit the number of selected
flight paths to the number of available drones.

B. The Simulated Annealing Algorithm

The proposed SA in this paper starts with an initial solution
and searches for better solutions using a neighborhood search
method to improve the objective function value. The SA al-
gorithm controls the probability of accepting the new solution
using the temperature parameter T , which is set to a high value
initially and is gradually decreasing during the iterations. The
SA algorithm has two loops. In the inner loop, new solutions
are generated in the neighborhood of the current solution at the
current temperature. The temperature is decreased at the rate
of α ∈ (0, 1) in the outer loop until the stopping criteria are
met [48]. The proposed SA stops if either of two conditions
is met: (1) no improvement in the objective function after a
certain number of iterations, or (2) a minimum temperature
value is reached. The following two subsections explain two
specific steps of SA in sequence: the initial solution generation
method and the neighborhood search method to find a better
solution through iterations.

1) Initial Solution: The initial solution (i.e., a sequence of
customers to visit) for the SA algorithm is generated following
the steps outlined in Figure 4 [41, 42]. The input data includes
the location information for both the depot and the customers.
The polar coordinate angles of the customers are used to
calculate the proximity of each customer to the depot. Then,
the initial solution is generated in ascending order of distance

from the depot to the customers. This initial solution yield an
optimum or near-optimum solution to the single-depot vehicle-
dispatch problem citegillett1974heuristic

Figure. 4: Initial visit sequence of customers

2) Neighborhood Search Methods: In each iteration of the
algorithm, a new solution is generated from the neighborhood
of the current solution. In the neighborhood search, a solution
can be accepted or rejected based on the temperature (T ) and
the corresponding objective function value. The probability of
accepting a better or unchanged solution is always 1, while a
worse solution may be accepted with a low probability to avoid
the local entrapment [49]. This paper explores three different
ways to generate neighborhood solutions in each SA iteration:
shift, reverse, and exchange. We explain these methods using
an example. Consider a list of customers to be visited by a
drone, S = [1, 2, 3, 4, 5, 6].

1) Shift method: shift k customers after customer i to the
first location after customer j (i, j and k are randomly
generated). For example, if i = 1, k = 2 and j = 5, a
new solution will be Snew = [1, 4, 5, 2, 3, 6].

2) Reverse method: reverse the sequence of customers be-
tween customer i and j (i and j are randomly generated).
For example, if i = 1 and j = 5, a new solution will be
Snew = [1, 4, 3, 2, 5, 6]

3) Exchange method: change the locations of customers i
and j (i and j are randomly generated). For example,
if i = 1 and j = 5, a new solution will be Snew =
[5, 2, 3, 4, 1, 6].

At each iteration of the SA algorithm, one of the three methods
is randomly selected to generate a new solution.

V. NUMERICAL EXPERIMENTS

Numerical results are conducted to test the proposed solu-
tion method using small and large-size problems. A determin-
istic model without drone failures is used as a benchmark to
test the performance of our approach. Since the deterministic
model does not have failure probabilities, and requires to have
a new objective function, the well-known Makespan (MS)
problem (Appendix D) is chosen as it is the closes deter-
ministic model to the proposed DDS-F model. The sensitivity
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analysis on the failure distribution is presented in Section V-C,
and the performance of the proposed SA algorithm is discussed
in Section V-E. All experiments are done on a Linux server
with 24 cores and 384GB RAM, and they are implemented in
the Python environment [50]. Gurobi solver 8.1 [51] was used
to solve the optimization model. The random drone parameter
settings in Table II are used for all test cases. We considered
32 minutes of flight capacity in this research [1].

TABLE II: The parameter setting for the test cases

Parameter Value
tij Euclidean distance between each pair of nodes (min)
wl 1 lb.
otl 32 minutes [4].
λl 0.005 (failures per minute)

A. Case Study

A sample network with 9 customers and 4 homogeneous
drones is used in this section. The drone failures are assumed
to follow a Weibull distribution with a constant failure rate
according to Table II. Note that the Weibull distribution is one
of the most commonly used failure distributions in reliability
analysis [52]. Hence, the DDS-F model uses parameter αijl =
Pl(t > tij) = e−(tij/ηl), where η is the scale parameter and
1
ηl

= λl is the failure rate. Figure 5 shows the resulting optimal
flight paths for the DDS-F problem in Figure 5(a) and the
makespan model in Figure 5(b).

(a) DDS-F problem (b) Makespan problem

Figure. 5: Optimal solutions for (a) DDS-F and (b) Makespan
problem

In VRP and transportation problems, a common objective
function is to minimize the makespan, i.e. the maximum time
that a drone spends for any of the flight paths [53]. Therefore,
a comparison is made to investigate the impact of the DDS-F
model against the makespan problem. Figure 5(b) shows that
the optimal flight paths derived from the makespan problem
differ from the solution outputted by the DDS-F model.

Furthermore, Table III gives the optimal path details for
DDS-F and Makespan regarding the payload amount, ELOD,
and flight time. Although DDS-F slightly underperformed
(1.1%) when compared to Makespan, the resulting flight
schedule is more reliable, as it reduced the ELOD value by
33.4%.

The second path of Makespan (0 → 5 → 2 → 0) was
revealed to be the reverse of the second path in the DDS-F
model. As expected, the minimization of the makespan does
not differentiate between a path and its reversed path because
a path and its reversed path have the same flight time. This

is the drawback of the makespan approach for the problem
discussed in this paper. It is trivial to see that the ELOD values
can be different between a path and its reverse path as different
customers often request different amounts of payload.

B. Comparison between the DDS-F and the Makespan

Different test cases are used to compare the DDS-F model
and the MS model in terms of ELOD and makespan. The
results are summarized in Table IV, where n and m are the
number of customers and the number of drones, respectively.
The first part shows the randomly generated test cases where
customers are located randomly around the depot. We used
the set of benchmark instances of Augerat et al. test cases
[54] in the second part of the table as it is one of the
most used benchmarks in the literature. For these test cases,
the vehicle capacity is multiplied by 10−2 to be adjusted
for drone capacity. As expected, DDS-F performed better in
minimizing ELOD, while the MS model worked better in
reducing makespan for all test cases. The percentage increase
in ELOD and the percentage decrease in makespan were
calculated according to Formula (26) and (27), respectively.

ELOD decrease (%) =
ELODMS − ELODDDSF

ELODDDSF
× 100, (26)

makespan increase (%) =
makespanDDSF −makespanMS

makespanMS
× 100,

(27)

where subscripts MS and DDSF are to indicate the results
obtained by the Makespan and DDS-F problems, respectively.
In all test cases, the reduction of ELOD by DDS-F ranged
from 1.5% up to 33.4%, while the increase of makespan
was negligible, ranging from 0.1% to 10%. Compared to
the traditional makespan model for delivery, the DDS-F can
generate much more reliable drone flight paths by minimizing
the expected loss of demand due to a drone failure.

C. Sensitivity Analysis on the Failure Rate

The failure rate in Section V-A and Section V-B was
assumed to be constant. However, it might be subject to
fluctuations over time. Note that the Weibull distribution was
considered here because it is a commonly used probability
distribution function involving a failure function. The cu-
mulative distribution function for the Weibull distribution is
1 − e−(t/η)

β

, t ≥ 0 where parameters η and β are the
scale and shape parameters, respectively. Therefore, it results
in αijl = Pl(t > tij) = e−(tij/η)

β

in the DDS-F model. The
Weibull distribution represents a variety of shapes based on the
shape parameter: β < 1 means the failure rate decreases over
time, β = 1 shows a constant failure rate over time, and β > 1
exhibits an increase in the failure rate with time. The impact of
parameter β on the Network ELOD for the case study shown
in Figure 5(a) is investigated here. The optimal flight paths
were obtained by changing the value of β between 0.8 and
2.5 with 3, 4, and 5 drones. Note that β is dimensionless.

Figure 6 shows that the network ELOD decreased as β was
increased. This trend can be explained by looking at the ratio
(tij/ηl) of the exponent in αijl = e−(tij/ηl). The results were
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TABLE III: DDS-F and Makespan results for the test case problem

Problem Path Payload ELOD Flight time Network ELOD makespan
(10−2 lb.) (min) (10−2 lb.) (min)

DDS-F

0 → 1 → 4 → 0 40 1.722 26.86

9.511 28.670 → 2 → 5 → 0 35 2.499 27.24
0 → 3 → 6 → 7 → 0 45 2.442 28.67
0 → 9 → 8 → 0 60 2.848 25.44

Makespan

0 → 1 → 4 → 0 40 2.499 27.24

12.688 28.360 → 5 → 2 → 0 35 2.808 26.86
0 → 3 → 8 → 9 → 0 80 5.583 26.44
0 → 7 → 6 → 0 25 1.798 28.36

TABLE IV: Comparison between DDS-F and MS Problems

n m
MS Problem DDS-F Problem ELOD

decrease
(%)

makespan
increase

(%)
ELOD makespan ELOD makespan
(10−2

lb.)
(min) (10−2

lb.)
(min)

Randomly generated test cases:
9 4 12.69 28.37 9.51 28.67 33.4 1.1
9 5 11.77 27.20 9.37 27.24 25.6 0.1
10 4 13.57 28.43 10.73 28.67 26.4 0.9
10 5 11.81 27.20 10.59 27.24 11.5 0.1
11 4 15.31 29.25 12.59 29.29 21.6 0.1
11 5 15.07 28.29 12.11 28.67 24.4 1.3
12 4 16.25 29.25 13.47 29.67 20.7 1.4
12 5 16.16 28.37 12.93 28.67 25.0 1.1
Augerat et al. set P test cases [54]:
10 6 21.35 68.61 21.02 75.53 1.5 10.0
12 7 26.41 68.61 23.46 75.53 12.5 10.0
12 8 28.68 65.11 22.75 65.57 26.0 0.7

Figure. 6: Network ELOD (10−2 lb.) for different shape parameter
values with the fixed scale parameter

generated based on a fixed η = 200. However, the maximum
travel time between two nodes in Figure 5(a) is 13.6 minutes,
which lead to tij

η << 1. Thus, increasing the value of β will
result in the increase in both the αijl parameter value and the
variable fc, and it reduces the ELOD accordingly. Considering
the limited flight time of drones, the network ELOD value will
decrease as the Weibull distribution shape parameter increases.

Furthermore, as seen in Figure 7, increasing the value of
β resulted in the reduction of the optimal number of required
drones. This is because a higher value of β means the drone’s

Figure. 7: Optimal number of drones (between 3, 4, and 5) by
changing Weibull distribution shape parameter

reliability (parameter αijl) increases. As a result, a lesser
number of drones are needed as their reliability is higher. For
example, the optimal number of drones reduced from 5 drones
to 3 drones when β was increased from 0.8 to 2.5. Note that
further experiments showed that parameter β influences on
the optimal flight path selection, while η does not. However,
parameter η affects the ELOD value.

D. The SA parameter tuning

Prior to solving the test instances using the SA, the SA
parameter values were carefully tuned. The design of experi-
ments (DOE) is an effective approach to investigate the cause
and effect relationship between an algorithm parameters and
the output [55]. Five SA parameters with two levels (high and
low) for each of the, according to Table V are considered for
the tuning. A statistical two-level full factorial analysis, the
most popular designs among experimenters [56], is performed
to examine the impact of these parameters on SA performance.

TABLE V: The SA parameter tuning

Parameter Level 1
value

Level 2
value

Selected
value

Initial temperature (x1) 1 5 1
Final temperature (x2) 0.005 0.05 0.005
Temperature reduction ratio (x3)
(α)

0.95 0.98 0.95

Number of iterations per
temperature (x4)

1 5 1

Consecutive iterations without
improvement (x5)

10 20 20

The SA performance with each parameter setting is evalu-
ated by the computational time (y1) and the ELOD value (y2)
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for a test case with 12 customers and 5 drones. The results
are presented in Table VI and depicted in Figure V-D. Based
on these results, parameter x1 should be on its lower level to
reduce both y1 and y2. Parameter x5 does not have significant
impact on both dependent variables, so we chose its higher
level. Parameters x3 and x4 have low impact on y2 but their
lower level can significantly decrease y2, therefore their lower
level value is chosen. Parameter x2 has high impact on y2,
so its lower level is chosen. The selected values are shown in
Table V and are used in all SA implementations in this study.

TABLE VI: SA parameter tuning regression results

Dependent variable: computational time (y1)
Parameter coefficient std error t P > |t|
constant 362.20 23.30 15.54 0.000
x1 54.16 23.30 2.32 0.028
x2 -59.99 23.30 -0.574 0.016
x3 137.81 23.30 5.913 0.000
x4 229.44 23.30 9.845 0.000
x5 11.31 23.30 0.486 0.631
Dependent variable: ELOD value (y2)
Parameter coefficient std error t P > |t|
constant 13.49 0.063 214.53 0.000
x1 0.11 0.063 1.81 0.081
x2 0.31 0.063 5.07 0.000
x3 -0.09 0.063 -1.50 0.144
x4 -0.16 0.063 -2.57 0.016
x5 -0.0003 0.063 -0.005 0.996

E. The SA Performance

This section evaluates the computational performance of the
proposed SA algorithm (see Section IV) compared to the exact
method (Gurobi solver implemented in Python [51]). Test
cases are randomly generated with each case having a different
number of customers (n) and drones (m). The problem size
of the test instances varies from 10 customers with 4 drones
to 100 customers with 32 drones. The stopping criteria for
solving the exact method are (1) 2 hours of CPU run time,
and (2) a 1% optimality gap.

Figure 9 shows the progression of the SA algorithm until it
converged. As can be seen from Figure 9, the initial solution
to the SA algorithm is close to the final solution. The SA
began with an initial solution (ELOD=12.94) and searched
for a better solution. However, the ELOD fluctuated, as the
algorithm is allowed to accept a worse solution with a low
probability to avoid local entrapment. However, it eventually
converged to a solution whose ELOD value (12.92) was lower
than the initial solution. This figure shows that worse solutions
were frequently accepted at the initial stage, but the rate
dwindled as it approached the final iterations.

Table VII summarizes the results obtained by both the exact
method and the SA. obj is the ELOD value and time shows the
computation time in seconds. The last two columns show the
performance comparison of the SA against the exact method.
∆obj shows the percentage increase of ELOD in SA compared
to the exact method, while ∆time is the percentage decrease
in computation time. These values are calculated as:

∆ obj (%) =
objSA − objExact

objExact
× 100

∆ time (%) =
timeSA − timeExact

timeExact
× 100

TABLE VII: Optimal solution obtained for DDS-F model by the
exact method and the proposed SA algorithm

n m
Exact Method SA Method ∆obj ∆ time

obj
(10−2lb.)

time(s) obj
(10−2lb.)

time(s) (%) (%)

10 4 10.72 63.1 10.72 74.6 0.0 18.2
10 5 10.58 68.4 10.58 72.4 0.0 7.3
11 4 12.59 296.0 12.60 107.8 0.3 -63.5
11 5 12.11 388.1 12.13 69.0 0.1 -82.2
12 4 13.46 763.3 13.50 157.6 0.5 -79.3
12 5 12.92 4460.7 12.90 70.4 0.1 -98.4
20 7 NA NA 21.60 310.4 - -
20 8 NA NA 21.35 178.6 - -
40 16 NA NA 39.90 686.4 - -
40 17 NA NA 39.75 603.5 - -
60 19 NA NA 60.69 3206.2 - -
60 20 NA NA 60.85 2404.8 - -
100 31 NA NA 88.88 6484.9 - -
100 32 NA NA 88.67 5053.8 - -

For the test cases with 10 customers, both methods found
optimal solutions. For the cases with 11 and 12 customers,
the solution provided by SA on average was 0.25% more
than the optimal solution but it reduced the computational
time significantly, on average by 80.85%. As expected, the
SA outperformed the exact method in CPU time up to 98.4%
with an exception for the small case. Because the exact method
failed to find a solution for cases with more than 12 customers,
it was not possible to compare the performance of the SA for
larger instances. Overall, the SA is capable of finding good
solutions at a fraction of the time the exact method took to
solve the problems. The computational performance of SA
was more pronounced when the problem size was increased
because the exact method could not handle larger problem
instances.

VI. CONCLUSION

This paper presented a reliable way to deliver light-weight
parcels to customers using drones. Because drone failure
during flights can result in unmet customer demand, the
concept of minimizing the expected loss of demand was intro-
duced to determine a more reliable flight path considering the
probability of drone failure following a Weibull distribution.
A mathematical optimization model (DDS-F) was developed
to determine a flight schedule with minimum network ELOD
subject to drone specific constraints: maximum flight time
and payload capacity. The performance of the DDS-F was
analyzed and compared to the traditional makespan model
using various sizes of test problems. The numerical results
showed that the DDS-F provided solutions about 20.78% more
reliable on average at a minor increase in makespan by 2.43%.
Furthermore, the impact of the failure distribution on the
network ELOD value was investigated, and it was found that
the network ELOD had a reverse correlation to the shape and
scale parameters of the Weibull distribution. The numerical
results showed that the impact of the shape parameter on the
flight schedule was higher than the scale parameter. The shape
parameter had an influence on the optimal flight paths and the
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Figure. 8: Impact of SA parameters (x1, ..., x5) on ELOD (y1) and computational time (y2)

Figure. 9: The ELOD value over iterations: a case study with 12
customers and 5 drones

optimal number of required drones, but the scale parameter
did not. The computational performance of SA was analyzed
as the DDS-F was not scalable to a larger size of problems.
The results showed that the SA was able to find good solutions
to smaller problem instances at a small fraction of CPU time
for solving the DDS-F using the exact method.

There are several ways to extend the work presented in this
paper. First, one can study more on selecting the appropri-
ate failure distribution function based on physical or virtual
experiments. Second, the ELOD concept can be used for a
delivery network combining both trucks and drones. Third, a
more efficient solution algorithm could be developed, such as
a two-stage approach, in which the first stage determines a
flight schedule at minimum makespan, and the second stage
aims to minimize the ELOD.
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APPENDIX A

We prove that
∑n
i=1 zi + fn+1 = 1, where n is the number

of customers in a drone flight path.
Proof:
For n = 1,

∑1
i=1 zi + f1 = z1 + f1 = p0,1 + q0,1 = 1

We assume that for n=k, we have
∑k
i=1 zi + fk = 1, then we

show it is true for n = k + 1.
n = k + 1 :

∑k+1
i=1 zi + fk+1 =

∑k
i=1 zi + zk+1 + fk+1

From the assumption:
∑k
i=1 zi = 1− fk.

→ 1− fk + zk+1 + fk+1 = 1− fk + fk pk,k+1 + fk qk,k+1 =
1− fk (−1 + pk,k+1 + qk,k+1) = 1− fk(−1 + 1) = 1.
End of proof.

APPENDIX B

The following showcases the notation and the mathematical
model for the DDS-F-1 problem used to obtain the flight path
and the ELOD value for one drone and a set of assigned
customers.

Sets:
N ′ Set of assigned locations to the drone, 0 shows the depot.
Parameters:
n′ Number of assigned customers,
tij Travel time from node i to node j, (i, j ∈ N ′)
ot Maximum operation time of drone.
Variables:
xij 1 if drone goes directly from node i to node j, 0 otherwise

(i, j ∈ N ′).

Min
∑

c∈N ′−{0}

(1− fc) dc (B.28)

∑
j∈N ′−{c}

xcj = 1 ∀c ∈ N ′ (B.29)

∑
j∈N ′−{c}

xjc = 1 ∀c ∈ N ′ (B.30)

∑
i∈N ′

∑
j∈N ′

tij xij ≤ ot (B.31)

yi − yj + n′ xij ≤ n′ − 1 ∀i, j ∈ N ′ − {0}, i 6= j (B.32)
αic fi −M(1− xic) ≤ fc ∀i ∈ N ′, c ∈ N ′ − {0} (B.33)
fc ≤ αic fi +M(1− xic) ∀i ∈ N ′, c ∈ N ′ − {0} (B.34)
xij ∈ {0, 1}, ∀i, j ∈ N ′

yi ≥ 0, fi ≥ 0, f0 = 1 ∀i, j ∈ N ′

APPENDIX C

Two special cases of Figure 3 are considered here:
Case 1: customers are located within the same distance from

the depot (t0i = t0j → α0i = α0j). Without loss of generality,
we assume that di > dj (∆d = di − dj).

0 < α0il, αijl < 1→ 1− α0il < 1− α0ilαijl (C.35)
ELODI

ELODII
=

(1− α0il) di + (1− α0ilαijl) dj
(1− α0il) dj + (1− α0ilαijl) di

→ ELODII − ELODI = ∆d(α0il − α0ilαijl)
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from (C.35): ELODII − ELODI > 1

Therefore, if two customers are located within the same
distance from the depot, then the customer with higher demand
should be served first.

Case 2: customers have the same amount of demand. With-
out loss of generality, we assume that t0i > t0j → α0il < αojl.

If di = dj →
ELODI

ELODII
=

1− α0il + 1− α0ilαijl
1− α0jl + 1− α0jlαijl

=
2− α0il(1− αijl)
2− α0jl(1− αijl)

→ ELODI

ELODII
> 1

Therefore, if two customers have the same amount of demand,
then the closer customer to the depot should be served first.

APPENDIX D

In the MS problem, the objective function is to mini-
mize the required time needed to complete all flight paths.
The MS model used here has the same constraints as the
proposed DDS-F model except that is doesn’t have the
constraints to calculate failure probabilities and the objec-
tive function is the minimization of the maximum drone
flight time (Min Max {

∑
i∈N

∑
j∈N tijl xijl}). Constraints

(11)-(18) provide a feasible area of drone flight schedule
without failure consideration. This MinMax problem can be
changed to a linear model by using the new variable u =
max {

∑
i∈N

∑
j∈N tijl xijl} as follows:

Min u

u ≥
∑
i∈N

∑
j∈N

tijl xijl ∀l ∈ L

Constraints (14)-(21)


