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Abstract—This paper addresses the microgrid expansion plan-
ning (MEP) problem. In such a competitive electricity market, it
will assist Community Microgrid (COMG) companies in deciding
whether or not they should invest in microgrid installation.
A two-stage stochastic optimization approach is proposed to
eliminate the traditional centralized planning which has led to
competition among COMGs, Generation Companies (GENCOs),
and Transmission Companies (TRANSCOs) for power delivery.
The objective of the two-stage stochastic programming model
is to maximize the expected revenue from these three power
companies while ensuring the cost-effectiveness and reliability
of the power system under uncertain factors such as load
growth and component outages. The proposed model is solved
by decomposing the planning problem into two stages. The
goal of the first stage is to maximize the profits of COMGs,
GENCOs, and TRANSCOs; the second stage is to minimize
short-term operation cost considering uncertainty to enhance the
reliability of the system. Computational results from two IEEE
test systems are presented to analyze the effectiveness of the
proposed approach.

Index Terms—Benders decomposition, component outages un-
certainty, electricity market, microgrid expansion planning, rural
electrification, two-stage stochastic mixed-integer programming.

NOMENCLATURE

Indices:
∧ A symbol to indicate pre-determined variables.
b Load block subscript index, b = {1, ..., NLB}, NLB:

Number of seasons at each year.
C Candidate unit or line superscript index.
E Existing unit or line superscript index.
(.) Power output/outage subscript indices: Generator

(G), Line (L), Microgrid (M ), and Imaginary unit
(R), Bus (B).

i Generation unit subscript index, i = {1, ..., NG},
NG: Number of units.

j Transmission line subscript index, j = {1, ..., NL},
NL: Number of lines.

k MG subscript index, k = {1, ..., NM}, NM: Number
of MGs.

n Bus or substation subscript index, n = {1, ..., NB},
NB: Number of substations.

s Scenario subscript index, s = {1, ..., S}, S: Number
of Scenarios.

t Time subscript index, t = {1, ..., T}, T: Number of
planning horizon years.

r Iteration index.
Parameters:
∆Tb Time block duration.
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c Operational cost for imaginary unit ($/MWh).
D Total demand (MW).
d(t) The present worth coefficient based on discount rate

δ, d(t) = (1 + δ)t−1.
in(.) Investment cost ($/MW/year).
ip(.) Incentive payment ($/MW/year).
K(.) Incidence matrix.
mc(.) Marginal operating cost ($/MWh).
PDM Local demand in COMG (MW).
Pmax
(.) Maximum capacity (MW).
re(.) Obtained revenue from LMP and SMP ($/MWh).
SF (Ŷ ) Shift factor matrix based on power gird topology.
U(.) Availability status of components (G), (L), and (B).
Variables:
PG Dispatched capacity of generation (MW).
PL Transmission line flow (MW).
PM Aggregated dispatched capacity of COMG (MW).
PR Dispatched capacity of imaginary generation (MW).
PEX Power exchange between MG and main grid (MW).
S Slack variables.
X,Y,Z Installation status of units, lines, and MGs.
α,β,γ,π Dual variables.
λ,µ System lambda and shadow price.
ϕ Total operational cost.

I. INTRODUCTION

Grid modernization has increased attention in recent years,
by revamping the traditional way of supplying and delivering
electricity [1]. Many critical lifeline systems are dependent on
electricity infrastructure, which is subject to an increase in ex-
treme natural disasters and other major unexpected disruptions.
Therefore, developing a new electric power system with the
ability to provide reliable, economical, and environmentally
friendly levels of power is essential. The traditional power
system can be modernized by utilizing Microgrids (MG). An
MG is an advanced technology that can improve power system
reliability, resiliency, and sustainability. Deploying MGs with
the ability to supply local loads is a desirable alternative to
promote rural electrification, energy efficiency, and total cost
saving of the system, as well as congestion reduction on
transmission lines and distribution main feeders [2]. In the
past, however, these realized abilities were rarely obvious in
terms of quantifiable for power investors [3]. It motivates us
to design a more practical and cost-effective power grid by
utilizing MGs based on a capacity market mechanism. This
mechanism provides real market price signals and incentive
payment as a guide and encouragement for power investors. A
community microgrid (COMG) integrates Distributed Energy
Resources (DERs) into advanced power distribution grids.
DERs are the smaller power resources include nondispatchable
renewable generation such as the wind and solar units; and



2

small scale dispatchable resources such as diesel generators,
microturbines, and energy storage [4].

Although a significant amount of research has been reported
in literature quantifying and optimizing the benefits of using
an MG [5]–[9], only a few studies have been dedicated to
developing an optimization model of the grid-connected MG
investment in the power market. Some studies in microgrid
planning have considered microgrids in islanded mode [7]–[9].
These studies have considered microgrid expansion planning
(MEP) separately from generation expansion planning (GEP)
and transmission expansion planning (TEP) in the power
system [10]–[14]; However, power sectors are not separable in
a vertically integrated utility system [15]–[19] and a modern
power market includes generation units, transmission lines,
and microgrids. Khodaei et al. [19] suggests a model that plans
the deployment of MGs in the grid and considers the impact of
integrated MEP with GEP and TEP under uncertainties while
minimizing the total investment and operational costs. This
paper has primarily focused on power expansion planning to
minimize the total operation, investment, and load shedding
costs of the system for MG investment as an alternative to
traditional GEP and TEP problem in electric power grid.
However, in reality, the owners of GENCOs, TRANSCOs, and
COMGs make decisions on the new component deployment
that can maximize their own profits in such a competitive
electricity market [20], [21]. The location and capacity of each
new MG depend on the financial sustainability of the individ-
ual investor’s decision. The cost associated with implementing
the investment of MG is a great concern to investors. The
main motivation of this paper is to develop a new model for
COMG investors to find optimal installation location, size, and
time for MGs in the electricity market while maximizing their
profits. Therefore, this paper enhances the long-term microgrid
planning method presented in [5], [6], [19], [22] by explicitly
addressing competitive capacity and operation of electricity
market, and microgrid for rural electrification.

In this paper, a market-based planning framework is pro-
posed to integrate MEP with coordinated GEP and TEP in a
competitive environment. In the proposed coordinated frame-
work, planner (ISO) maintains the system reliability in pre-
defined acceptable level by reliability evaluation to determine
if and when additional capacity is needed. The power grid
including (static) network flows and grid injections is modeled
with DC power flow. The DC power flow is computationally
light within the scope of coordinated problems.

Due to the uncertainty of forecasted electrical loads and
power system outages of substations, generation units, and
transmission lines [23], [24], optimization of electric power
over a planning time horizon is inherently a stochastic decision
problem. In this regard, we provide a two-stage stochastic
mixed-integer programming model to address both uncertain-
ties. The resulting model, however, is not easily scalable to
more realistic problem instances due to the binary variables
in the optimization model. To overcome this issue, a three-
phase algorithm is developed using Benders decomposition to
account for long-term planning while maximizing the total
profits and considering uncertainty impacts [25]–[27]. The
proposed algorithm features a tradeoff between the gained

Fig. 1. Aggregated Community Microgrid architecture.

profits and the level of reliability in the system.
Major contributions of this paper include: 1) to present op-

timal market-based planning and operation of gird-connected
microgrids; 2) to utilize correct and effective market-orinted
price signals to plan power components in power grid based on
the competitive electricity market; and 3) to quantify and op-
timize positive effects of deploying grid-connected microgrid
on operating condition and rural electrification.

The rest of this paper is organized as follows. In section II,
Community Microgrid model is explained. The mathematical
formulations and the proposed solution method are discussed
in section III. Section IV provides numerical studies to exam-
ine the efficiency of the proposed method. Section V concludes
this paper with future research.

II. COMMUNITY MICROGRID MODEL

As shown a typical COMG structure in Fig. 1, the De-
partment Of Energy (DOE) defines the COMG as a group
of the aggregated load and aggregated DERs that act as a
single controllable entity with respect to the grid at the Point
of Common Coupling (PCC) [28], [29]. The DOE considers
MG as an integrated energy system with the ability to operate
in a grid connected mode or in an islanded mode. Our
approach offers MGs interconnection at the Medium-Voltage
level with the main grid at the High-Voltage level by taken into
consideration the design without considering details of DERs
in COMG. Another benefit of considering the interconnected
MG is increasing revenue of the COMG by selling surplus
electricity to the main grid. Therefore, a cetraint portion of
the load demand at any bus with the connected MG can be
supplied by the local MG, and the rest of the load demand will
be supplied by conventional generation units through the main
grid. PEX in (1) shows the power exchange between MG k
and the main grid. PEX is positive, if MG k supplies its local
demand and sends its excess power output to the main grid.
Otherwise, it is negative.

PMbks(t) = PDMbks(t) + PEXbks(t) , ∀k, b, s, t (1)

III. PROBLEM FORMULATION AND SOLUTION
METHODOLOGY

Regarding Benders decomposition approach [25]–[27], we
propose a practical optimization approach in which three opti-
mization phases are solved in sequence to address “Investment
Planning”, “Feasibility Check on Reliability”, and “Optimality
Check on Operation Cost” as illustrated in Fig. 2.
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A. Master Problem for Investment Planning

Investment planning aims to maximize the profits of each
GENCO, TRANSCO, and COMG according to the installation
location and capacity size. The investment status of generation
units, transmission lines, and COMG units are determined in
the master problem (MP) in Phase A. The incentive payment
and revenue parameters on the objective function encourage all
market investors to share more capacity in the system. How
to determine and update these two parameters based on the
reliability evaluation and the operation cost assessment for the
system by the ISO in the first and second subproblem, respec-
tively is explained. The corresponding optimization model is:

max IG(PG, X, reG, ipG) + IL(PL, Y, reL, ipL)

+ IM (PM , Z, reM , ipM )− ϕ (2)
S.t.

0 ≤ PE
Gbi(t) ≤ PE,max

Gi , ∀b, i, t
0 ≤ PC

Gbi(t) ≤ PC,max
Gi X(t) , ∀b, i, t

0 ≤ PMbk(t) ≤ Pmax
Mk Z(t) ,∀b, k, t∣∣∣PC

Lbj(t)
∣∣∣ ≤ PC,max

Lj Y (t) , ∀b, j, t (3)

Xi(t) ≤ Xi(t+ 1) , ∀i, t
Yj(t) ≤ Yj(t+ 1) , ∀j, t
Zk(t) ≤ Zk(t+ 1) , ∀k, t (4)

The MP is formulated as a mixed-integer programming
model. The objective function (2) maximizes the investors’
profits by taking the total obtained income and subtracting
the operational cost of the system (ϕ) in a short term system
operation. Constraint set (3) enforces the production capacity
limits of all components. Constraint set (4) preserves the status
of installed components for the following years.

IG(PG,X, reG, ipG) =
∑
t,b,i

∆Tb(t)

d(t)
[reEGbi(t)P

E
Gbi(t)

+ reCGbi(t)P
C
Gbi(t) + ipGbi(t)Xi(t)]−

∑
t,i

ini(t)Xi(t)

d(t)
(5)

IL(PL,Y , reL, ipL) =
∑
t,b,j

∆Tb(t)

d(t)
[reCLbj(t)P

C
Lbj(t)

+ ipLbj(t)Yj(t)]−
∑
t,j

inj(t)Yj(t)

d(t)
(6)

IM (PM ,Z, reM , ipM ) =
∑
t,b,k

∆Tb(t)

d(t)
[reMbk(t)PMbk(t)

+ ipMbk(t)Zk(t)]−
∑
t,k

ink(t)Zk(t)

d(t)
(7)

Functions (5)-(7) represent the obtained income of the
strategic investors including the GENCOs, TRANSCOs and
COMGs, respectively. The first and second terms in IG repre-
sent the income of using existing and candidate units. The first
term in IL represents the income of using candidate lines. The
third term in IG and second term in IL represent the rising
income owed to obtained revenue from incentive payments
for enhancing the system reliability at each iteration. The first

Phase B. SP1: Feasibility Check on Reliability

Check system Feasibility and reliability

Update incentive payment

Reliability

Cut +

Incentive

Payment

Violation?
Yes

No

Phase C. SP2: Optimality Check on Operation Cost

Optimize Operation Cost (short term)

Calculate LMP and SMP and Revenue

Converge?

Yes

No

End of Planning Process

Optimality

Cut+

Revenue

GENCOs

X Y Z

TRANSCOs COMGs

Phase A. MP: Investment Planning

Fig. 2. Three-phase algorithm for the proposed MG-based planning model.

term in IM is the COMG’s revenue of generating power by
its DERs. The second term represents the generated incentive
payment by the ISO to promote the COMGs for installing the
new MG in grid buses. The last term in IG, IL, and IM is the
installation cost of the units, lines, and MGs.

B. Subproblem 1: Feasibility Check on Reliability

In Phase B, the reliability criterion is checked to ensure
the reliability index of the system planning, which is satisfied
based on the given arrangement of the generation units, MGs,
and transmission topology. Subproblem 1, SP1bst is given
for each scenario s, time t, and load block b according to the
determined X̂r, Ŷ r, and Ẑr, as follow:

vbs(X̂r(t), Ŷ r(t), Ẑr(t)) = min1TS+
s + 1TS−

s (8)
S.t.

1T (KGPGs +KMPMs −Ds) = 0 (9)

SF (Ŷ ) (KGPGs +KMPMs −Ds)− S+
s ≤ Pmax

L (10)

SF (Ŷ ) (KGPGs +KMPMs −Ds) + S−
s ≥ Pmax

L (11)

PE
Gbis(t) ≤ PE,max

Gi UE
Gbis(t) ,∀i (12)

PC
Gbis(t) ≤ PC,max

Gi X̂r
i (t)UC

Gbis(t) ,∀i;αr
1bis(t) (13)∣∣∣PE

Lbjs(t)
∣∣∣ ≤ PE,max

Lj UE
Lbjs(t) ,∀j (14)

∣∣∣PC
Lbjs(t)

∣∣∣ ≤ PC,max
Lj Ŷ r

j (t)UC
Lbjs(t) , ∀j;βr

1bjs
(t), β

r

1bjs(t) (15)

PMbks(t) ≤ Pmax
Mk Ẑr

k(t)
∑
n

KMknUBbns(t) , ∀k; γr
1kbs(t) (16)

PE
Gbis(t), PC

Gbis(t), PMbks(t), S+
s , S

−
s ∈ R+ , ∀i, j, k (17)

The proposed reliability index is based on the unserved
load at each bus of the system. But, the objective function
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(8) minimizes transmission flow congestion. Constraint (9) is
system energy balance. Constraints (10)-(11) show that the
total optimal transmission flow congestion is equal to the total
nodal real power imbalance of the grid. Constraints (14)-(16)
enforce the capacity limits regarding availability of compo-
nents. Generation units, transmission lines, and substations
can be damaged due to an extreme event. Relevant to this
issue, uncertain binary parameters UGbis, ULbjs, and UBbns

are determined using simulation to formulate the impact of
electrical failures due to a unexpected distribution system
interruption. Moreover, failure of a substation (UBbjs) causes
failure of the generation unit and transmission lines connected
to this substation. This effect of a failure of a substation on
the related components can be calculated using Algorithm 1.

Algorithm 1 Substation failure
1: for b, i, j, s, t do
2: if

∑
nKGinUBbns(t) < 1 then

3: UGbis ← 0
4: end if
5: if

∑
nKLjnUBbns(t) < 2 then

6: ULbjs ← 0
7: end if
8: end for

The power system reliability assessment is to evaluate
the total expected unserved energy of the system load. The
Loss Of Energy Probability (LOEP) index is often used as a
performance metric to calculate the expected unserved energy.
LOEP is the ratio of the Expected Unserved Energy (EUE)
to the total energy demand of the system. The LOEP index
determines reliability violation based on the total unserved
load at each load block b for each year t, and each sce-
nario s, which is associated with transmission congestion,
and contingencies on generation units, lines and MGs. The
total unserved load is automatically calculated by (8). When
the expected ratio of total unserved energy over the total
required energy is greater than the threshold value of LOEP,
Es [v̂bs(t)∆Tb(t)/Lbs(t)∆Tb(t)] ≥ LOEP , the reliability cut
(18) will be generated and added to the MP. This will force the
investors to revisit and modify the values of X,Y, and Z to
reduce the expected unserved energy. The cut (18) is calculated
based on Benders decomposition approach. The cut is a func-
tion of the dual variables α1, β1, and γ1 of constraints (13),
(15) and (16) contain pre-determined variables X,Y, and Z,
respectively. These pre-determined variables are sent by the
MP (2).

Es[
∑
i

αr
1bis(t)PC,max

Gi UC
Gbis(t)

(
Xi(t)− X̂r

i (t)
)

+
∑
j

(βr

1bjs
(t) + β

r

1bjs(t))PC,max
Lj UC

Lbjs(t)
(
Yj(t)− Ŷ r

j (t)
)

+
∑
k

γr
1bks(t)Pmax

Mk UBbnks(t)
(
Zk(t)− Ẑr

k(t)
)

+ v̂bs(X̂r(t), Ŷ r(t), Ẑr(t))] ≤ LOEP × E[Lbs(t)],∀b, ∀t. (18)

The MP (2) with this added reliability cut (18) may result
in different optimal solutions. Note that the main objective
of the MP is a profit maximization for each investor. In

order to take the impact of the reliability cut into account
in the investor’s decision making problem, the reliability cut
must be projected into the profit function of each investor
in MP (2). This can be viewed as an incentive payment,
which is called an incentive reliability signal. Particularly,
the ISO is authorized to establish a power system planning
incentive program to support the installation of additional
generation resources and an adaption of certain advanced
power generation technologies to improve the global reliability
of the power grid. This incentive reliability signal encourages
power investors to expand more capacity to the locations
with weak power. The resulting MIP investment problem
with this signal requires adding an additional pair of linear
constraints 0 ≤ X,Y, Z ≤ 1 to formulation (2). This revised
model is solved and the corresponding dual variable (π) of
constraint (18) is calculated to update the incentive reliability
income for each investor, at each block b, and per year t
in (19).

iprGbi(t) = πr
btEs

[
αr
1bis(t)PC,max

Gi UC
Gbis(t)

]
iprLbi(t) = πr

btEs

[(
β
r

1bjs(t) + βr

1bjs
(t)
)
PC,max
Lj UC

Lbjs(t)
]

iprMbi(t) = πr
btEs [γr

1bks(t)Pmax
Mk UBbnks(t)] (19)

The incentive payment functions (19) updates at each it-
eration r by multiplying the dual variable πr, which can be
interpreted as the price of one unsatisfied load (MW ) to the
expected value of extra added capacity of candidates. The
incentive payment for a new capacity investment is updated in
the objective function of MP as an incentive reliability signal
for all participants by the ISO.

C. Subproblem 2: Operation Cost Checking

The system operation cost including the total short run
marginal cost of all existing and installed candidate capacities
of is minimized in Phase C. Subproblem 2, SP2bst at each
load block b in year t for each scenario s is formulated as:

wbs(X̂r(t), Ŷ r(t), Ẑr(t)) = min
∑
i

(
mcEGbi(t)P

E
Gbis(t)+

mcCGbi(t)P
C
Gbis(t)

)
+
∑
j

mcCLbj(t)P
C
Lbjs(t)

+
∑
k

mcMbk(t)PMbks(t) +
∑
n

cRPRbns(t) (20)

S.t.

1T (KGPGs +KMPMs +KRPRs −Ds) = 0,λr
s (21)∣∣∣SFE(Ŷ ) (PRs +KGPGs +KMPMs −Ds)

∣∣∣ ≤ PE,max
Ls

;
(
µE

s

r
,µE

s

r
)

(22)∣∣∣SFC(Ŷ ) (PRs +KGPGs +KMPMs −Ds)
∣∣∣ ≤ PC

Ls

;
(
µC

s

r
,µC

s

r
)

(23)

0 ≤ PE
Gbis(t) ≤ PE,max

Gi UE
Gbis(t) , ∀i (24)

0 ≤ PC
Gbis(t) ≤ PC,max

Gi X̂r
i (t)UC

Gbis(t) , ∀i;αr
2bis(t) (25)

0 ≤ PC
Lbjs(t) ≤ PC,max

Lj Ŷ r
j (t)UC

Lbjs(t) , ∀j;βr
2bjs(t) (26)
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0 ≤ PMbks(t) ≤ Pmax
Mk Ẑr

k(t)UBbnks(t) ,∀k; γr
2bks(t) (27)

0 ≤ PRbns(t) , ∀n (28)

The objective function (20) is the total operation cost of the
system. It should be noted that the considered uncertainties
may cause the unexpected unserved load in some scenarios. To
provide feasibility of the operational cost problem, an amount
of imaginary generation units are considered as reserve to
serve the residual unserved energy of the system at each buses.
Constraint (21) represents energy balance of the system and
constraints (22)-(28) indicate components’ capacity limits.

The ISO simulates energy payment for all participants
based on the nodal Locational Marginal Prices (LMP) and
line Shadow Marginal Prices (i.e., SMP) as a revenue signal
[30]. LMP reflects the marginal cost of supplying one unit of
increased energy at a specific bus and SMP is the marginal cost
of supplying the next increment of maximum line capacity.
The λr

s , µE
s

r, and µC
s

r are dual variables of constraints (21)-
(23), represent system lambda, shadow price of existing and
candidate lines, respectively. The expected LMP and SMP are
calculated from λr

s , µE
s

r, and µC
s

r (29)-(31).

LMP r = Es

[
λr

s + λr
cong,s

]
(29)

λr
cong,s = SF T

s (Ŷ )
(
µr

s
− µr

s

)
(30)

SMP r = Es

[
µC

s

r − µC
s

r
]

(31)

Furthermore, the generated optimality cut (32) for all
scenarios sends to MP at each iteration based on Benders
decomposition, where ϕ calculates the system operational cost
in the objective function (2).

Es[
∑
i

αr
2bis(t)PC,max

Gi UC
Gbis(t)

(
Xi(t)− X̂r

i (t)
)

+
∑
j

βr
2bjs(t)PC,max

Lj UC
Lbjs(t)

(
Yj(t)− Ŷ r

j (t)
)

+
∑
k

γr
2bks(t)Pmax

Mk UBbnzs(t)
(
Zk(t)− Ẑr

k(t)
)

+ ŵbs(X̂r(t), Ŷ r(t), Ẑr(t))] ≤ ϕ ,∀b, ∀t (32)

By the Duality theorem [27], our proposed algorithm pro-
vides upper and lower bounds to the solution in each iteration.
Once the operation cost problem is solved, the lower and upper
bounds to the solution should be calculated. The upper bound
(33) and lower bound (34) solutions at the rth iteration update
with total obtained income of all market participants and total
system operation cost.

ρrupper =IG(P ∗
G

r−1
, X̂

r−1
, reG

r−1, ipG
r−1)

+IL(P ∗
L

r−1
, Ŷ

r−1
, reL

r−1, ipL
r−1)

+IM (P ∗
M

r−1
, Ẑ

r−1
, reM

r−1, ipM
r−1)− ϕ∗ (33)

ρrlower =IG(P ∗
G

r
, X̂

r
, reG

r, ipG
r) + IL(P ∗

L
r
, Ŷ

r
, reL

r, ipL
r)

+IM (P ∗
M

r
, Ẑ

r
, reM

r, ipM
r)

−
∑
b,t

Es

[
wbs(X̂r(t), Ŷ r(t), Ẑr(t))

]
(34)

The algorithm continues until the stopping criterion (35) is
met, where ε is a small tolerance value between 5×10−6 and
3 × 10−3 [26], [31]. We set ε at 0.003.

∣∣(ρrupper − ρrlower

)
/ρrupper

∣∣ ≤ ε (35)

Algorithm 2 depicts all calculation steps described above in
our proposed algorithm and it is self-explanatory.

Algorithm 2 The proposed algorithm

1: Initialize ε, r, X̂r , Ŷ r , Ẑr , ρrlower , ρrupper , v̂bs,
2: while

∣∣(ρrupper − ρrlower

)
/ρrupper

∣∣ > ε do
3: while v̂bs > ε do
4: Solve (8) for all b, t, and s to obtain optimal v̂bs(t) and

dual variables αr
1bis(t), βr

1bjs
(t), β

r

1bjs(t), γr
1kbs(t).

5: Generate reliability Benders cut (18).
6: Add the generated cut to MP (2).
7: Solve relaxed MP (2) to obtain the dual value πr

bt

of reliability cut (18).
8: Update incentive payments ipG, ipL, ipM at (2)

by (19).
9: r ← r + 1.

10: Solve (2) to obtain optimal X̂r(t), Ŷ r(t), Ẑr(t).
11: end while
12: Solve (20) for all b, t, and s to obtain optimal ŵbs(t) and

dual variables λr
s, µE

s

r
, µE

s

r
, µC

s

r
, µC

s

r
, αr

2bis(t)

, βr

2bjs
(t), β

r

2bjs(t), γr
2bks(t).

13: Generate optimality cut (32).
14: Add the generated cut to MP (2).
15: Calculate LMP and SMP by (29) and (31), respectively.
16: Update reG, reL, reM based on calculated LMP and

SMP.
17: r ← r + 1.
18: Solve (2) to obtain optimal X̂r(t), Ŷ r(t), Ẑr(t).
19: Calculate ρrupper and ρrlower by (33) and (34).
20: end while

IV. CASE STUDIES

This section presents numerical results from two case stud-
ies based on the IEEE six-bus and modified 118-bus test
systems described in [32]. Model (2)-(35) has been solved
using CPLEX 12.6.1.0 [33] under GAMS [34] on a Linux
server with 24 processors at 2.53 GHz and 128 GB of RAM.

A. Six-Bus System

A six-bus test system is considered [21], where it has seven
existing and seven candidate lines, three existing and eleven
candidate units and one candidate COMG. One candidate
COMG is connected to bus 3. The loads are located at buses
3, 5, and 6. More details of the test system and the figure
can be found in [32]. The following model parameters are
given as inputs: the planning horizon is ten years, there are
four load blocks, the base year peak load is 25 MW, and the
base year energy demand is 107.8 GWh, the LOEP is at 5%
for all load blocks at every planning year, and the discount
rate δ is assumed at 5%, which is used for net present value
calculation. A normal probability distribution function with 0
mean and 0.01 standard deviation values are used to generate
random values for peak load and load growth rate at each load
block. A uniform probability distribution function in the range
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TABLE I
INSTALLATION YEAR OF CANDIDATE GENERATION UNITS AND COMG

G1 G3 G4 G5 G6 G7 G8 MG
Case 0 1 8 - 10 5 2 - 1
Case 1 1 8 8 1 1 4 5 1

TABLE II
INSTALLATION YEAR OF CANDIDATE TRANSMISSION LINES

L1 L2 L3 L4 L5 L6 L7
Case 0 - 1 1 1 1 1 1
Case 1 1 1 1 1 1 1 1

TABLE III
TOTAL OPERATION COSTS AND UNSERVED ENERGY

Case 0 Case 1 Case 2 Case 3
Total Opr. cost($× 103) 28.834 38.531 35.966 43.692
Unserved energy(MWh) 0 18.463 0 20.663

of 0 and 1 is used to randomize the component outages. One
thousand scenarios are generated using the Latin Hypercube
Sampling program to represent the uncertainties in demand
and component outages [35]. Recall that the scenario reduction
is applied to reduce the computation efforts while maintaining
the solution accuracy using the SCENRED tool [36]. Thus, the
initially generated 1000 scenarios were reduced to 10 scenarios
using SCENRED and more details can be found in [32].

Five case studies are designed to study model performance
based on two factors: load growth and component outages
uncertainty and COMG planning conditions. Under the as-
sumption that COMG planning is considered in the model, the
first two cases compare the difference between two modeling
approaches: a deterministic model and a stochastic model (2)-
(35). The second two cases are to show the model performance
when COMG planning is not considered. The last case is
studied to observe the effect of COMG planning on different
locations.

• Case 0) Deterministic model with COMG planning.
• Case 1) Stochastic model with COMG planning.
• Case 2) Deterministic model without COMG planning.
• Case 3) Stochastic model without COMG planning.
• Case 4) Stochastic model with mutliple COMG planning.

The experiment results are presented in Tables I and II which
summarize the installation year of candidate generation units,
COMGs and transmission lines results for Case 0 and Case 1.

Case 0) Deterministic model with COMG planning: The
goal of this model is to determine the coordinated investment
planning of three power company investors by maximizing
their profits. This model is solved by our proposed algorithm
without considering uncertainties. In the original six-bus test
system, the existing lines are congested because the existing
line capacities are not enough to supply the demand at load
buses. Hence, a new component investment is needed to satisfy
load demand and relieve the transmission line congestion. The
solution results show the deterministic reliability criterion (18)
is violated in the first iteration of the algorithm. This fact
forces ISO to activate incentive payment as an incentive
reliability signal to encourage the investors of candidate lines
2-7. As it is shown in Table II, the obtained solution proposes

the installation of L2-L7 in Year 1. According to tables I-
II, our investment plan prefers to construct the lines more
than generators. This is because the operation and investment
costs are cheaper compared to the candidate generators and
microgrid. The plan suggests the installation of generation
units G1, G3, and G5-G7. For example, there are two candidate
generators G1 and G2 connected to bus 1, where G1 is
considered to be installed at year 1. G1 offers a less expensive
operation cost and higher generation capacity compared to G2.
Summing up all these, from the investors viewpoint, we can
claim that our model selects the more profitable offers based
on market prospective while considering the system reliability.

From the COMG point of view, MG is installed at year 1, at
the earliest year. MG investment is more profitable; however,
there are two other candidate generation units G2 and G4 with
a higher capacity and smaller investment cost. These results
verify that the installation of MG with the ability to supply the
local load and lower operational cost reduces the transmission
line investment cost as well as the system operational cost by
$7132.62. This is a consequence of local supplying.

Case 1) Stochastic model with COMG planning: The
coordinated planning of three power companies is applied
under uncertainties. The solution of the stochastic model (in
Tables I and II) suggests installing the additional candidate
generation units G4 and G8 and hastening the installation
of G5 and G6. Even though G4 and G8 are the most ex-
pensive candidate units, the reliability constraint (18) forces
the investors to install them. Because they are associated
with lower Forced Outage Rate (FOR). Adding more reliable
generators with less FOR to the network will reduce the total
power mismatch considering power outages. As compared
with Case 0, generators are installed earlier in Case 1 due
to an anticipated higher amount of unserved energy under
uncertainties. As a result, there is an increase in power supply
by 18.50MWh to satisfy the system reliability level.

In Case 0, the solution process required fourteen price signal
loop iterations to check operational cost in Phase C which is
taken 16.409 seconds to solve. Compared to the results of Case
0, Case 1 required six price signal loop iterations and took
63.486 seconds to converge. Consequently, the solution time is
higher in Case 1, even though the scenario reduction is applied.
Figure 3 shows that the stochastic model’s CPU solution time
increases exponentially as the number of scenarios. It indicates
the importance of scenario reduction on CPU calculation time.

Case 2) Deterministic model without COMG planning:
The result of this case is given in Table III, it shows 24.74%
total operation costs addition compared with Case 0.

Case 3) Stochastic model without COMG planning: The
generation and transmission expansion planning problem is
solved without considering the MG installation. The solu-
tion result shows that applying COMG reduced the expected
amount of unserved energy by 11.92%, because the COMG
supplies the local load without using transmission lines that
inherently have the possibility of outage.

Another factor affecting the investment decision of MG is
the impact of the electricity market LMP in a short term
operation. at the local COMG. Figure 4 illustrates the expected
LMP at bus 3 for block 1 for Case 1 and 3. The expected LMP



7

10 20 30 40 50 60 70 80 90 100

No. of reduced scenarios

3.5

4

4.5
M
P

O
b
je
ct
iv
e
($
)

×10
4

0

500

1000

C
P
U

ti
m
e
(s
)

Fig. 3. The required CPU time to solve the proposed model based on number
of scenarios.

1 2 3 4 5 6 7 8 9 10

Year

50

100

150

200

L
M
P
($
/
M
W
h
) Case 3

Case 1

Fig. 4. LMP over planning years at bus 3 for the first load block.

TABLE IV
INSTALLATION YEAR OF CANDIDATE GENERATION UNITS AND COMGS

G1 G3 G4 G5 G6 G7 G8 M1 M2
Case 1 1 8 - 10 5 2 - 1 -
Case 4-1 1 8 8 3 1 4 5 1 1
Case 4-2 1 8 - 3 1 1 5 1 1

TABLE V
TOTAL OPERATION COSTS AND UNSERVED ENERGY

Case 1 Case 4-1 Case 4-2
Total Opr. cost($× 103) 38.531 36.011 35.038
Unserved energy(MWh) 18.463 14.414 17.583

profiles for other blocks are the same as block 1. This figure
verifies that in Case 1 the MG installation at year 2 creates
lower LMP at bus 3 ($47.677/MWh) in comparison to Case
3, without MG ($48.127/MWh). Therefore, MG investment
improves the LMP profile fluctuation at lower level values
over the planning horizon.

Case 4) Stochastic model with mutliple COMG plan-
ning.: In this case as well as the initial MG candidate at bus
3, one more MG is added into the system in two different
locations: 1) bus 5 and 2) bus 3. Table IV-V shows the result
of our investment plan for Cases 1 and 4. In Case 4-1, the
plan prefers to install second MG at year 1 in bus 5. As
a result, second MG helps to reduce the expected unserved
energy and total operation costs by 28.091% and 6.998%,
respectively. However, from Case 4-2, it can be concluded
that increasing the penetration of MG not necessarily causes
a significant reduction in the unserved energy because both
MGs are connected at bus 3. Accumulation MG in bus 3, due
to the congestion of the network cannot significantly improve
the system load satisfaction. Therefore, the penetration and
spread of MGs over the power grid may have a significant
impact on less transmission congestion and more total load
serving in whole system.

(a) 600

32%

68%

(b) 800

29%

71%

(c) 2000
9%

91%

COMGs

GENCOs

Fig. 5. Ratio of used capacity of COMGs and GENCOs in the system to
served energy with different MGs investment cost: (a) $600, (b) $800, (c)
$2,000/MWh/year

It should be emphasized that the operation cost of existing
transmission line is not considered in the objective function of
SP2. The existing literature has been verified that more than
80% of the total expansion planning cost belongs to generation
units [37]. The optimization results also show less congestion
and generation costs with marginally greater total operation
cost in comparing to another case when the operation cost of
existing transmission line is considered on the objective func-
tion SP2. In this case, the value of feedback price signals to
candidate transmission line investors in MP will be decreased
in the wake of lower congestion prices. Therefore, deployment
of new candidate transmission line will be also diminished.
Consequently, the SP2 utilizes the full capacity of the existing
transmission line to satisfy the total demand in the system
instead of the new candidate transmission lines. In addition to
above consequences, the computational effort is pretty much
less and the CPU calculation time becomes faster. Note that
considering the exising lines operation cost in (20) results in
1.7% total cost saving, however, it raises the computational
time by 184.35%.

B. 118-Bus System

A modified IEEE 118-bus system is analyzed to study the
performance of the proposed solution approach. The system
includes 118 buses, 53 existing generation and 10 candidate
generation units, and 180 existing and 5 candidate lines [32].
The MGs can be deployed at a selected subset of the buses
and the MG’s marginal cost is assumed to be $1/MWh. Four
load blocks are assumed for a 10-year planning horizon. FORs
of generation units and transmission lines are 4% and 1%,
respectively. The initial system peak load is 3, 000 MW and the
initial energy demand is 21, 576 GWh with an annual load and
energy growth rate of 5%. One thousand scenarios on demand
and component outages are generated and were reduced to ten
scenarios using SCENRED. The probability of each reduced
scenario is presented in Table VI.

We analyzed the model sensitivity of changing investment
cost for MG in three different cases as shown in Fig. 5 and Ta-
ble VII. The sensitivity analysis is done for low, medium, and
high MG investment costs: $(600, 800, and 2000)/MWh/year.
The last three columns of Table VII show the installation year
of MGs for each case. In the case of $600/MWh/year, five
MGs are to be installed in years 1, 4, 5, and 7, while only one
MG (MG2) is suggested for installation in year 1 when the
investment cost is $2, 000/MWh/year. This makes economic
sense because it is less profitable to have MGs installed when
the investment cost of MG is higher. Figure 5 illustrates
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TABLE VI
PROBABILITY OF EACH SCENARIO AFTER SCENARIO REDUCTION

Scenario 1 2 3 4 5
Probability 0.077 0.078 0.119 0.109 0.095
Scenario 6 7 8 9 10

Probability 0.083 0.085 0.086 0.137 0.131

TABLE VII
COMG INSTALLATION YEAR

Bus Capacity.
(MW)

Inv. Cost ($/MWh/year)
600 800 2000

MG2 12 200 1 1 1
MG3 25 200 4 7 -
MG5 80 200 7 5 -

MG10 54 200 5 - -
MG12 56 200 5 8 -

the influence of MG investment cost on the penetration of
GENCOs and COMGs in the system. Under the scenario of
$600/MWh/year (Fig. 5 (a)), GENCOs supplied 68% of the
total amount of served energy and COMGs supplied 32%.
However, the share of supplied energy by these two resources
changed to 91% (GENCOs) and 9% (COMGs) when the MG
installation cost was increased to $2, 000/MWh/year.

Rural electrification provides few incentives for business
development such as GENCOs and TRANSCOs due to the
high investment cost associated with transmission lines and
low density customer basis per square mile [2]. Nevertheless,
COMGs offer renewable generation with the capability of
installing MGs at a remote region. To examine the impact
of our proposed framework on rural electrification, bus 12 is
elected at a remote location in the network, with 1.3364% of
load factor. Even though the $2, 000/MW/year investment cost
on a MG is much more expensive than a candidate generation
unit [32], the installation of MG at bus 12 (MG2) is still
profitable in year 1, because there are multiple benefits to have
MG2 for the power system operator and its investor. Benefits
include 1) unserved energy reduction by 11.23% in remote
areas, 2) $2.611×1015 cost savings corresponding to rejection
of additional generation units and additional transmission
lines in remote areas, and 3) the highest incentive payment
paid by ISO to MG2 investor is 50.92% greater than the
next highest incentive payment to another market participant.
This high payment is because MG2 enhanced the system
reliability LOEP by 6.77 × 10−4 at remote bus 12. Hence,
rural electrification can be enhanced by investing on COMGs
if it is profitable. These results show that our proposed model
not only reduces investment cost as well as unserved energy,
but also enhances the system reliability in remote location of
power grid.

As the network size gets larger, the computational burden
to solve the corresponding optimization model can become
more challenging. For the 118-bus system, the original model
without considering parameter uncertainty took 16 minutes to
solve, while our proposed stochastic approach with reduced
scenarios found the optimal solution in 6 minutes. Further-
more, Fig. 6 shows progression of the proposed solution
approach until it converges. It displays the stopping criterion
(35) and the operation cost over iteration. The algorithm
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Fig. 6. Convergence for the 118-bus system.

converged with a negligible gap at 2.60 × 10−7 at iteration
6. The cost made a big jump to $3.7, 242×1014 at iteration 3
and finally converged to $3.7, 336×1014 at the final iteration.

From the results presented in Table I to VII, the following
observations can be made regarding competitive markets.
(a) Even at a higher investment cost, a COMG is an excellent

alternative to traditional power resources under extreme
events because those events can cause a power outage.
Since MGs do not rely on the transmission system, having
COMGs can decrease the unserved energy and enhance
the system reliability.

(b) Having correct and effective price signals is a key factor
for a successful electricity market. LMP is the basis for
market-based congestion management and achieving mar-
ket efficiency. COMGs can help transmission congestion
reduction and minimize the consequence of transmission
outages in the network. Due to the fact that a higher
transmission line congestion leads to a higher LMP value,
the LMP value is a good indicator to identify potential
locations for COMGs installation. Hence, COMG is in-
stalled at highly congested locations based on the LMP
signal and reduces the LMP.

(c) Having COMGs in the power network can enhance rural
electrification. In many cases, COMGs can be sufficient
enough to supply electricity to rural areas where the load
is relatively low. As a result, it will eliminate the need
for extending traditional power resources, which are often
expensive to install and maintain.

Although similar observations have been made in previous
studies, they focused primarily on a system-wide perspective,
not on competitive electricity markets.

V. CONCLUSION

In this paper, a new two-stage stochastic programming
model for integrating COMG with GENCO and TRANSCO as
power investors was introduced based on electricity market un-
der uncertainty. This model provides appropriate market price
signals for all investors to determine their investment status
based on maximizing profits as well as keeping the reliability
and operational cost of the power system at acceptable levels.
The proposed model was applied to two modified IEEE test
systems. The results illustrate that integrating energy initiative
resources with traditional resources enhances the reliability
and reduces high operational cost of the system. Moreover,
adding COMGs can enhance rural electrification.
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The extension of this work may consider environmental im-
pact of power plants on the power system and risk associated
with fuel price fluctuations.

REFERENCES

[1] M. Shahidehpour and S. Pullins, “Is the Microgrid Buzz Real?,” IEEE
Electr. Mag., vol. 2, no. 1, pp. 2-5, Mar. 2014.

[2] M. Shahidehpour and S. Pullins, “Microgrids, Modernization, and Rural
Electrification [About This Issue],” IEEE Electr. Mag., vol. 3, no. 1, pp.
2-6, Mar. 2015.

[3] M. Shahidehpour and J. F. Clair, “A functional microgrid for enhancing
reliability, sustainability, and energy efficiency,” Electr. J., vol. 25, no.
8, pp. 21-28, Oct. 2012.

[4] Community Microgrids [Online]. Available: http://www.clean-
coalition.org/our-work/community-microgrids/.

[5] S. Wang, Z. Li, L. Wu, M. Shahidehpour, and Z. Li, “New metrics
for assessing the reliability and economics of microgrids in distribution
system,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2852-2861, Aug.
2013.

[6] A. Kargarian, B. Falahati, Y. Fu, and M. Baradar, “Multiobjective
optimal power flow algorithm to enhance multi-microgrids performance
incorporating IPFC,” in IEEE Power Energy Soc. Gen. Meeting, San
Diego, CA, USA, pp. 16, Jul. 2012.

[7] L. Che, X. Zhang, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki,
“Optimal planning of loop-based microgrid topology,” IEEE Trans.
Smart Grid, vol. 8, no. 4, pp. 1771-1781, May 2017.

[8] L, Che, X. Zhang, M. Shahidehpour, A. Alabdulwahab, and A. Abusor-
rah, “Optimal interconnection planning of community microgrids with
renewable energy sources,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp.
1054-1063, Aug. 2015.

[9] H, Lotfi and A. Khodaei, “AC versus DC microgrid planning,” IEEE
Trans. Smart Grid, vol. 8, no. 1, pp. 296-304, Jan. 2017.

[10] L. Wu, M. Shahidehpour, and Z. Li, “GENCO’s risk-constrained hy-
drothermal scheduling,” IEEE Trans. Power Syst., vol. 23, no. 4, pp.
1847-1858, Nov. 2008.

[11] S. Kamalinia, M. Shahidehpour, and L. Wu, “Sustainable resource
planning in energy markets,” Appl. Energy, vol. 113, pp. 112-120, Nov.
2014.

[12] J. H. Roh, M. Shahidehpour, and Y. Fu, “Security-constrained resource
planning in electricity markets,” IEEE Trans. Power Syst., vol. 22, no.
2, pp. 812-820, May 2007.

[13] M. O. Buygi, G. Balzer, H. M. Shanechi, and M. Shahidehpour, “Market-
based transmission expansion planning,” IEEE Trans. Power Syst., vol.
19, no. 4, pp. 2060-2067, Nov. 2004.

[14] S. Kamalinia and M. Shahidehpour, “Generation expansion planning in
wind-thermal power systems,” IET Gener. Transm. Distrib., vol. 4, no.
8, pp. 940-951, Aug. 2010.

[15] R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “Comprehen-
sive review of generation and transmission expansion planning,” IET
Gener. Transm. Distrib., vol. 7, no. 9, pp. 955964, Sep. 2013.

[16] A. Liu, B. F. Hobbs, J. Ho, J. McCalley, V. Krishnan, M. Shahidehpour,
and Q. Zheng, “Co-optimization of transmission and other supply
resources,” Prepared for the Eastern Interconnection States Planning
Council, NARUC., Dec. 2013.

[17] L. Wu, M. Shahidehpour, and Y. Fu, “Security-constrained generation
and transmission outage scheduling with uncertainties,” IEEE Trans.
Power Syst., vol. 25, no. 3, pp. 1674-1685, Aug. 2010.

[18] Y. Fu, M. Shahidehpour, and Z. Li, “Security-constrained optimal coor-
dination of generation and transmission maintenance outage scheduling,”
IEEE Trans. Power Syst., vol. 22, no. 3, pp. 1302-1313, Aug. 2007.

[19] A. Khodaei and M. Shahidehpour. “Microgrid-based co-optimization of
generation and transmission planning in power systems,” IEEE Trans.
Power Syst., vol. 28, no. 2, pp. 1582-1590, May 2012.

[20] J. H. Roh, M. Shahidehpour, and Y. Fu, “Market-based coordination
of transmission and generation capacity planning,” IEEE Trans. Power
Syst., vol. 22, no. 4, pp. 1406-1419, Nov. 2007.

[21] J. H. Roh, M. Shahidehpour, and W. Lei, “Market-based generation and
transmission planning with uncertainties,” IEEE Trans. Power Syst., vol.
24, no. 3, pp. 1587-1598, Aug. 2009.

[22] A. khayatian, M. Barati, and G. J. Lim, “Market-based and resilient
coordinated Microgrid planning under uncertainty,” T&D conf. and
Expo., IEEE/PES, pp. 1-5, May 2016.

[23] S. Kamalinia, L. Wu, and M. Shahidehpour, “Stochastic midterm coordi-
nation of hydro and natural gas flexibilities for wind energy integration,”
IEEE Trans. Sustain. Energy, vol. 5 no. 4 pp. 1070-1079, Oct. 2014.

[24] L. Wu, M. Shahidehpour, and T. Li, “Stochastic security-constrained unit
commitment,” IEEE Power Energy Mag., vol. 22, no. 2, pp. 800-811.
May 2007.

[25] Y. Fu, Z. Li, and L. Wu, “Modeling and solution of the large-scale
security-constrained unit commitment,” IEEE Trans. Power Syst., vol.
28, no. 4, pp. 3524-3533, Nov. 2013.

[26] M. Shahidehopour and Y. Fu, “Benders decomposition: applying Ben-
ders decomposition to power systems,” IEEE Power & Energy Mag.,
vol. 3, no. 2, pp. 2021, Mar. 2005.

[27] G. Infanger, “Monte Carlo (importance) sampling within a Benders
decomposition algorithm for stochastic linear programs,” Annals of
Operations Research vol. 39, no. 1, pp. 69-95, Dec. 1992.

[28] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,”
IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94 Aug. 2007.

[29] P. Agrawal, “Overview of DOE microgrid activities,” Symposium on
Microgrid, Montreal, Vol. 23. Jun. 2006.

[30] Y. Fu and Li Z, “Different models and properties on LMP calculations,”
in Proc. IEEE 2006 Power Eng. Soc. General Meeting, pp. 1122, Jun.
2006.

[31] M. Shahidehpour and Y. Fu, “Benders decomposition in restructured
power systems,” IEEE Techtorial, Apr. 2005.

[32] Data set for Manuscript “Integrated Microgrid Planning in Electricity
Market with Uncertainty” [Online]. Available: https://goo.gl/ozi80Q.

[33] The ILOG CPLEX, 2008. [Online]. Available: http://www.ilog.com/
products/cplex/.

[34] R. E. Rosenthal, “GAMS: A Users Guide,” GAMS Development Cor-
poration, Washington, Sep. 2016.

[35] G. D. Wyss and K. H. Jorgensen, “A users guide to LHS: Sandias
Latin hypercube sampling software.” SAND98-0210, Sandia National
Laboratories, Albuquerque, NM, 1998.

[36] GAMS/SCENRED Documentation [Online]. Available:
http://www.gams.com/docs/document.htm.

[37] B. Alizadeh and S. Jadid. “Reliability constrained coordination of
generation and transmission expansion planning in power systems using
mixed integer programming,” IET Gen. Trans. Distr., vol. 5.no. 9, pp.
948-960, Sep. 2011.

Aida Khayatian is a Ph.D. student in the Industrial Engineering Department
at the University of Houston, Houston. Her research interests include Micro-
grid and integrated resource planning.

Masoud Barati received the Ph.D. degree in electrical engineering from Illi-
nois Institute of Technology, Chicago, in 2013. Presently, he is a research and
instructional assistant professor in the Electrical and Computer Engineering
Department at University of Houston, Houston. His research interests include
microgrid operation and planning, microeconomics, mathematical modeling
and multiple infrastructure assesment.

Gino J. Lim is a professor and chair of industrial engineering, and Hari
and Anjali Faculty Fellow at the University of Houston. He holds a Ph.D. in
Industrial Engineering from University of Wisconsin-Madison. His research
interest lies in developing optimization techniques for solving large scale
decision making problems in areas such as network resiliency, supply chain
under disruption and transportation networks. His current research projects
include robust optimization in transportation problems, smart ports, and
scheduling. His e-mail address is ginolim@uh.edu.


