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Abstract— This paper discusses a market-based pool strategy 
for a microgrid (MG) to optimally trade electric power in the 
distribution electricity market (DEM). The increasing 
penetration levels of distributed energy resources (DERs) and 
MGs in distribution system (DS) stress distribution system 
operator (DSO) and require higher levels of coordinated control 
strategies. The distribution system operator has limited visibility 
and control over such distributed resources. To reduce the 
complexity of the system and improve the efficiency of the 
electricity market operation, we propose a decentralized pool 
strategy for an MG to integrate with a distribution system 
through a market mechanism. A market-based interactions 
procedure between MGs and DS is developed for MGs as price-
makers to find an optimal bidding/offering strategy efficiently. 
To achieve a market equilibrium among all entities, we initially 
cast this problem as a bi-level programming problem, in which 
the upper level is an MG optimal scheduling problem and the 
lower level presents a DEM clearing mechanism. The proposed 
bi-level model is converted to a single mix-integer model which is 
easier to solve. Uncertainties associated with MG’s rivals’ offers 
and demands’ bids are considered in this problem. The solution 
results from a modified IEEE 33-Bus distribution system are 
presented and discussed. Finally, some conclusions are drawn 
and examined. 

Keywords— bidding and offering strategies, bi-level 
programming, distribution electricity market, distribution 
locational marginal prices, mathematical programs with 
equilibrium constraints, Microgrid, Stackelberg game. 

NOMENCLATURE 

Indices 
b  The node subscript index in DS , b B∈  

jb′  The node location where j-th microgrid 
is located 

j  MG subscript index connected with DS, 
j J∈   

k  Generation unit  subscript index in MG 
j-th , jk K∈   

l  Consumer subscript index in DS  l L∈  
m   Utility node subscript index connected 

with DS , m M∈  
n   Distributed generator (DG) subscript 

index in DS, n N∈  
t  Index for time periods , t T∈  
Parameters 

P
jtD / Q

jtD  Real/reactive power consumption for j-
th MG in time t  

(.)K   Incidence matrix 

max
(.) tP / min

(.)tP  Maximum/minimum real power output 
in time t  

max
(.)tQ / min

(.)tQ  Maximum/minimum reactive power 
outputs in time t  

(.)UR / (.)DR   Generator ramp up/down rates  
G
itδ  Marginal cost of generation unit i  in 

MG in time t   
L
ltδ  Marginal profit of consumer l  in DS in 

time t  
O
ntδ  Marginal cost of DG n  in DS in time t  
U
mtδ  Marginal cost of utility m  in time t  

(.)Ο  Large positive constant  

Sets 
B  DS node set {1,.., }B NB= , NB  is 

number of node; ( (.)B  is subset of B, 
means node with (.) component.) 

J   MG set  {1,.., }J NM=  , NM  is 
number of MG. 

jK  Generation unit set {1 ,.., }j j jK NDG=  
in j-th MG, jNDG  is number of 
generation units  

L   Consumer set in DS {1,.., }L NL= , NL  
is number of load in DS 

M  Utility set in DS {1}M =   
N   DG in DS set {1,.., }N ND=  , ND is 

number of distributed generation units 
in DS 

T   Time period set {1,.., }T NT= , NT is 
number of time 

Variables 
ktI   Binary variable associated with 

generator k state  
btP   Real power flow at node b  in time t  

(.)tP / (.) tQ  Real/reactive power output of the MG, 
DG, utility, consumer in time t  

inj
btP / inj

btQ  Real/reactive power injection at node b  
in time t   

btQ   Reactive power flow at node b  in time 
t  

btV  Voltage magnitude at node b  in time t  

jtα   Offering/Bidding price MG j  submitted 
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to DS in time t  
jtβ   The j-th MG marginal operation cost in 

time t  
P
btλ / Q

btλ  Lagrangian multipliers associated with 
real/reactive power balance constraints 

p min
(.)tµ , p max

(.)tµ  , q min
(.)tµ  

, q max
(.)tµ  

Lagrangian multipliers associated with 
real(p)/reactive(q) power output of the 
MG, DG, utility, consumer constraints 

btπ , min
btπ , max

btπ  Lagrangian multipliers associated 
voltage magnitude constraints 

jtρ  MG j islanding state in time t  

(.)tτ  Auxiliary binary variables to linearize 
complementary slackness constraints 

(.)tω   Auxiliary binary variables to linearize 
complementary slackness constraints 

Ω / ′Ω  Auxiliary variable of MG power 
exchange cost with distribution system 

I. INTRODUCTION  
The microgrid concept is proposed to facilitate the 

integration of distributed energy resources into the electricity 
grid, which can reduce transmission grid losses and overcome 
limitations in distribution system [1]. By integrating 
distributed energy resources into microgrids with smart central 
controllers and smart sensors, MGs can provide highly reliable 
electrifications which can guide customers to lower their 
operation costs and utilize electricity more efficiently [2]. 
MGs can also benefit power system through profitable and 
environmentally friendly services [3], higher power system 
resiliency [4], less transmission and distribution costs [5], 
fewer carbon emissions by the use of renewable power 
resources [6], and utilization of electrification in rural areas 
[3]. With all of these benefits, microgrids can be expected to 
be used in a wide variety of electrical environments [7].   

Microgrid can work in either Islanding or Grid-connected 
mode at the point of common coupling (PCC) [8]. To ensure a 
secure MG operation in a centralized manner [9], MG has 
three control levels: primary, secondary and tertiary. The 
primary and secondary controls are able to maintain the 
frequency/voltage of the MG. As the primary focus of this 
paper, two goals of tertiary control are (1) to optimally 
manage the power flow between the MG and the utility grid 
[10], and (2) to minimize microgrid operation cost while 
providing high-quality service to various types of customers in 
uncertain environments. Although the benefits of optimally 
scheduling MGs have been reported in the literature [1], [4], 
[9], [11], and [12], drawbacks of the existing approaches are 
that they are limited to MG scheduling, and do not address the 
interactions between microgrids and distribution system 
concerning power coordinated operation strategy and 
distribution electricity market price policy. With regard to 
power coordinated operation strategy, the distribution system 
was assumed as an infinite bus that can provide unlimited 
power supply/load to mitigate any power imbalance in MGs 
[10].However, this assumption has a crucial flaw because the 
distribution system operator, in fact, has the physical capacity 
limitation to do so. Furthermore, the distribution system 
operator does not have an incentive to provide power beyond 

the economically optimal level. As for the distribution 
electricity market pricing policy, due to the presence of price 
uncertainty and its consequences, the market price between 
microgrid and the distribution system is not known in 
advance. Consequently, the current practice of 
bidding/offering pricing strategies may not be optimal.  

The coordinated strategy can be economically beneficial to 
both microgrids and the distribution system [13]. Such 
benefits of using a decentralized coordinated management 
(DCM) include higher profits [14], improved efficiency of 
DERs and reduced complexity of distribution network 
operation [15], and improved system reliability [16]. The 
current literature on DCM assumes fixed pricing strategy. 
However, the fixed pricing approach does not guarantee 
optimality because it is difficult to include the abnormal 
conditions such as overloading, islanding, component outages 
as well as load uncertainty and volatility of non-dispatchable 
generation units. These conditions can provide market power 
or non-beneficial outcomes for decentralized coordinated 
management participants. Hence, there is a clear need for an 
approach that considers both the coordinated management 
strategy and the distribution electricity market pricing policy. 

A successful distributed electricity market requires a good 
pricing policy. Overall pricing schemes in the existing 
industrial distributed electricity markets can be found in [17]. 
Furthermore, a study has been reported to compare different 
distributed electricity market designs and pricing policies [18]. 
The pricing policies can be categorized as price-based and 
market-based management. The price-based management is an 
efficient way to handle the DEM by using fixed forecast price 
[9]-[12]. However, this approach is not well suited when the 
microgrid penetration in the distribution network is high. 
Therefore, the market-based management was proposed as an 
alternative [19]. The market-based DEM with dynamic pricing 
is more flexible than the price-based DEM. However, the 
proposed market-based bidding strategy for MG does not 
guarantee optimality because the power interaction between 
MG and distribution system is determined by distribution 
system only. Furthermore, there is no explicit optimal bidding 
curve creation strategy which has the significant impact on 
distributed electricity market operation. Another bidding 
strategy for microgrid as price-taker in market-based 
wholesale market can be found in [20]. Nonetheless, the MG 
is not widely accepted by high voltage wholesale market 
directly because: 1) MG’s capacity is limited [21] and 2) the 
high voltage network is not designed for bi-directional power 
flow. The distribution system fits microgrid and other DERs 
with advanced distributed system operator and the distribution 
market operator (DMO), which is helpful in managing price 
information among market participants. In reality, the MGs 
and other DERs are two primary competing power suppliers in 
DEM, which constitute an oligopolistic distribution electricity 
market, leading to imperfect competition. An imperfect 
competitor is in fact a price-maker [22] whose 
offering/bidding strategy has the ability to influence the 
market profile defined by aggregated behaviors of all market 
participants. Therefore, a new market-based mechanism is 
needed so that the MGs can impact the DEM’s market price. 
This paper attempts to shed light on a realistic economical 
behavior of an MG in the distributed electricity market beyond 
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the proposed market-based scheme [19]. Because an MG is a 
prosumer in the DS, a combined offer-and-bid pair can be 
submitted to the distributed electricity market. This 
necessitates a new strategy, in which an MG plays as a price-
maker in the market-based distribution electricity market.  

This problem can be cast as the Stackelberg game where a 
microgrid plays the role of a leader, while competitors and 
consumers are the followers [23]. Under this framework, bi-
level programming is used to formulate the optimal offering 
strategy problem [24]. A bi-level programming model can be 
converted into mathematical programming with equilibrium 
constraints (MPEC) [25], which is a highly non-convex 
optimization problem [26]. To reduce computational burden 
for solving the MPEC model, a binary expansion solution 
approach proposed by [27] can be used to convert the MPEC 
model into a mix-integer programming (MIP) model, which 
gives a global optimal solution. 

Therefore, this paper proposes a new coordinated pool 
strategy, in which a microgrid plays as a price-maker in the 
market-based distributed electricity market. Considering MGs 
as strategic prosumers, a MIP model is developed to maximize 
the benefits for MGs from trading power in DEM through an 
optimal bidding/offering strategy. A modified bidding/offering 
policy is provided to overcome drawbacks of existing 
strategies.  

The remainder of this paper is organized as follows. 
Section II presents the model outline and assumptions. Section 
III formulates the bi-level programming problem and solving 
algorithm. The model is tested under price uncertainty as well 
as MG contingencies such as islanding in Section IV. Relevant 
conclusions are discussed in Section V. 

II. OUTLINE AND ASSUMPTIONS 
The decentralized pool strategy we propose in this paper 

has two levels as seen in Fig.1: a microgrid level and a 
distribution system level. In the MG level, the microgrid 
operator (MGO) is in charge of optimally scheduling MG-
owned DGs and local consumers. In the DS level, the 
distribution system operator takes care of interactions between 
the DS and its participants. The distribution network operator 
(DNO) is responsible for power flow, and the distribution 
market operator is responsible for market regulation. The 
DMO enables competitive access to markets and the optimal 
use of DERs on distribution networks. Under the distribution 
system operator (DSO) model, the operator accepts a wide 
range of management rules beyond the network operation of 
DNO and market responsibility of DMO. The DSO can help 
provide reliable and secure operations to the DS by enabling 
highly reliable networks, flexible DERs and demand response 
program under a competitive market environment. 

The pool bidding [28] and the coordinated management 
[14] are used together to solve the problem of high penetration 
levels of MGs in DS. The MGs are strategic players whose 
bids/offers are subject to market profile, which is decided by 
nonstrategic players such as the DS customers, DS-owned 
DGs, and high voltage utility nonstrategic players. The 
distribution electricity market uses a price signal such as 
distribution locational marginal price (DLMP) as feedback to 
MG’s bids/offers. The DLMPs are widely used as price 

signals among market participants or between the market 
operator and the market agent [29]. 

The microgrid as a price-maker with an independent 
operator has autonomy to make its own scheduling and 
bidding/offering decisions in response to distribution system 
operation states and market price signals which leverage the 
MGs’ transactive capabilities in the distributed electricity 
market [29]. As a result, it can help the distribution system 
operator reduce the decision burden and network complexity.  
At the same time, the power pool regulation at the distribution 
system level defines standards for processing and evaluating 
electricity price bids [30], which ensure the microgrids and 
distribution generators can freely participate in the distributed 
electricity market. 

The key components to implement these regulations are 
DSO, DNO and DMO. The state of art distribution system 
operators can perform active managements including market 
regulations and demand response with greater flexibility and 
capability between supply and demand [31]. Such examples 
include Distributed System Platform Provider proceeding 
proposed by the New York Public Service Commission [32], 
the Multi-Microgrid in Chicago including the IIT Campus 
Microgrid (ICM) and the Bronzeville Community Microgrid 
(BCM) [33], and European Distribution System Operators 
advocated by the European Union [31]. Some distribution 
network operator’s responsibilities like power balancing and 
network operation can also be taken by the DSO. It is too early 
to conclude that the DNO will be entirely replaced by the DSO 
[34] as the DNO’s contributions in security and quality of 
supply and power flow management are significant [35]. In 
some distribution electricity markets such as Cornwall Local 
Energy Market [36] and TDI 2 [37], the DNO is successfully 
acting as the DSO to manage the distribution system. In our 
proposed framework, we adopted the concept of the 
transactive energy systems [29], which both DNO and DMO 
entities are defined under the unified DSO. The advanced 
DSO expands the conventional operational domain of the 
DNO and the DMO to enable a sound distribution system 
operation with high penetration levels of DERs. It also 
facilitates the MGs as prosumer to implement transactive 
exchanges. 

MG Generators MG Local 
Demand MGO

DMO DNO

DS Generators DS Customers Utility Transmission 
Lines 

Power 
supply

Power 
demand

Power exchangeBid/Offer

DSO

Offer Supply Bid Demand Offer Supply
Transmission 

Info

Microgrid Level

DS Level

 
Fig.1. Decentralized pool strategy for distributed electricity market 
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Compared with previous DEM management strategies, our 
proposed strategy has the following advantages: 

• Having MG as a strategic player enables a bi-
directional power flow between MG and DS, which 
can smooth out or shift the peak hour load.  

• The MGs’ bidding/offering price based on DLMP 
reflects the exact market mechanism of the distribution 
electricity market. This approach helps the microgrid 
operator reduce its burden to determine the true market 
value of its power resources in trading in DEM.  

• MGs as price-markers have direct influence on DEM 
price. However, influencing the price may create 
associated market risk due to price uncertainty, which 
MGs must take if it occurs.  

• Efficiency of clearing the market can be improved by 
allowing competition among all the power source 
owners [19]. This can be done because the DMO can 
evaluate all the bids and offers ranging from the 
cheapest to the most expensive before transactions 
occur among all market participants. 

• The separation of roles between a distribution network 
operator (technical functions: e.g. power flow) and a 
distribution market operator (market regulation) 
prevents the producers from abusing the market. 

In this paper, the distribution system network is modeled 
with AC Distribution load flow [38]. The DS-owned DGs and 
MGs are primary power suppliers of distribution electricity 
market. Two main consumers are MG community load and 
DS spot load. The DEM pool is cleared hourly, day-ahead 
within the DistFlow framework. The hourly DLMPs reflect 
adequately distributed MGs’ influence to DEM. The 24 hourly 
DLMPs are obtained through dual variables associated with 
real power balance constraints. The MG scheduling model 
includes most of its features, i.e., unit linearized operation cost, 
generator capacity limits, and generator ramping up/down 
rates. The paper assumes that DS-owned DGs offer with their 
marginal costs, and spot loads bid with forecast market prices. 
The MGs’ bids/offers are based on actual DLMPs of DEM. 
We use linearized operation cost offering curves for all 
generators and linearized bidding curves for all customers. 

III. MODEL AND SOLUTION METHODOLOGY 

A. Bi-level Programming Model 
The optimal bidding problem is formulated as a bi-level 

programming model as follows:  

   ULPM: min ( )
j

G P P
kt kt b t jt jt

j t k
P P VOLL Dδ λ ′⋅ − ⋅ + ⋅∑∑ ∑         (1) 

 min max , , ,kt kt kt kt kt jP I P P I t k K j J≤ ≤ ∀ ∀ ∈ ∀ ∈   (2) 
 min max , , ,kt kt kt kt kt jQ I Q Q I t k K j J≤ ≤ ∀ ∀ ∈ ∀ ∈   (3) 
 (t 1) , , ,kt k k jP P RU t k K j J−− ≤ ∀ ∀ ∈ ∀ ∈   (4) 
 ( 1) , , ,kt ik t k jP P RD t k K j J−− ≤ ∀ ∀ ∈ ∀ ∈   (5) 

 , , ,P
kt jt jt j

k
P D P t k K j J= + ∀ ∀ ∈ ∀ ∈∑   (6) 

 , , ,Q
kt j jt j

k
Q D Q t k K j J= + ∀ ∈ ∀ ∈∑   (7) 

 LLPM:
, , arg{min (

)

j

P O
jt jt b t nt nt

t n
U L

jt jt mt mt lt it
j m l

P Q P

P P P

λ δ

α δ δ

′ ∈ +

+ −

∑ ∑

∑ ∑ ∑
   (8) 

 min max p min p max: , , , , , ,it it it it itP P P t i J L M Nµ µ≤ ≤ ∀ ∀ ∈   (9) 
 min max q min q max

(.) (.): , , , , , ,it it it t tQ Q Q t i J L M Nµ µ≤ ≤ ∀ ∀ ∈   (10) 
 inj

bt n nt j jt m mt l ltP K P K P K P K P= + + −   (11) 
 inj

bt n nt j jt m mt l ltQ K Q K Q K Q K Q= + + −   (12) 
 ( 1) : , ,inj P

b t bt bt btP P P b B tλ+ = − ∀ ∈ ∀   (13) 
 ( 1) : , ,inj Q

b t bt bt btQ Q Q b B tλ+ = − ∀ ∈ ∀   (14) 
 2

( 1) 1( ) : , ,b t bt b bt bt bt btV V r P x Q V b B tπ+ = − + ∀ ∈ ∀   (15) 
 min max

min max : , , , }bt bt btV V V b B tπ π≤ ≤ ∀ ∈ ∀   (16) 

The objective function of the upper level programming 
model (ULPM) is to minimize power generation cost of 
microgrids, power exchange cost at point of common coupling 
and load shedding cost. The power exchange cost is negative 
when MGs are extracting power from the distribution system 
or positive when MGs are exporting power to the DS. 
Dispatchable generators in MG are subject to real power 
output capacity constraint (2), reactive power capacity output 
constraint (3), ramp up rate (4) and ramp down rate (5). Real 
power balance equations (6) and reactive power balance 
equations (7) together ensure that the power generated by DGs 
is used to supply the entire load and the power exchange at 
PCC. The DLMPs ( P

btλ ) are endogenously generated from the 
lower-level programming model (8) - (16) (LLPM), and the 
MG uses DLMPs as the base bidding/offering price

j

P
b tλ ′ . The 

real power and reactive power exchange at PCC belong to the 
feasible set defined by the LLPM as in constraint (8). 

The LLPM presents the distribution system market 
clearing problem with the objective to maximize the social 
welfare (8), which consists of four terms. The first three terms 
represent the total cost for the DS:  operation cost from DS-
owned DGs, power exchange with MG, and the cost of 
extracting power from utility power system. The last item is 
total benefits obtained by supplying power to customers. 
Constraint (9) and (10) guarantee that the DGs’ outputs, MGs 
power exchange, utility extraction, and load requirement are 
within a capacity range. The constraints (11) - (16) are 
DistFlow equations that can be used to describe the complex 
power flows at each node for DS. Constraints (11) and (12) 
are real power injection and reactive power injection at each 
node. The possible equations to use are power balance 
equations, which can be written for real and reactive power for 
each bus. Constraints (13) and (14) are real and reactive power 
balance equations at each node, which guarantee the power 
balance. Constraint (15) is the node voltage equation. Voltage 
limits are defined in constraint (16). The justification of the 
linearized method for DistFlow can be found in [14].  

Dual variables associated with each constraint are labeled 
next to the corresponding constraints: p min

(.)tµ , p max
(.)tµ , q min

(.)tµ ,  
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q max
(.)tµ , P

btλ , Q
btλ , btπ , min

btπ  and max
btπ . It is noted that the LLPM 

is a linear programming model if the microgrids’ 
bidding/offering price jtα  is treated as input parameters. 
Thus, the LLPM can be replaced with Karush-Kuhn-Tucker 
(KKT) optimality conditions to formulate as an MPEC.  

B. MPEC 
The KKT optimality conditions for LLPM are constructed 

as follows:  

 p min p max 0 ,O P n
nt nt nt bt b B tδ µ µ λ− + − = ∀ ∈ ∀   (17) 

 p min p max 0 ,U P m
mt mt mt bt b B tδ µ µ λ− + − = ∀ ∈ ∀   (18) 

 p min p max 0 ,P j
jt jt jt bt b B tα µ µ λ− + − = ∀ ∈ ∀   (19) 

 p min p max 0 ,L P l
lt lt lt bt b B tδ µ µ λ− − + + = ∀ ∈ ∀   (20) 

 
q min q max 0

, , , , , , , ,

Q
it it bt

i J L M N b J L M N t
µ µ λ− + − =

∀ ∈ ∀ ∈ ∀
  (21) 

 2
( 1) 1 0 ,P P

bt b t b br V b B tλ λ π+− − = ∀ ∈ ∀   (22) 
 2

( 1) 1 0 ,Q Q
bt b t b btx V b B tλ λ π+− − = ∀ ∈ ∀   (23) 

 min max
( 1) t 0 ,bt b bt itV V b B tπ ε +− − + = ∀ ∈ ∀   (24) 

 minp min ( ) 0,0 , ,, ,it it iP P t i J L M Nµ ⊥ − ≥ ∀≤ ∀ ∈   (25) 
 p max max( ) 0, ,0 , , ,i it ti i JP Lt NP Mµ ⊥ − ∀≤ ∈≥   (26) 
 minq min ( ) 0,0 , ,, ,it it iQ Q t i J L M Nµ ⊥ − ≥ ∀≤ ∀ ∈   (27) 
 q max max( ) 0, ,0 , , ,i it ti i JQ Lt NQ Mµ ⊥ − ∀≤ ∈≥   (28) 
 min min0 ,( ) 0bt bbt B tV bVπ ≥ ∀⊥ ∈−≤ ∀，   (29) 
 ma axm x ( ) 00 ,,it i it bV tV Bπ ⊥ − ∀ ∈≥≤ ∀   (30) 
 ( ) ( )9   16−   (31) 
 p min p max q min q max min max

(.) (.) (.) (.), , , , , , , , 0P Q
t t t t bt bt bt bt btµ µ µ µ λ λ π π π ≥    (32)   

The KKT optimality conditions contain stationarity (17)-
(24), complementary slackness (25)-(30), primal feasibility 
(31), and dual feasibility (32). The bi-level programming 
model is replaced with (1) - (9) and (17) - (32) as MPEC. The 
MPEC is a non-convex problem, thus the linearize technics 
are needed to solve the problem. 

C. Linear Reformulation of MPEC 
The nonlinearity of MPEC comes from two parts: MGs’ 

bidding/offering in upper-level objective function
j

P
b t jtPλ ′ , and 

complementary slackness part in lower-level KKT equivalent 
constraints (25) - (30).  

To linearize 
j

P
b t jtPλ ′ , we applied strong duality method used 

in [28]. The corresponding linearized term of 
j

P
b t jtPλ ′  as 

follows: 

 , , , , , , ,

, , ,

p max max min min q max max

q min min max max min min

i N M L i N M i J M N L

i LM

j

N

L

J

P
b t jt

jt

ip i itp i it i
it it it

it i bt bt bt bt
it bt bt

O U L
nt nt mt mt lt lt

nt mt lt

P

P P Q

Q V V

P P P

λ

µ µ µ

µ π π

δ δ δ

∈ ∈ ∈

∈

′Ω =

= − + −

+ − +

− − +

∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

  (33) 

The complementary slackness constraints (25) – (30) can 
be linearized as follow if we introduce a set of binary variables 

(.)tω  (.)tτ  to linearize each part. 
The linearized form of (25) (26) (27) (28) (29) (30) as 

follows: 

 min p min0 (1 ) , ,, , ,it i it i i JP P Mt L Nω≤ − ≤ ∀ ∈− Ο ∀   (34) 
 p minp min0 , ,, , ,it iit i J L M Ntωµ≤ ≤ ∀ ∈Ο ∀   (35) 
 max p max0 (1 ) , , ,, ,i it it i i J L MP t NP ω≤ − ≤ ∀ ∈− Ο ∀   (36) 
 p maxp max0 , ,, , ,it iit i J L M Ntωµ≤ ≤ ∀ ∈Ο ∀   (37) 
 min q min0 (1 ) , ,, , ,it i it i i JQ Q Mt L Nω≤ − ≤ ∀ ∈− Ο ∀   (38) 
 q minq min0 , ,, , ,it iit i J L M Ntωµ≤ ≤ ∀ ∈Ο ∀   (39) 
 max q max0 (1 ) , , ,, ,i it it i i J L MQ t NQ ω≤ − ≤ ∀ ∈− Ο ∀   (40) 
 q maxq max0 , ,, , ,it iit i J L M Ntωµ≤ ≤ ∀ ∈Ο ∀   (41) 
 min min0 (1 ) , ,bt b bt bV V t b Bτ≤ − ≤ − Ο ∀ ∀ ∈   (42) 
 min min0 , ,b bt bt t b Bπ τ≤ ≤ Ο ∀ ∀ ∈   (43) 
 max max0 (1 ) , ,bt bt it bV V t b Bτ≤ − ≤ − Ο ∀ ∀ ∈   (44) 
 max max0 , ,b bt bt t b Bπ τ≤ ≤ Ο ∀ ∀ ∈   (45) 

With a linearized form of MEPC, the bi-level 
programming is reformulated as a mix integer programming 
problem which can be solved by using some commercial 
software packages. The MIP formulation is as follows:  

 min G P
it it jt

itj jt
P VOLL Dδ + ⋅ +Ω∑ ∑   (46) 

Subject to: (2) - (7), (17) - (24), (31) - (32), (34) - (45) 

D. MG Bidding/Offering Strategy 
The microgrid is prosumer such that (1) it can submit 

offers to the distribution market operator when it exports 
power to the DS or (2) it can submit bids to the distribution 
market operator when it extracts power from the DS. The 
bidding/offering prices for MGs in bi-level model always 
coincide with DLMPs. However, this bidding/offering strategy 
may result in a solution that is not practical for the following 
reasons: (i) a flat offer curve may result in multiple solutions 
and degeneracy [28]; (ii) some incentive(s) or even protective 
policy are necessary to maintain the profitability of MGs; (iii) 
no way to ensure the market clearing to have increasing offer 
curves or decreasing bid curves; and (iv) bidding/offering 
curves in practice are more complicated than the linearized or 
piecewise linearized curve adopted in our bi-level model.  
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To provide a remedy to the issues, we propose a direct and 
simple bidding/offering strategy for microgrids to find 
bidding/offering price ( jtα′ ) based on two pieces of price 
information: MG corresponding marginal cost ( jtβ  ) and 
DLMPs ( btλ  ) in DS. The marginal cost of an MG can be 
obtained at the intersection of the aggregated marginal cost 
curve of its DGs and the maximum capacity of its PCC. 
DLMPs are declared at the DS level through the DEM 
clearing mechanism. Hence, a modified bidding/offering 
strategy for MGs is proposed as follows: 

Offering Strategy:  
1) If 0jtP = , it indicates that either MG j-th is on 

islanding mode or bidding/offering prices are not 
accepted. If P

jt btβ λ< , then P
jt btα λ′ = . If jt itβ λ> , 

then jt jtα β′ = . This keeps MG j-th from being 
accepted at a higher price.   

2) If max0 jt jP P< ≤ and P
jt btβ λ< , it indicates that MG j-

th is working on grid connected mode. The MG j-th 
is transferring power to DS where the market price is 
relatively higher. Then we set P

jt btα λ ε′ = −  to make 
sure DS is willing to take more. 

3) If max0 jt jP P< ≤ and P
jt btβ λ> , it indicates that MG j-

th is generating power with higher cost to supply DS 
loads at a lower price. Then we set jt jtα β′ =  to 
maintain MG’s profitability in the market. 

Bidding Strategy: 
4) If min 0j jtP P≤ <   and P

jt btβ λ< , it indicates that the 
MG j-th is extracting power from DS with higher cost 
even though it has a cheap power source available 
inside. Then we set jt jtα β′ =  to maintain the 
profitability of MG j-th. 

5) If min 0j jtP P≤ <  and P
jt btβ λ> , it indicates that MG j-

th is extracting power from DS rather than generating 
power itself with higher cost. Then MG will bid with 
price P

jt btα λ ε′ = + . The decreasing bid can encourage 
DS to export more power to MG j-th. 

 It is noted that ε  is a very small positive constant, 
e.g., 510−  . 

E. Uncertainty Modeling 
When MGs participate in DEM as price makers, 

uncertainties associated with their rivals (DS-owned DGs) and 
customers in DS highly affect the bidding/offering decisions 
that MGs make. The bidding/offering prices made by rivals 
and customers may fluctuate with load consumption changes. 
The probability distribution of a real-time market price is not 
precisely known and may vary with unpredictable system 
conditions in short term operation such as network, load and 
units availabilities [20]. Hence, a robust optimization method 
is more appropriate to handle these uncertainties. The offering 
price of DGs can be modeled as a summation of two 
terms ˆO O

nt nt ntδ δ ξ+ , where O
ntδ is a predicted offering price, ntξ is 

an unknown variable associated with price uncertainty, and 
ˆO
ntδ  is a scale parameter. In setting up a robust optimization 

model, the uncertainty set for ntξ  is modeled as follows: 

 { : [ , ]}nt nt nt nt ntU d dξ ξ= ∈ − ,  (47) 

Above, parameter ntd controls the level of uncertainty. If 
0ntd =  , the price uncertainty is ignored. If 1ntd = , it means 

that all price uncertainties are taken into account. Similarly, 
the customers’ offering price ( L

ltδ ) can be modeled 
as ˆL L

lt lt ltδ δ ξ+  . The uncertainty set for ltξ  is defined as  
 { : [ , ]}lt lt lt lt ltU d dξ ξ= ∈ − .  (48) 

Consequently, the objective function that minimizes the 
worst-case scenario [39] can be stated as:  

 
min( +

ˆ ˆ( ( ) ( ) ))
nt nt lt lt

U
jt jt mt mt

jt mt

O O L L
nt nt nt nt lt lt lt ltU U nt lt

P P

max P P
ξ ξ

α δ

δ δ ξ δ δ ξ
∈ ∈

+

+ − +

∑ ∑

∑ ∑
  (49) 

Proposition: In objective function (49),  
ˆ ˆ( ( ) ( ) ))

nt nt lt lt

O O L L
nt nt nt nt lt lt lt ltU U nt lt

max P P
ξ ξ

δ δ ξ δ δ ξ
∈ ∈

+ − +∑ ∑  is 

equivalent to ˆ ˆ( ) ( )O O L L
nt nt nt nt lt lt lt lt

nt lt
d P d Pδ δ δ δ+ − −∑ ∑  . 

Proof: See Appendix. 

Therefore, the robust optimization model for the LLMP is: 

 
min( +

ˆ ˆ( ) ( )

U
jt jt mt mt

jt mt

O O L L
nt nt nt nt lt lt lt lt

nt lt

P P

d P d P

α δ

δ δ δ δ+ + − −

∑ ∑

∑ ∑ ）
  (51) 

                    Subject to (10) - (17) 

The objective function states that DS-owned DGs attempt 
to maximize their profits by offering the highest price possible. 
In the meantime, the customers wish to decrease its bidding 
price to lower the energy cost. Following the linearization 
process discussed in Section III (B&C), the robust MIP model 
(53) is essentially the same as (47) by replacing O

ntδ  with 
ˆO O

nt nt ntdδ δ+  and L
ltδ  with ˆL L

lt lt ltdδ δ−  formulated as follows: 
 min G P

it it jt
itj jt

P VOLL Dδ ′+ ⋅ +Ω∑ ∑   (52) 

s.t.   (2) - (7), (18), (19), (21)- (24), (31) - (32), (34) - (45)  
ˆ ˆ( , )O O O L L L

nt nt nt nt lt lt lt ltd dδ δ δ δ δ δ′Ω = Ω → + → −  

 p min p maxˆ 0 ,O O P n
nt nt nt nt nt btd b B tδ δ µ µ λ+ − + − = ∀ ∈ ∀   (53) 

 p min p maxˆ 0 ,L L P l
lt lt lt lt lt btd b B tδ δ µ µ λ− + − + + = ∀ ∈ ∀   (54) 

IV. NUMERICAL EXPERIMENTS 
The model is tested on a modified IEEE 33-bus 

distribution system with three microgrids and five DGs in the 
system [40]. The model was solved using IBM CPLEX [41] 
on a computer laptop equipped with 2.80 GHz Intel CPU and 
8GB of RAM. To express the all parameter of the system in 
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per-unit, the power base of the test system is set at 10MVA. 
The voltage base of the system is set at 12.66kV at utility side. 
The other details of MGs can also be found in [40] including 
output capacity, price information, and load capacity. The 
following cases are used for experiments: 

Case 0: Grid-connected MGs in a deterministic case (46) 
Case 1: Grid-connected MGs in worst case scenarios (52) 
Case 2: Islanded mode of MGs operation 
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Fig.2. Modified IEEE 33-bus distribution system 

Case 0 and Case 1: The goal is to find the optimal 
bidding/offering strategy within a 24-hour time horizon. Fig.3 
shows DLMP trend over time for both cases, in which the 
same DLMP is applied to all nodes in the network at a specific 
time. We find very little variation in DLMPs between nodes, 
reflecting a lack of binding line constraints on this small 
network. The trend shows different DLMPs between the 
deterministic model and the robust model during 1:00am-
13:00pm and 20:00pm-midnight, which is referred to off-peak 
hours. During these specific time periods, the DLMP of the 
robust model is 10% higher than that of the deterministic 
model. There are two main reasons for this difference. First, 
DS-owned DGs attempt to increase offer prices to secure 
maximum profits because they are not sure about the real-
market price. Second, some DS-owned DGs (DG1, DG2 and 
DG5) are not fully dispatched during off-peak hours that 
MGs’ bids/offers have limited influence on the market price. It 
also shows that DLMPs stay relatively low during the non-
peak hours (less than 0.66 $/p.u.).  

The DLMPs start increasing at 13:00pm until they reach 
the peak at 17:00pm, and gradually decline for the rest of the 
period. During this time period (peak-hours), the prices are 
considerably higher than non-peak hours. This is because the 
consumer requirements increase rapidly during this period, 
which is indicated in Table III [40]. We noticed that the 
DLMPs for both cases remain identical between 13:00pm and 
20:00pm. After DS-owned DGs reach the maximum output 
capacity, the DS begins to import more power from MGs with 
extra generation capacity. This action helps DS to stabilize the 
DLMPs at the beginning and end of peak-hours. After both 
DGs and MGs reach the maximum capacity, the utility side is 
the only power supplier option that DS have, even at a 
relatively high price. The utility prices are the same for both 
cases, which provides another reason that the DLMPs are 
identical during peak hours.  

We continue our discussions using Table I., which shows 
the comparison between the two cases. The results in column 
“Entity” are associated with DS clearing market mechanism 

(DS) and MG operation (MG#). The sources of DS clearing 
market include MGs, DGs, loads, and utility. The sources of 
MG operation cost consist of (1) interaction with the DS and 
(2) power generation. The negative values in column “Cost” 
indicate profits. A positive value in column “Power Injection” 
indicates the total power transfer from a source to an entity, 
while a negative value indicates the opposite direction of the 
power transfer. The evidence of MGs’ schedule adjustment 
can be found to show that MGs are helpful in dealing with DS 
price uncertainty during the peak hours. The power generation 
cost of MG1 and MG2 in the robust model ($10000 and 
$5300) is higher than in the deterministic model ($8900 and 
$4100). It is obvious that these extra powers are transferred to 
DS, as the difference power injection values show.  

Unlike other MGs, MG3’s power generation cost ($6900 
to $6400) decreases as well as power exportation (0.612p.u. to 
0.514p.u.) in the robust model. There are two explanations. 
First, the conservative DGs’ marginal cost in the robust model 
results in reduction of power generated by all DS-owned DGs. 
To overcome the resulting power shortage, the power injection 
from utility increases, which can increase the total feeder loss. 
At the same time, the power injection of MG1 and MG2 
increases to create a counter flow on the main feeder to 
decrease the main feeder loss. The output of the MG3 is 
diminished because an increasing power injection from MG3 
leads to increase the feeder flow and then its ohmic losses. 
Most of the feeder loads can acquire power from a much 
closer power supply (MG1 and MG2) to reduce loss on the 
main feeder. This makes the MG3 not competitive. Second, as 
input data (Table VI. [40]) shows, MG3 has a DG (DG3) 
which has the least operation cost (0.03 $/p.u.) among all DGs 
in MGs. This DG is fully dispatched for 24 hours in both 
cases. As a result, the MG3 is less price sensitive than the 
other two MGs, which makes it less influenced by price 
uncertainty.  
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Fig. 3.     DLMPs of Case 1 and Case 2 

TABLE I.  RESULTS COMPARISON 

Entity Sources 

Case 0: 
 

Case 1:  
 

Cost ($) 
Power 

Injection 
(p.u.) 

Cost ($) 
Power 

Injection 
(p.u.) 

DS 

PCC(MG1) -106 -0.15 1216.5 0.069 
PCC(MG2) -3114.9 -0.803 -1641.2 -0.562 
PCC(MG3) 3818.7 0.621 3286.2 0.514 

DG 22200 5.831 22200 5.523 
Utility 1900 0.88 2300 0.96 
Loads -37500 -6.379 -32600 -6.504 
Total -12802 0 -5239 0 

MG1 
PCC 106 0.15 -1216.5 -0.069 
DG 8900 2.01 10000 2.229 
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Total 9006 2.16 8783.5 2.16 

MG2 
PCC 3114.9 0.803 1641.2 0.562 
DG 4100 0.817 5300 1.058 

Total 7214.9 1.62 6941.2 1.62 

MG3 
PCC -3818.7 -0.621 -3286.2 -0.514 
DG 6900 1.917 6400 1.81 

Total 3081.3 1.296 3286.2 1.296 

The total profit of DS in the robust model ($5239) is less 
than that in the deterministic model($12802). The decrease of 
profit comes from two parts. First, DS extracts more power 
from MGs to compensate power shortage, which is caused by 
price uncertainty. Second, the customers decrease their bids to 
acquire power from DS, which leads to profit loss from 
supplying load. 

Table II. illustrates some examples of revised MGs 
bidding/offering strategy. For a specific MG j-th at time 
period t : The DLMP ( P

btλ ) and marginal cost ( jtβ ) and the 
power exchange between MG and DS ( jtP ) are given. We can 
compare the original bid/offers ( jtα ) and the adjusted 
bid/offer ( jtα′ ). The MG1 at 10:00am extracts power from 
DS. 1,10 30,10

Pβ λ> , the bid with decreasing price is 0.44+ε. For 
MG2 at 21:00pm, 2,21 13,21

Pβ λ< , the fix offer is 0.5 to maintain 
its profit. For MG2 at 14:00pm, 2,14 13,14

Pβ λ< , the increasing  
offer is 0.66-ε. For MG3 at 3:00am, the 3,3 21,3

Pβ λ> , the fixed 
offer price is set at 0.5. 

Table III. is the results comparison between the original 
and the modified bidding/offering strategies for DS and MGs 
operation cost. The modified example assumes that the power 
interactions remain the same when the trading prices are 
modified.  The MGs benefit from the policies to maintain the 
profitability. In the meantime, the obtained market clearing 
profit of DS decreases correspondingly. It can be seen that 
there is a $470.08 total cost saving for MGs and a $297.69 
profit loss for DS. Therefore, we can expect that the proposed 
policy is practical and incentive, especially in the infancy of 
MG industry deployment.   

TABLE II.  EXAMPLE OF MODIFIED MG BIDDING/OFFERING STRATEGY 

J t 
P
btλ  

  ($/ p.u.) 

 jtP  

(p.u.) 
jtα   

($/ p.u.) 
jtβ   

($/ p.u.) 
jtα′  

($/p.u.) 
1 10 0.44 -0.024 0.44 0.5 0.44+ε 
2 21 0.91 -0.047 0.91 0.5 0.5 
2 14 0.66 0.026 0.66 0.5 0.66-ε 
3 3 0.44 0.022 0.44 0.5 0.5 

TABLE III.  COMPARASIONS OF MG BIDDING/OFFERING STRATEGY 

Entity 
Operation Cost($) 

Original Modified 
MG1 8783.50 8765.80 
MG2 6941.20 6796.45 
MG3 3286.20 2978.57 

Total MGs 19010.90 18540.82 
DS -5238.50 -4940.81 

 

 Case 2: This case studies the special occasion that MGs 
switch working mode from grid-connected to islanding in case 
of contingencies. We use T τ−  islanding rules [9] to test the 
system. By introducing binary variable jtρ  with constraints 
(55), (56) in upper level programming model, the jtρ  can 
control the MG working modes switch. Then we add one more 
constraint (57) to control the total number of MG islanding 
hours. 

 min max ,jt it it jt itP P P t i Jρ ρ≤ ≤ ∀ ∀ ∈   (55) 
 min max ,jt it it jt itQ Q Q t i Jρ ρ≤ ≤ ∀ ∀ ∈   (56) 

 jt
t

T i Jρ τ= − ∀ ∈∑   (57) 

The total number of islanding-hours (τ) from zero up to 
eight hours is tested based on the total operation time (24-hour 
(T) in the deterministic model). Fig. 4 and Fig. 5 show that the 
operation cost for MGs and clearing market profit for DS 
remain relatively stable as islanding hours increase. The larger 
number of islanding-hours results in decreasing interactions 
between MGs and DS. For MG with enough reserve, the more 
power generated through its own DGs to compensate the 
power lost during the islanding-hour. If not, the load shedding 
process is needed, which is likely to increase operation cost 
for MG. The DS, on the other side of islanding event, reacts to 
islanding events correspondingly. DS-owned DGs react to 
MGs’ islanding action with an increasing or decreasing power 
output schedule. The solution results show that each MG has 
enough operating reserve to supply its local load without load 
shedding. Therefore, Fig. 4 and Fig. 5 illustrate that the MG’s 
operation cost and DS’s clearing market profit depend on their 
DGs’ marginal cost in different number of hours islanding 
mode.  
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Fig. 4.  Operation cost of MGs with increasing islanding time 
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Fig. 5.  DS clearing market benefits 

 In summary, the coordinated pool strategy provides an 
efficient way for MGs to participate into DEM with lower 
cost. A bidding/offering strategy enables MGs to successfully 
help DS to handle price uncertainty and islanding.    
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V. CONCLUSION 
A coordinated pool strategy for microgrid as price maker 

to participate in market-based distribution electricity market 
was proposed and formulated. We presented a reformulation 
of the original bi-level model as a linear mix-integer 
programming model, which is easier to solve. Three sets of 
experiments (models, strategies, and configurations) were 
performed to compare (1) deterministic model vs. robust 
optimization model, (2) original strategy vs. revised strategy, 
and (3) islanding mode vs. non-islanding mode.  It was shown 
that having MGs in DS can help stabilize the DLMPs during 
the peak hours, and mitigate impact when an MG runs in an 
islanding mode. It is also shown that the proposed coordinated 
pool strategy performed well in dealing with the interactions 
between the DS and MGs. Furthermore, the market-based 
DEM created a fair and competitive environment for all 
market participants. Utilizing MGs as price makers with 
associated market risk enabled MGs to become competitive 
through a bi-directional power flow. One can extend our 
model to include ancillary service market. 

VI. APPENDIX 
Derivation of Robust Objective Function (50) 

 

ˆ ˆ( ( ) ( ) )

ˆ ˆ( ( ) ) min( ( ) )

ˆ ˆ( ) ( )
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O O L L
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