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Abstract 

Communities located in regions prone to natural and man-made disasters endure hardship 

and financial loss in the face of these events. Investment to enhance infrastructure resilience is 

vital to reduce the consequences of these low probability high-impact events. Budget and resources 

are limited, and they must be allocated wisely to infrastructure components to build a resilient 

community. The complexity of infrastructure makes it difficult to show the effects of component 

enhancements on system resilience. This paper proposes a mathematical programming model 

aimed at optimizing infrastructure resilience against a set of adverse events by optimally allocating 

budget to the infrastructure components. Investment, component enhancement, and corresponding 

functionality are combined with the resilience-based component importance to tackle the system 

complexity. Three utility functions are presented to determine the possible component 

enhancement alternatives for an allocated budget and to choose the optimal alternative. A 

resilience-based component importance metric is introduced, which is used in the budget allocation 

optimization problem. This approach establishes a relationship between amount allocated to a 

component and changes in its absorption and recovery, and the aggregate of all such changes on 

the components on the system functionality. The results show that the utility function of a 

component impacts the resilience enhancement of the system. 

                                                            
1 Corresponding author: Gino Lim, ginolim@uh.edu, Department of Industrial Engineering, University of Houston 

mailto:ginolim@uh.edu


Accepted for publication, Reliability Engineering and System Safety, January 6, 2020 
 

2 
 

Keywords: resilience enhancement; investment on resilience; utility function; resilience-

based criticality metric; budget allocation 

1. Introduction 

Adverse events like natural disasters (e.g., earthquake, tropical cyclone, severe storm, 

flooding, freeze, wildfire, winter storm, etc.) or man-made disasters (terrorist and non-terrorist) 

can disrupt the community infrastructures. These adverse events have two traits in common. First, 

their occurrence probability is low; the expected number of hurricanes in 100 years in Texas is 7.1 

and the expected number of major hurricanes is 2.2 [1]. Second, their impact in terms of cost and 

hardship is tremendous. During the past 37 years, 40 cyclones have caused a combined $870.2 

billion in total damages with an average of $21.8 billion per event. Hurricane Harvey in 2017 alone 

accounts for $125 billion of this amount [2]. Resilience is a concept that addresses the ability of a 

system to continue its functionality during and after an extreme event with low functionality 

degradation and a rapid return to normalcy [3]. Anticipation, absorption, adaptation, and rapid 

recovery are the main characteristics of a resilient system [4], [5]. The United States Government 

Accountability Office (GAO) expressed the necessity of an investment strategy for resilience 

enhancement that reduces the nation’s losses from future disasters. The investment decisions on 

cyber-physical systems (CPSs [6]), especially those with a social impact like critical 

infrastructures, can be viewed from political [7], social, environmental [8], economic [9], financial 

[10], and engineering [7], [11] perspectives. While the benefits of these investments are generally 

difficult to monetize [12], an early investment in community resilience will pay back when 

disasters inevitably strike [13], and a lack of investment will possibly result in an overall higher 

cost [14]. Considering this importance, the Federal Emergency Management Agency (FEMA) is 

working on the National Mitigation Investment Strategy (“Investment Strategy”) which provides 
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a national approach to invest in mitigation activities and risk management across the United States 

[15].  

The problem of investing in urban infrastructure resilience can be considered at three levels: 

macro, meso, and micro. At the macro level, the problem can be categorized as funding, 

prioritizing, and resource allocation to several infrastructures. Some of the funding approaches are 

earmarks [16], pork-barrel [17], trust-fund [18], and block grants [19]. For resource allocation at 

a macro level, Hill et al. [20] suggested a method to reduce disaster impacts through systematic 

investments in which the socioeconomic risks associated with natural disasters is estimated. 

Graeden et. al. [21] proposed a rapid risk analysis that can be utilized to support risk-based 

investment prioritization at the community level. After the budget is assigned to a system, at the 

meso level, the system allocates resource to its components. For this purpose, one approach is to 

find the most critical components in the network and improve them. A resilience-based component 

importance (RCI) metric, which measures the extent to which individual component contributes 

to the network resilience [22], can be used for this purpose [23]–[25]. Component enhancement 

can result in a combination of less degradation in component functionality and rapid recovery of 

functionality in the face of a shock. At the micro level, the problem considers this combination.  

Literature has covered some specific issues and events regarding this subject, but there is 

more that needs to be taken into account. Some studies considered just a special system 

(transportation [26], [27], power grid [12], [28], etc.), or a single event (e.g., cyber-attack [29], 

terrorist attacks [28], etc.), and they suggested a treatment for that specific system or event. Even 

so, a system is threatened by a pool of events, and preparing for only one of them and neglecting 

the other can still be devastating if a second event strikes while attempting to recover from the first 

one. Moreover, if we consider the pool of potential events, the amount of investment to mitigate 
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multiple risks is more efficacious than investing against each risk individually. The approaches 

based on RCI  [23]–[25] do not provide the amount of the investment on the components. While 

RCI ranks the components based on their importance, it does not determine how much should be 

invested in each one. Moreover, the allotted resource to a component can be utilized in different 

ways to change the main resilience characteristics of that component, i.e., absorption and time to 

recovery. RCI does not determine which of these characteristics must be emphasized. Hence, this 

paper attempts to fill these gaps by proposing a method that can be applied to a general system. 

Our contributions include a novel formulation, introduction of utility function into component 

enhancement, and a component importance metric. The proposed method takes into account the 

set of possible events, their effects on the component functionality, and the component’s 

enhancement alternatives. The alternatives employ a utility function to construct the set of 

alternatives for component enhancement. We also introduce a resilience-based component 

importance metric. In the final step of the method, a mathematical programming model is 

introduced that incorporates the information we generated in the previous steps and optimizes the 

system resilience of under a budget constraint.  

2. Model & Solution Methodology 

The resource allocation problem has many applications in facility planning, job scheduling, 

buffer allocation, pollution control, and portfolio management. The investment on a system 

resilience can be translated into a resource allocation problem. In this section, we start with a 

tradeoff between absorption and recovery enhancements for a single component. Then, we propose 

an RCI followed by an integer programming formulation that optimally allocates budget to the 

components aiming at maximizing the system resilience.  
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2.1. Single component functionality and indifference curve 

In order to develop a mathematical model and have a better understanding of the system 

behavior, we study the components individually. The functionality of a component is the level at 

which the component performs a task or function. For example, the functionality of a water 

transmission pipeline is the amount of flow that it carries. In a normal situation, the target 

functionality is the amount of water that the pipe is planned and expected to carry. Two 

component’s characteristics that influence its functionality during and after an adverse event are 

absorbability and rapid recovery. After an event, the functionality degrades by A. Absorbability is 

the ability to reduce the negative effects of the event and have a smaller A. Rapid recovery or 

recovery is the time to recover (T) from a disruption. It is the length of the time from the moment 

that the event happens to the moment that the functionality returns to an acceptable level, usually 

the initial level. Keeping all other factors fixed, a component with a smaller A or a smaller T has a 

higher resilience. In this section, we study different outcomes of enhancement activities on a single 

component. We will use the following notation.  

A:  The amount of degradation in the functionality  

T: Recovery time of the component 

𝑎𝑎: Improvement in the absorption (in percent) 

𝑟𝑟: Improvement in the recovery time of the component (in percent) 

f:  Functionality of the component 

Tf: Target functionality of the component 

𝑦𝑦: Amount of investment on the component 

𝑉𝑉: Value of the component 

The functionality f here is normalized by dividing the real functionality by the target 

functionality, yielding a value between 0% and 100%. The 100% functionality occurs in the 
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normal situation or for a system that is highly resilient. Different resilience enhancement activities 

can result in different outcomes for improving absorbability and recovery. Let 𝑎𝑎 and 𝑟𝑟 stand for 

the percent improvement in the absorption and recovery, respectively. The smallest value of 𝑎𝑎 (or 

𝑟𝑟) is 0, meaning that we do not improve the component’s absorbability (recovery time), and the 

highest value is 1, for which the component will be intact by an event. For a given amount of 

investment, 𝑦𝑦, we may have different combinations of (𝑎𝑎, 𝑟𝑟) (Figure 1). If we spend all the money 

on the robustness of the component, it will improve absorption by 𝑎𝑎 percent (Figure 1-b) and 𝐴𝐴𝑛𝑛𝑒𝑒𝑒𝑒 

will be 𝐴𝐴 × (1 − 𝑎𝑎). However, if we spend all the money on redundancy, it may just reduce time 

to recovery by 𝑟𝑟 (i.e., 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇 × (1 − 𝑟𝑟) as in Figure 1-c). Moreover, we may be able to improve 

both capabilities together (Figure 1-d). In an extreme case, if 𝑎𝑎 is 100%, then there is no 

degradation in the component functionality and, hence, there is no need to improve the time to 

recovery and vice versa.  
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Figure 1: component resilience enhancement scenarios for a fixed budget. System’s functionality 

after disaster and a) before any enhancement, b) after enhancing absorbability, c) after reducing 

the recovery time, d) after improving both absorbability and recovery time.  

The relationship between the investment amount and (𝑎𝑎, 𝑟𝑟) can be established using the 

indifference curves. In economics, indifference curves  represent different quantities of two goods 

for which a consumer has no preference for one combination of those goods over another 

combination on the same curve [30]. Using this concept, we define the component enhancement 

indifference curve (IC) to be all combinations of (𝑎𝑎, 𝑟𝑟) for which we will have the same 

enhancement cost. It represents different types of improvements that we can perform for a fixed 

cost. Associated with indifference curves, there is a utility function 𝑈𝑈(𝑎𝑎, 𝑟𝑟) which relates the 

budget spent on a component and the improvements in its absorption and recovery time (Equation 

1).  

𝑈𝑈: [0,1] × [0,1] → 𝑅𝑅+ 
(𝑎𝑎, 𝑟𝑟) → 𝑈𝑈(𝑎𝑎, 𝑟𝑟)  

𝑦𝑦 = 𝑈𝑈(𝑎𝑎, 𝑟𝑟) 

(1) 

For example, in Figure 2, the cost of improving absorption and recovery corresponding to points 

𝑃𝑃1: (𝑎𝑎1, 𝑟𝑟1) and 𝑃𝑃2: (𝑎𝑎2, 𝑟𝑟2) are 𝑦𝑦(𝑃𝑃1) =  𝑈𝑈(𝑎𝑎1, 𝑟𝑟1) and 𝑦𝑦(𝑃𝑃2) = 𝑈𝑈(𝑎𝑎2, 𝑟𝑟2). We assume that the 

ICs are complete, in a way that all points on the indifference curve cost the same amount, and the 

points not on the curve cost either more or less. Figure 2 shows three investment costs 𝑦𝑦1, 𝑦𝑦2, and 

𝑦𝑦3, where 𝑦𝑦1 < 𝑦𝑦2 < 𝑦𝑦3. Since points 𝑃𝑃1 and 𝑃𝑃2 in Figure 2 are on the same indifference curve, 

they have the same cost of 𝑦𝑦(𝑃𝑃1) = 𝑦𝑦(𝑃𝑃2) = 𝑦𝑦1. Another characteristic of the IC curves is that 

they have a negative slope. That is, if 𝑎𝑎 is decreased, 𝑟𝑟 should be increased to stay on the same IC.  

Linear [31], Cobb–Douglas [31], and Constant Elasticity Substitution (CES) [32] are examples of 
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utility curves (Table 1). Value of the component (𝑉𝑉) is the market value of the component. 

Consider two components with values of 𝑉𝑉1 and 𝑉𝑉2, where 𝑉𝑉1 is much larger than 𝑉𝑉2. To maintain 

the same enhancements for both components (i.e., 𝑎𝑎1 = 𝑎𝑎2 and 𝑟𝑟1 = 𝑟𝑟2), the amount of investment 

on the second component should be larger (i.e., 𝑦𝑦1(𝑃𝑃1) > 𝑦𝑦2(𝑃𝑃1)). It is assumed that 𝑦𝑦𝑖𝑖 is 

proportionate to the 𝑉𝑉𝑖𝑖 and it is incorporated into the model by scale factor 𝑘𝑘𝑖𝑖. We call the result 

of multiplication 𝑘𝑘 by 𝑈𝑈(𝑎𝑎, 𝑟𝑟) the cost factor. Having the cost factor 𝜃𝜃𝑖𝑖 and the value 𝑉𝑉𝑖𝑖 for the 

component 𝑖𝑖, the amount of investment on component will be  

𝑦𝑦𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑉𝑉𝑖𝑖 . 

 
Figure 2 Indifference curve for a single component 



Accepted for publication, Reliability Engineering and System Safety, January 6, 2020 
 

9 
 

Table 1: Utility functions and the relationship of a and r 

name formula relationships 

Linear [31] 
𝑈𝑈(𝑎𝑎, 𝑟𝑟) =

𝛽𝛽1𝑎𝑎 + 𝛽𝛽2𝑟𝑟
𝑘𝑘

 𝑟𝑟 =
𝑘𝑘𝑘𝑘 − 𝛽𝛽1𝑎𝑎

𝛽𝛽2
 

Cobb–Douglas [31] 
𝑈𝑈(𝑎𝑎, 𝑟𝑟) =

𝑎𝑎𝜌𝜌𝑟𝑟1−𝜌𝜌

𝑘𝑘
,𝜌𝜌 < 1 𝑟𝑟 = 𝑒𝑒

ln(𝑘𝑘𝑘𝑘)−𝜌𝜌 ln(𝑎𝑎)
(1−𝜌𝜌)  

CES [32] 
𝑈𝑈(𝑎𝑎, 𝑟𝑟) =

𝐶𝐶
𝑘𝑘

(𝛽𝛽𝑎𝑎𝜌𝜌 + (1 − 𝛽𝛽)𝑟𝑟𝜌𝜌)
1
𝜌𝜌 

𝑟𝑟 =
((𝑘𝑘𝑘𝑘)𝜌𝜌 − 𝛽𝛽𝑎𝑎𝜌𝜌)

1
𝜌𝜌

1 − 𝛽𝛽
 

We will use the utility curve to formulate our mathematical model and to determine the 

optimal combination of 𝑎𝑎 and 𝑟𝑟 on the associated IC curve for a given budget.  

2.2. Resilience-Based Component Importance (RCI) 

In reliability component importance metrics like Fussell-Vesely, criticality importance 

measure, risk reduction worth (RRW), risk achievement worth (RAW), and Birnbaum measure the 

amount by which the failure of a component can affect the reliability of the system [33]. Based on 

the reliability context, the resilience-based component importance measure (RCI) is defined as the 

amount by which the resilience of a system is reduced by a component’s failure [23], [24]. A 

prerequisite for calculating the RCI is a resilience metric. Several qualitative and quantitative 

resilience assessments have been presented [4]. To choose an appropriate metric for a specific 

analytic, a tiered approach presented in [34] can be used. The metric assessment methodology in 

[35] will help to select a resilience metric which is a better match for the system under study. 

Among the quantitative metrics, we need the one that represents the essential characteristics of a 

resilient system (i.e., absorption and rapid recovery). Moreover, the metric must be simple enough 

to be utilized in the mathematical formulation and the resulted problem can be solved within a 
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reasonable time. This study uses the resilience metric suggested by Najarian and Lim [35], which 

has the two mentioned characteristics. It consists of a convex combination of three sub-metrics; 

absorption (я1), adaptation (я2), and rapid recovery (я3). They can be calculated using the 

following formulas: 

я1 =
∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑡𝑡𝑑𝑑
𝑡𝑡𝑜𝑜

∫ 𝑇𝑇𝑇𝑇(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑡𝑡𝑜𝑜

 
, я2 =

∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑇𝑇
𝑡𝑡𝑑𝑑

∫ 𝑇𝑇𝑇𝑇(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇
𝑡𝑡𝑑𝑑

 
, and я3 = 𝑓𝑓(𝑇𝑇) = �

1, 𝑇𝑇 ≤ 𝑇𝑇0
𝑇𝑇0
𝑇𝑇

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

where, 𝐹𝐹(𝑡𝑡) is the functionality of the system at time t, 𝑇𝑇𝑇𝑇(𝑡𝑡) is the target functionality at time t, 

𝑡𝑡𝑑𝑑 is the time that functionality of the system reaches to its minimum,  𝑇𝑇0 is the desired recovery 

time of the system which , and 𝑇𝑇 is the recovery time of the system. The system resilience metric 

Я is obtained as in Equation (2) and it lies in the closed interval [0, 1]. 

я = 𝛼𝛼1я1 + 𝛼𝛼2я2 + 𝛼𝛼3я3, and 𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3 = 1 and 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3 ≥ 0. (2)  

Let я+𝑐𝑐  be the resilience of the system when the component c is operable and я−𝑐𝑐 when it is 

not. Then the RCI of the component i is the difference between these two values. The following 

algorithm explains the steps to take to obtain the value of RCI.  

Algorithm 1 Resilience-Based Critical Indexing Algorithm 
Input the component index 𝑖𝑖 ∈ 𝐸𝐸 ∪ 𝑉𝑉 
Calculate the resilience of the system (я+𝑖𝑖) 
Set 𝑓𝑓𝑖𝑖 = 0  
Calculate the resilience of the system (я−𝑖𝑖) 
я𝑖𝑖 =(я+𝑖𝑖 − я−𝑖𝑖) 
Return 1-я𝑖𝑖 

Since я+i ≥ я−i, the value of я𝑖𝑖 will be within the interval [0,1]; hence, the impact of the 

component i on the system resilience,  𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 = (1 − я𝑖𝑖), assumes values between 0 and 1, 

inclusive.  
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2.3. Resilience Optimization under Budget Constraint 

In a complex system, each component has its own absorption and recovery capabilities in 

the face of an adverse event. For example, in a power grid, even if two components are the same, 

the environment and the facility that supports them may be different. As a result, their absorptions 

and recovery times differ, and possible modifications, associated costs, and the effect of 

enhancement on the whole system must be calculated separately for each component. Consider a 

power generation unit with possible characteristics to be modified such as elevation, surrounding 

building and structure, redundancy, source of generation storage (e.g., coal), and environment 

(e.g., drainages). By improving each or a subset of these characteristics, we can enhance the 

absorption and/or reduce the recovery time of the generator. This enhancement will differ for 

different events; a higher elevation or drainage may keep a generator safe against a certain level 

of the flood, i.e., a better absorption against the flood, but it may not improve it against a hurricane. 

However, having a backup generator that can immediately become operable in the case of failure 

in the original generator, shortens the time to recover. Due to the budget limit, a subset of the set 

of all options should be selected in such a way that a higher resilience level for the system can be 

achieved. In this section, we are to formulate this problem as and optimization model, and we use 

the following notation.  

Notations: 

Sets: 
Γ = {𝛾𝛾1 … 𝛾𝛾𝐾𝐾}: Set of 𝑘𝑘 events (including attacks) 
ℚ = {𝑞𝑞1 … 𝑞𝑞𝑁𝑁}: Set of 𝑁𝑁 components 
ℂ = {𝑐𝑐𝑖𝑖,1. . 𝑐𝑐𝑖𝑖,𝑀𝑀𝑖𝑖}: The set of 𝑀𝑀𝑖𝑖 possible investments scenarios on component 𝑖𝑖 

Indices: 
𝑖𝑖: Index for component, 𝑖𝑖 ∈ {1, … ,𝑁𝑁} 
𝑡𝑡: Index for time 
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𝑗𝑗: Index for investment option, 𝑗𝑗 ∈ {1. .𝑀𝑀𝑖𝑖} 
𝑘𝑘: Index for event option, 𝑘𝑘 ∈ {1. .𝐾𝐾} 

Variables: 
𝑥𝑥𝑖𝑖,𝑗𝑗: A binary variable that is 1 if the investment option 𝑗𝑗, is selected for component 𝑞𝑞𝑖𝑖 
𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑘𝑘: Functionality of component 𝑖𝑖 with investment 𝑐𝑐𝑖𝑖,𝑗𝑗 at time 𝑡𝑡 against 𝛾𝛾𝑘𝑘  
 𝑓𝑓𝑖𝑖,𝑡𝑡: Functionality of component i at time t 
𝐵𝐵: Budget limit for enhancement against 𝛾𝛾𝑘𝑘 
𝐴𝐴𝑖𝑖𝑖𝑖: The drop in the functionality of the component 𝑖𝑖 in face of event 𝑘𝑘 
 
𝐹𝐹𝑡𝑡: Functionality of system at time t, 𝐹𝐹𝑡𝑡 = 𝐹𝐹(𝑡𝑡) 

Parameters:  
𝑐𝑐𝑖𝑖,𝑗𝑗: The 𝑗𝑗th investment option of component 𝑖𝑖  
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖: Resilience-based component importance of 𝑞𝑞𝑖𝑖 
𝑇𝑇𝑖𝑖: Time to recovery of component i before investment 
𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘: Time to recovery of component 𝑖𝑖 after investment 𝑗𝑗 against event 𝑘𝑘 
𝐿𝐿𝑓𝑓𝑖𝑖: Lowest functionality acceptable for a component 
𝛽𝛽𝑘𝑘: Weight of attack impact on resilience 
𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘: Improvement in the absorption of component 𝑖𝑖 in face of event 𝑘𝑘 due to investment 𝑗𝑗. 
𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘: Improvement in the recovery of component 𝑖𝑖 in face of event 𝑘𝑘 due to investment 𝑗𝑗. 
𝛽𝛽𝑖𝑖𝑖𝑖: Coefficients of the objective function 𝑙𝑙 = 1 … 5  
 

Proper functionality of a system depends on the seamless functionality of its components. If 

the relationship between the functionality of a component and functionality of a system is given, 

then it may facilitate the measurement of the effect of component enhancement on the overall 

system resilience. However, it is very difficult to find such a straightforward relationship because 

the effect is a function of many unknown variables. To simplify the problem, it is assumed that 

functionality of the component at time t, 𝑓𝑓𝑖𝑖,𝑡𝑡, has a linear influence on the functionality of the 

system, 𝐹𝐹𝑡𝑡, proportional to its resilience-based importance, 𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖. That is  

𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝑡𝑡 =
1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 × 𝑓𝑓𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖

. (3) 

Moreover, it is assumed that the component indifference curve for a given budget is known. The 

degradation time, 𝑡𝑡𝑑𝑑, is assumed to be the same for all of the components before and after the 
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event. We start developing the mathematical model based on a piecewise linear function, and then 

move on to a more general model.  

2.3.1. Linear functionality and linear utility curve for a single event 

 Assume that components have functionality (𝑓𝑓𝑡𝑡) that consists of or can be estimated by two 

line segments 𝑙𝑙1 and 𝑙𝑙2 (Figure 3). To calculate the resilience using Equation (2), the integral is 

converted into the summation of the areas 𝑅𝑅𝑡𝑡 captured by the trapezoid under the functionality 

curve in the interval [𝑡𝑡, 𝑡𝑡 + 1].  

𝑅𝑅𝑡𝑡 = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡+1

𝑡𝑡
=
𝑓𝑓𝑡𝑡+1 + 𝑓𝑓𝑡𝑡

2
 

 

Figure 3: Estimation of the functionality of a component using two straight lines 

At any time t, the functionality of a component is 

𝑓𝑓𝑖𝑖,𝑡𝑡  =

⎩
⎪
⎨

⎪
⎧ 1 −

𝐴𝐴𝑖𝑖
𝑡𝑡𝑖𝑖,𝑑𝑑

𝑡𝑡,                0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖,𝑑𝑑

1 −
𝐴𝐴𝑖𝑖

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑
(𝑇𝑇𝑖𝑖 − 𝑡𝑡),     𝑡𝑡𝑖𝑖,𝑑𝑑 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖

1,                                    𝑡𝑡 ≥ 𝑇𝑇𝑖𝑖

. 
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The sub-metrics absorption (я1), adaptation (я2), and recovery (я3) sub-metrics can be calculated 

using 𝑓𝑓𝑖𝑖,𝑡𝑡. In Appendix 1, we have derived formulas to calculate я1 and я2. If 𝑇𝑇0 is small enough 

that 𝑇𝑇 ≥ 𝑇𝑇0 is true, then the resilience of the system will be 

я = 𝛼𝛼1я1 + 𝛼𝛼2я2 + 𝛼𝛼3я3 

= 𝛼𝛼1
1
𝑁𝑁

 �𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖(−
1
2
𝐴𝐴𝑖𝑖 + 1)

𝑁𝑁

𝑖𝑖=1

+ 𝛼𝛼2
1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 �

−𝐴𝐴𝑖𝑖
2

(𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑)
(𝑇𝑇 − 𝑡𝑡𝑑𝑑) + 1�

𝑁𝑁

𝑖𝑖=1

+ 𝛼𝛼3
𝑇𝑇0
𝑇𝑇

. 

 

(4) 

Equation (4) can be described visually using Figure 3. In this figure, the expression −1
2
𝐴𝐴𝑖𝑖 + 1 is 

the area enclosed by the trapezoid with the corner points of (0,0), (0,1), (𝑡𝑡𝑑𝑑 , 0), (𝑡𝑡𝑑𝑑 , 1 − 𝐴𝐴𝑖𝑖) over 

the area enclosed by the rectangle (0,0), (0,1), (𝑡𝑡𝑑𝑑 , 0), (𝑡𝑡𝑑𝑑 , 1). The weighted average of these areas, 

where weights are RCI, yields я1. A similar intuition holds for −𝐴𝐴𝑖𝑖
2

(𝑇𝑇𝑖𝑖−𝑡𝑡𝑑𝑑)
(𝑇𝑇−𝑡𝑡𝑑𝑑)

+ 1 and я2. For a linear 

utility function and investment 𝑦𝑦𝑖𝑖, the new degradation and recovery time for component i are as 

follows: 

𝐴𝐴𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑖𝑖(1 − 𝑎𝑎), and 

𝑇𝑇𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑖𝑖(1 − 𝑟𝑟𝑖𝑖). 

In Appendix 2, Equation (4) is modified to include the enhancements resulted from the investments 

as explained. Then we formulated the problem as a nonlinear optimization model described as in 

Equations (5-1) to (5-5).  

max     я =
1
𝑁𝑁
��

𝛽𝛽𝑖𝑖1 𝑎𝑎𝑖𝑖 + 𝛽𝛽𝑖𝑖2 𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖 + 𝛽𝛽𝑖𝑖3 𝑟𝑟𝑖𝑖 + 𝛽𝛽𝑖𝑖4𝑇𝑇 + 𝛽𝛽𝑖𝑖5𝑎𝑎𝑖𝑖𝑇𝑇 + 𝛽𝛽𝑖𝑖6
𝑇𝑇 − 𝑡𝑡𝑑𝑑

� +
𝑇𝑇0
𝑇𝑇

𝑁𝑁

𝑖𝑖=1

 

s.t. 

(5-1) 

�𝑦𝑦𝑖𝑖
𝑖𝑖,𝑗𝑗

≤ 𝐵𝐵 (5-2) 

𝛽𝛽𝑖𝑖1𝑎𝑎𝑖𝑖 + 𝛽𝛽𝑖𝑖2𝑟𝑟𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖 ,∀𝑖𝑖 (5-3) 
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𝑇𝑇 ≥ 𝑇𝑇𝑖𝑖(1 − 𝑟𝑟𝑖𝑖),∀𝑖𝑖 (5-4) 

𝑦𝑦𝑖𝑖 ,𝑇𝑇 ≥ 0, 0 ≤ 𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖 ≤ 1 (5-5) 

 
Decision variables are the budget allocated to component i (𝑦𝑦𝑖𝑖), the percentage improvement in 

absorption and recovery time of the component i (𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖), and the system’s recovery time (𝑇𝑇). 

Parameters include coefficients 𝛽𝛽𝑖𝑖𝑖𝑖, which are calculated from  parameters 𝛼𝛼1,𝛼𝛼2,𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 ,𝐴𝐴𝑖𝑖 ,𝑇𝑇𝑖𝑖 , and 

𝑡𝑡𝑑𝑑  in Appendix 2; 𝐵𝐵 the total system’s budget limit; utility function parameters (𝛾𝛾𝑖𝑖1, 𝛾𝛾𝑖𝑖2, and 𝑘𝑘𝑖𝑖); 

and time to recovery 𝑇𝑇𝑖𝑖 for component i before an investment is made. The objective is to maximize 

the resilience of the system, Equation. (5-1), which is a function of component enhancements 

(𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖) and system’s recovery time (𝑇𝑇). Equation (5-2) restricts the total spending on the system 

to be less than the budget. Equation (5-3) relates the investment on component i (i.e., 𝑦𝑦𝑖𝑖) to 

different possibilities of enhancements in 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖 via an indifference curve. As we discussed in 

Section 2.1, the scale factor 𝑘𝑘𝑖𝑖 accounts for the value of the component. Recovery time of the 

system is the latest recovery time of the components (Equation (5-4)). Finally, all the variables are 

continuous and non-negative (Equation (5-5)), and 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖 are less than 1. Solving this problem 

will determine how much we will spend on each component and what absorption and recovery 

enhancement combination will yield a higher resilience.  

2.3.2. A General model 

In this section, we extend the linearity assumption in Section 2.3.1 to general functionality 

and propose a mathematical programming model to optimize the system’s resilience within a 

budget constraint. The goal is to allocate the budget to the components and to determine the 

component absorption and recovery enhancements in a such way that a maximum resilience is 
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achieved. Drawing an analytical relationship between investment and system resilience is far 

reaching. To tackle this problem, we discretized the investment options and components’ 

functionality through the following steps. In the first step, for each component 𝑞𝑞𝑖𝑖, 𝑚𝑚𝑖𝑖 possible 

improvements 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 = �𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘, 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘� and their associated cost 𝑐𝑐𝑖𝑖,𝑗𝑗 is prepared. It is possible to have 

two different improvement scenarios 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 and 𝑝𝑝𝑖𝑖,𝑗𝑗′,𝑘𝑘 associated with the same cost (i.e., 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 and 

𝑝𝑝𝑖𝑖,𝑗𝑗′,𝑘𝑘 lie on the same indifference curve). An improvement on 𝑞𝑞𝑖𝑖 has different absorption and 

recovery enhancement outcomes against different events; shown by index 𝑘𝑘. All these data will be 

summarized in a set of options 𝑂𝑂𝑖𝑖,𝑗𝑗,𝑘𝑘 = (𝑐𝑐𝑖𝑖,𝑗𝑗 ,𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘, 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘) among which the optimization problem 

chooses the subset of optimal options. For all the components, option 𝑂𝑂𝑖𝑖,0,𝑘𝑘 = (0,0,0) is included 

so that it can be selected if no enhancement for component i is in optimal set. Using indifference 

curves, the construction of 𝑂𝑂𝑖𝑖,𝑗𝑗,𝑘𝑘 can be done either by finding different enhancement points 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 

for a given investment amount, or by finding the cost 𝑐𝑐𝑖𝑖,𝑗𝑗 for a 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘.  

In the second step, by considering 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘 and 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘, we obtain the discrete system functionality 

for each 𝑂𝑂𝑖𝑖,𝑗𝑗,𝑘𝑘 after a disruption. Let 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑘𝑘 be the normalized functionality of  𝑞𝑞𝑖𝑖 at time t after 

investment j in the face of the adversarial event 𝛾𝛾𝑘𝑘 ∈ Γ.  The normalized functionality is calculated 

by dividing the actual functionality over the target functionality so that 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑘𝑘 assumes a value 

between 0 and 1. Based on the linear influence assumption made at the beginning of Section 2.3, 

the influence of 𝑞𝑞𝑖𝑖 on the total system’s functionality is 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 × 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑘𝑘. Now, we use Equations (2)  

and (3) to construct the objective function in Equation (6-1), which is an indicator of resilience 

against the set of events. Equations (6-1) to (6-5) compose our general budget allocation model.  
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max     �𝛽𝛽𝑘𝑘
𝑘𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼𝛼1 ∑ �1 − 1

𝑁𝑁� 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 ×
𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑘𝑘 + 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡+1,𝑘𝑘

2
𝑖𝑖,𝑗𝑗

× 𝑥𝑥𝑖𝑖,𝑗𝑗�
𝑡𝑡𝑑𝑑,𝑘𝑘−1
𝑡𝑡=0

𝑡𝑡𝑑𝑑,𝑘𝑘 − 𝑡𝑡0
+

 

𝛼𝛼2 ∑ �1 − 1
𝑁𝑁� 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 ×

𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑘𝑘 + 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡+1,𝑘𝑘
2 × 𝑥𝑥𝑖𝑖,𝑗𝑗

𝑖𝑖,𝑗𝑗

�𝑇𝑇−1
𝑡𝑡=𝑡𝑡𝑑𝑑

𝑇𝑇 − 𝑡𝑡𝑑𝑑,𝑘𝑘
+

𝛼𝛼3
𝑇𝑇0
𝑇𝑇

 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

s.t. 

(6-1) 

 �𝑐𝑐𝑖𝑖,𝑗𝑗  𝑥𝑥𝑖𝑖,𝑗𝑗
𝑖𝑖,𝑗𝑗

≤ 𝐵𝐵 (6-2) 

 �𝑥𝑥𝑖𝑖,𝑗𝑗
𝑗𝑗

= 1,∀𝑖𝑖 (6-3) 

 𝑇𝑇 ≥ 𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘 𝑥𝑥𝑖𝑖,𝑗𝑗 ,∀𝑖𝑖 (6-4) 
 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ {0,1} (6-5) 

The objective function (Equation (6-1)) is the weighted sum of the resilience of the system 

for the set of events Γ. The binary variable 𝑥𝑥𝑖𝑖,𝑗𝑗 assumes 1 if the 𝑗𝑗𝑡𝑡ℎ investment option for 𝑞𝑞𝑖𝑖 is 

selected. The weights 𝛽𝛽𝑘𝑘 are parameters to show the importance of the corresponding event. They 

can be calculated using multi-criteria decision methods (MCDM) with criteria such as the 

possibility of event occurrence, cost of the devastation caused by the event, and cost of making the 

system resilient against that event. The budget constraint, Equation (6-2), limits the total cost of 

chosen options to be less than the budget. In the optimal solution, we just choose one investment 

option (Equation (6-3)) for each component. The key point in this equation is that we have 

designed the cost scenarios in such a way that we do not need to select two options for the same 

component for different events. Equation (6-4) calculates the system’s time to recovery (T), which 

is the largest time to recovery of all the components. The steps for constructing the mathematical 

model is demonstrated in Algorithm 2. 
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Algorithm 2 Constructing the mathematical programming for general model 
1. Input the set of components, simulation model to calculate functionality in different situations 
2. For each component 𝑖𝑖 ∈ 𝑉𝑉 ∪ 𝐸𝐸 do: 
3. Determine the value 𝑘𝑘𝑖𝑖 of the component from the 𝑉𝑉𝑖𝑖 
4. Choose 𝑆𝑆 values for the investments on component i (𝑐𝑐𝑖𝑖𝑠𝑠, 𝑠𝑠 = 1, … , 𝑆𝑆) 
5. Choose the utility function 
6. 𝑗𝑗 = 0 
7. For each s in S: 

a. Determine  𝑃𝑃 points on the indifference curve associated with 𝐶𝐶𝑖𝑖𝑠𝑠 
b. For each p in P: 

i. 𝑗𝑗 =j+1 
ii. 𝑐𝑐𝑖𝑖,𝑗𝑗 = 𝑐𝑐𝑖𝑖𝑠𝑠 

iii. For 𝑘𝑘 in events:  
a. Obtain 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘 and 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘 corresponding to point p on the IC of  𝑐𝑐𝑖𝑖,𝑗𝑗 or find the 

cost associated with (𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘, 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘) 
b. Calculate 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑘𝑘 associated 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘 and 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘  

8. Calculate the 𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 using Algorithm 1 
9. Insert these parameters into the model in Equations (6-1) to (6-5) 

3. Numerical results 

We perform our numerical studies on the power grid system using the security constrained 

unit commitment. We apply the SUSC model on a 6-bus IEEE standard test case. As shown in 

Figure 5, the grid comprises the generation units N0, N1, and N2; the electricity lines E3 to E9; 

and the demand nodes D4, D5, and D6 with share of total demand of 20%, 40%, and 40%, 

respectively. The 6-Bus data are available in Appendix 3.   

  
Figure 4: network of IEEE 6-Bus test system 

By following the steps in Algorithm 2, we construct the data for our investment optimization 

problem for a single event (𝑘𝑘 = 1). For convenience, we drop the index x from our parameters 
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(e.g., we use 𝑂𝑂𝑖𝑖,𝑗𝑗 instead of 𝑂𝑂𝑖𝑖,𝑗𝑗,𝑘𝑘).  For a component, say generator 𝑁𝑁1 (𝑖𝑖 = 1), we find the values 

of 𝑂𝑂𝑖𝑖,𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚𝑖𝑖 and related functionalities 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡. The calculations for the rest of the 

components will be similar. We choose the scale factor 𝑘𝑘𝑖𝑖 to be the ratio 1 𝑉𝑉𝑖𝑖⁄ , which indicates 

that the investment will be proportionate to the value of the component. If we assume that the value 

of a brand new generator 𝑁𝑁1 is $30,000 (𝑉𝑉1 = 30000), the value of 𝑘𝑘1 will be 1/30000. If we 

invest $7,500 on this generator (i.e., 𝑦𝑦1 = 7500), then the cost factor 𝜃𝜃1 will be 0.25 (𝜃𝜃1 = 𝑘𝑘1𝑦𝑦1 =

0.25). In case both 𝜃𝜃𝑖𝑖 and 𝑉𝑉𝑖𝑖 are given, then we can simply calculate the investment cost by 𝑦𝑦𝑖𝑖 =

𝜃𝜃𝑖𝑖𝑉𝑉𝑖𝑖. Associated with $7,500 investment and a linear utility curve with 𝛾𝛾1,1 and 𝛾𝛾1,2 both equal to 

0.5, the indifference curve in Figure 5 is constructed. Now we can choose as many points 𝑝𝑝1,𝑗𝑗 =

�𝑎𝑎1,𝑗𝑗 , 𝑟𝑟1,𝑗𝑗� on this curve as we need (e.g., 𝑝𝑝1,1 = (0.5,0),𝑝𝑝1,2 = (0,0.5), and 𝑝𝑝1,3 = (0.25,0.25) 

with corresponding options of 𝑂𝑂1,1 = (7500, 0.5,0),𝑂𝑂1,2 = (7500,0,0.5), and 𝑂𝑂1,3 =

(7500,0.25,0.25)). For a higher investment amount, say $22,500, the cost factor 𝜃𝜃1 is 0.75 which 

provides better options such as  𝑂𝑂1,4 = (22500,1.0,0.5) and 𝑂𝑂1,5 = (22500,0.5,1.0). The above 

process constructs 𝑝𝑝𝑖𝑖,𝑗𝑗 for a given 𝑐𝑐𝑖𝑖,𝑗𝑗 (another way is to find the 𝑐𝑐𝑖𝑖,𝑗𝑗 associate for a 𝑝𝑝𝑖𝑖,𝑗𝑗 by first 

obtaining the 𝜃𝜃𝑖𝑖 using the utility function, and then multiplying it by 𝑉𝑉𝑖𝑖.) No matter whether we 

construct costs from enhancements or enhancements from cost, the goal in this step is to construct 

the investment options 𝑂𝑂𝑖𝑖,𝑗𝑗, among which the decision maker will choose. 
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Figure 5: change in the absorption and recovery of component i against event k for a) 

cost factor of 0.25 and b) cost factor of 1.5 

 Following the second way, we chose 𝑝𝑝𝑖𝑖,𝑗𝑗 as in Figure 6. For each component, the scenario 

𝑝𝑝𝑖𝑖,0 = (0,0) is added and it stands for no enhancement option. The associated cost of these 

enhancement for a linear utility with 𝛾𝛾𝑖𝑖1 and 𝛾𝛾𝑖𝑖2 of 0.5 is summarized in the heat-map chart in 

Figure 7. In this figure darker cells indicates a higher investment (e.g., the cost of enhancing the 

component N1 by (a, r) = (1,0.75)  is 60). For each option 𝑂𝑂𝑖𝑖,𝑗𝑗, we obtain the resulted 

functionality 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡 by considering the corresponding absorption and recovery.  

 1  (0.25,1) (0.5,1) (0.75,1) (1,1) 

 0.75  (0.25,0.75) (0.5,0.75) (0.75,0.75) (1,0.75) 

𝑟𝑟 0.5  (0.25,0.50) (0.5,0.5) (0.75,0.5) (1,0.5) 

 0.25  (0.25,0.25) (0.5,0.25) (0.75,0.25) (1,0.25) 

 0 (0,0)     
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    𝑎𝑎   
Figure 6: 𝑝𝑝𝑖𝑖,𝑗𝑗 scenarios 
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Figure 7: heat-map of component investment options for a linear utility 
function with parameters 𝛾𝛾𝑖𝑖1 and 𝛾𝛾𝑖𝑖2 of 0.5 and 0.5 respectively. N1, N2, 
and N3 are nodes and E3 to E10 are electricity lines between the nodes. The 
color bar in the right shows the value cells in the heat map.  

Utilizing the SCUC and the resilience metric in [35], Algorithm 1 outputs the RCI as in 

Figure 8. A failure in the component E9 has a higher impact on the resilience of the system and 

the component N2 disruption has the lowest effect. Now, the parameters 𝑐𝑐𝑖𝑖,𝑗𝑗 ,𝑓𝑓𝑖𝑖,𝑗𝑗,𝑡𝑡 ,𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 ,  and 𝑡𝑡𝑖𝑖,𝑗𝑗 

for the problem Equations (6-1) to (6-5) are ready. Applying these parameters and optimizing the 

budget allocation for a budget limit of $50,000 yields the solution in Table 2. We calculate the 

resilience metric for the optimal 𝑃𝑃𝑖𝑖,𝑗𝑗. Let the initial resilience level of the system be я = 0.73, 

which happens when the absorption of all the components drop to 50% after an event and the 

recovery time is the same as mean time to repair of the component. The optimal investment in 

Table 2  with a total cost of $49,500 improves the resilience level to я = 0.84. 
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Figure 8: component importance for IEEE 6-bus 

Table 2 Optimal investments for linear utility with both parameters of 0.5 and budget limits of 
$50,000. The resulting total cast is $49,500 and the resulted objective is 0.372. 

 N0 N1 N2 E3 E4 E5 E6 E7 E8 E9 
𝒄𝒄𝒊𝒊,𝒋𝒋∗  ($1000) 0 11.4 0 12.5 0 11.4 7.6 2.7 0 4.3 

𝒂𝒂𝒊𝒊,𝒋𝒋,𝒌𝒌∗  0 0.25 0 0.25 0 0.25 0.25 0.25 0 1 
𝒓𝒓𝒊𝒊,𝒋𝒋,𝒌𝒌∗  0 0.5 0 0.25 0 0. 5 0.5 0. 5 0 0.25 

  

To find out the effect of different budget limits, further experiments are made on different 

budget scenarios. Considering that the value of the existing system is $301,000 (∑ 𝑉𝑉𝑖𝑖𝑁𝑁
𝑖𝑖=1 ), we chose 

the values of $10,000, $50,000, $100,000, $150,000, and 300,000 for the budget limit. Following 

the steps for all these budgets, we will find the corresponding improvement in the resilience of the 

system (Figure 9). For the budget of $150,000 and $300,000 the optimal solution yields the same 

amount of investment ($103,800) and the optimal solution remains the same. Hence, the highest 

budget that is needed to enhance the resilience of the 6-bus system with linear utility whose 

parameters are (𝛾𝛾𝑖𝑖1, 𝛾𝛾𝑖𝑖2) = (0.5,0.5) is $103,800.  
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Figure 9 Resilience improvement in for budget limits of $10,000, $50,000, $100,000, 

$150,000, and 300,000 and a linear utility function with �𝛾𝛾1,1, 𝛾𝛾1,2� = (0.5,0.5). 

The utility function and its parameters are inherent characteristics of a component. Knowing 

a utility function can help us to decide about the type of improvement in the component. Table 3 

summarizes the 𝜃𝜃𝑖𝑖,𝑗𝑗 for utility functions introduced in Table 1 with different parameters and 𝑝𝑝𝑖𝑖,𝑗𝑗. 

Assuming that all the components have the same utility function, Algorithm 2 is applied for each 

utility function and budget limits of $10,000, $50,000, $100,000, $150,000, and 300,000.  After 

obtaining the optimal allocation, the resulted resiliency measure is obtained as in Figure 11-13. 

The linear utility functions with parameters (𝛾𝛾1, 𝛾𝛾2)  of (0.7, 0.3) and  (0.5, 0.5) show a higher 

cost and a lower resilience for budgets of $10,000 and $50,000. However, the amount of 

investment in the components can change this behavior.  Figure 13 shows the changes in the area 

under the functionality curves for different coefficients and cost factor 𝜃𝜃. As 𝜃𝜃 increases the utility 

function shifts to the upper right (left-hand side plots in Figure 14), meaning that better absorption 

and recovery combinations are possible. The area under the functionality curve, as a sub-metric of 

the resilience metric, shows highest value for the 𝑎𝑎 = 1. For an investment of 90% of the total 
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value of the component (i.e., 𝜃𝜃 = 0.9), the area under the utility curve approaches to 1, which 

means that the component is close to its highest functionality after an event. Based on Figure 11, 

the cost of enhancing resilience of a system whose components have a linear utility function with 

parameters of (0.9,0.1) is lower. 

The Cobb-Douglas utility (Figure 13) with 𝜌𝜌 = 0.3 and 𝜌𝜌 = 0.5 resulted in similar resilience 

and investment costs. A 𝜌𝜌 = 0.1 has a resilience similar to 𝜌𝜌 = 0.3 and 𝜌𝜌 = 0.5 but with lower 

costs for budget limits over $100,000.  The other two parameters (𝜌𝜌 = 0.7 and 𝜌𝜌 = 0.9) resulted 

in a lower cost and a higher resilience. If components have a CES utility with parameters (𝛾𝛾,𝜌𝜌) of 

(0.5,1), then system will reach to its highest resilience level for a budget greater than $100,000,  

while this budget limit is $50,000 for other parameters.  If the goal is to increase the resilience of 

the system from я = 0.73 to a resilience around я = 0.9, then CES with parameters (0.3, 0.1) 

would need a more budget.  
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Table 3 Cost factor 𝜃𝜃𝑖𝑖,𝑗𝑗 of absorption and recovery scenarios for utility functions 
    𝒑𝒑𝒊𝒊,𝒋𝒋,𝒌𝒌 = (𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘) 

U
til

ity
 fu

nc
tio

n 

pa
ra

m
et

er
s 

(0
,0

) 

(0
.2

5,
0.

25
) 

(0
.2

5,
0.

5)
 

(0
.2

5,
0.

75
) 

(0
.2

5,
1)

 

(0
.5

,0
.2

5)
 

(0
.5

,0
.5

) 

(0
.5

,0
.7

5)
 

(0
.5

,1
) 

(0
.7

5,
0.

25
) 

(0
.7

5,
0.

5)
 

(0
.7

5,
0.

75
) 

(0
.7

5,
1)

 

(1
,0

.2
5)

 

(1
,0

.5
) 

(1
,0

.7
5)

 

(1
,1

) 

L
in

ea
r 

(𝜸𝜸
𝟏𝟏,
𝜸𝜸 𝟐𝟐

) (0.1, 0.9) 0 0.25 0.48 0.7 0.92 0.28 0.5 0.73 0.95 0.3 0.52 0.75 0.98 0.32 0.55 0.78 1 
(0.3, 0.7) 0 0.25 0.42 0.6 0.77 0.32 0.5 0.68 0.85 0.4 0.57 0.75 0.92 0.48 0.65 0.82 1 
(0.5, 0.5) 0 0.25 0.38 0.5 0.62 0.38 0.5 0.62 0.75 0.5 0.62 0.75 0.88 0.62 0.75 0.88 1 
(0.7, 0.3) 0 0.25 0.32 0.4 0.48 0.42 0.5 0.57 0.65 0.6 0.68 0.75 0.82 0.77 0.85 0.92 1 
(0.9, 0.1) 0 0.25 0.28 0.3 0.32 0.48 0.5 0.52 0.55 0.7 0.73 0.75 0.78 0.92 0.95 0.98 1 

C
ob

b-
D

ou
gl

as
 𝝆𝝆

 0.1 0 0.25 0.47 0.67 0.87 0.27 0.5 0.72 0.93 0.28 0.52 0.75 0.97 0.29 0.54 0.77 1 
0.3 0 0.25 0.41 0.54 0.66 0.31 0.5 0.66 0.81 0.35 0.56 0.75 0.92 0.38 0.62 0.82 1 
0.5 0 0.25 0.35 0.43 0.5 0.35 0.5 0.61 0.71 0.43 0.61 0.75 0.87 0.5 0.71 0.87 1 
0.7 0 0.25 0.31 0.35 0.38 0.41 0.5 0.56 0.62 0.54 0.66 0.75 0.82 0.66 0.81 0.92 1 
0.9 0 0.25 0.27 0.28 0.29 0.47 0.5 0.52 0.54 0.67 0.72 0.75 0.77 0.87 0.93 0.97 1 

C
E

S 
( 𝜷𝜷

,𝝆𝝆
)  

(0.1, 0.5) 0 0.25 0.47 0.69 0.9 0.27 0.5 0.72 0.94 0.29 0.52 0.75 0.97 0.3 0.54 0.77 1 
(0.3, 0.1) 0 0.25 0.41 0.55 0.67 0.31 0.5 0.67 0.82 0.35 0.57 0.75 0.92 0.39 0.62 0.82 1 
(0.5, 1) 0 0.25 0.38 0.5 0.62 0.38 0.5 0.62 0.75 0.5 0.62 0.75 0.88 0.62 0.75 0.88 1 

(0.7, 0.3) 0 0.25 0.31 0.36 0.4 0.41 0.5 0.57 0.63 0.56 0.67 0.75 0.82 0.7 0.82 0.92 1 
(0.9, 0.4) 0 0.25 0.27 0.29 0.3 0.47 0.5 0.52 0.54 0.69 0.72 0.75 0.77 0.9 0.94 0.97 1 
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Figure 10 Resilience achieved by applying the enhancement in the optimal solution 
for different budgets for linear utility functions. 

 

 
Figure 11 Resilience achieved by applying the enhancement in the optimal solution 

for different budgets for Cobb-Douglas utility functions. 

 

 
Figure 12 Resilience achieved by applying the enhancement in the optimal solution 

for different budgets for CES utility functions. 
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Figure 13 charts on the left are linear utility curves for different values of investment 
and parameters. Charts on the right are the area under utility function for the utility 

functions on the left.  

  In summary, if components of the system we considered in our numerical analysis, all 

have a Cobb-Douglas utility curve with 𝜌𝜌 = 0.9, then the system will become more resilient with 

a lower investment comparing to other utility functions. If we have two components with the same 
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functionality and cost, but with two different utility curves, we can use similar analysis to choose 

one them. For a budget limit and known utility functions, Algorithm 2 can give the optimal budget 

allocation to maximize the resilience.  

4. Conclusion 

In this study, we considered the infrastructure investment under budget constraint. For this 

purpose the resilience metric suggested by [35] is used. Different states of enhancements for 

component’s absorption and recovery were elaborated and a metric was introduced to measure the 

resilience-based component importance. The mathematical programming formulation was 

suggested to allocate budget to components while maximizing the resilience within that budget. In 

this process, we introduced a novel method to bypass the complexity of the system by discretizing 

the options. The introduced optimization problem determines how much to be invested in each 

component, and what are the optimal level of enhancement in component’s absorption and 

recovery time. We applied our budget allocation problem on the IEEE 57-bus and discussed the 

effect of different utility curves on the cost of enhancement and system’s resilience level. The 

results show that for bus-6 test case, we need less than half the value of the system to improve its 

resilience from 0.73 to 1. Moreover, the resilience of a system whose components have a Cobb-

Douglas utility function may be enhanced with a lower budget. The relationship between the 

change in the component absorption and recovery and the change in the system functionality is 

assumed to be linear. Future studies will concentrate on finding a system specific relationship 

between different enhancements scenarios and the change in the functionality of the system in the 

face of adverse events. It will help to find a more accurate evaluation of the system resilience after 

investment. 
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Appendix 1: Calculations of я𝟏𝟏 and я𝟐𝟐 before investment 

(a) Calculations for я1 
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�
𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁𝑡𝑡𝑑𝑑

�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖(−
1
2
𝐴𝐴𝑖𝑖𝑡𝑡𝑑𝑑 + 𝑡𝑡𝑑𝑑)

𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖(−

1
2
𝐴𝐴𝑖𝑖 + 1)

𝑁𝑁

𝑖𝑖=1

 

(b) Calculations for я2 

я2 = �
𝐹𝐹(𝑡𝑡)
𝑇𝑇𝑇𝑇(𝑡𝑡)

𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡𝑑𝑑
=

1
𝑇𝑇 − 𝑡𝑡𝑑𝑑

�
𝐹𝐹(𝑡𝑡) + 𝐹𝐹(𝑡𝑡 + 1)

2

𝑇𝑇−1

𝑡𝑡=𝑡𝑡𝑑𝑑

=
1

2(𝑇𝑇 − 𝑡𝑡𝑑𝑑)
� �

1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 𝑓𝑓𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖=1

+
1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 𝑓𝑓𝑖𝑖,𝑡𝑡+1

𝑁𝑁

𝑖𝑖=1

�
𝑇𝑇−1

𝑡𝑡=𝑡𝑡𝑑𝑑

=
1

2𝑁𝑁(𝑇𝑇 − 𝑡𝑡𝑑𝑑)
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 ��  𝑓𝑓𝑖𝑖,𝑡𝑡

𝑇𝑇−1

𝑡𝑡=𝑡𝑡𝑑𝑑

+ �  𝑓𝑓𝑖𝑖,𝑡𝑡+1

𝑇𝑇

𝑡𝑡=𝑡𝑡𝑑𝑑+1

�
𝑁𝑁

𝑖𝑖=1

 

We calculate ∑  𝑓𝑓𝑖𝑖,𝑡𝑡𝑇𝑇−1
𝑡𝑡=𝑡𝑡𝑑𝑑 + ∑  𝑓𝑓𝑖𝑖,𝑡𝑡+1𝑇𝑇

𝑡𝑡=𝑡𝑡𝑑𝑑+1  separately and plug it into the above formula. 
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�  𝑓𝑓𝑖𝑖,𝑡𝑡

𝑇𝑇−1

𝑡𝑡=𝑡𝑡𝑑𝑑

= �  �1 −
−𝐴𝐴𝑖𝑖
𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑

(𝑇𝑇𝑖𝑖 − 𝑡𝑡)�
𝑇𝑇𝑖𝑖−1

𝑡𝑡=𝑡𝑡𝑑𝑑

+ � 1
𝑇𝑇−1

𝑡𝑡=𝑇𝑇𝑖𝑖

              

= �  
−𝐴𝐴𝑖𝑖
𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑

𝑇𝑇𝑖𝑖 +
𝑇𝑇𝑖𝑖−1

𝑡𝑡=𝑡𝑡𝑑𝑑

�  
𝐴𝐴𝑖𝑖

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑
𝑡𝑡 +

𝑇𝑇𝑖𝑖−1

𝑡𝑡=𝑡𝑡𝑑𝑑

� 1
𝑇𝑇−1

𝑡𝑡=𝑡𝑡𝑑𝑑

= −𝐴𝐴𝑖𝑖𝑇𝑇𝑖𝑖 +
𝐴𝐴𝑖𝑖
2

(𝑡𝑡𝑑𝑑 + 𝑇𝑇𝑖𝑖 − 1) + (𝑇𝑇 − 𝑡𝑡𝑑𝑑), 

and 

�  𝑓𝑓𝑖𝑖,𝑡𝑡+1

𝑇𝑇

𝑡𝑡=𝑡𝑡𝑑𝑑+1

= �  �1 −
𝐴𝐴𝑖𝑖

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑
(𝑇𝑇𝑖𝑖 − 𝑡𝑡)�

𝑇𝑇𝑖𝑖

𝑡𝑡=𝑡𝑡𝑑𝑑+1

+ � 1
𝑇𝑇

𝑡𝑡=𝑇𝑇𝑖𝑖+1

= �  
−𝐴𝐴𝑖𝑖
𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑

𝑇𝑇𝑖𝑖 +
𝑇𝑇𝑖𝑖

𝑡𝑡=𝑡𝑡𝑑𝑑+1

�  
𝐴𝐴𝑖𝑖

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑
𝑡𝑡 +

𝑇𝑇𝑖𝑖

𝑡𝑡=𝑡𝑡𝑑𝑑+1

� 1
𝑇𝑇

𝑡𝑡=𝑡𝑡𝑑𝑑+1

= −𝐴𝐴𝑖𝑖𝑇𝑇𝑖𝑖 +
𝐴𝐴𝑖𝑖
2

(𝑡𝑡𝑑𝑑 + 𝑇𝑇𝑖𝑖 + 1) + (𝑇𝑇 − 𝑡𝑡𝑑𝑑). 

Hence  

�  𝑓𝑓𝑖𝑖,𝑡𝑡

𝑇𝑇−1

𝑡𝑡=𝑡𝑡𝑑𝑑

+ �  𝑓𝑓𝑖𝑖,𝑡𝑡+1

𝑇𝑇

𝑡𝑡=𝑡𝑡𝑑𝑑+1

= −𝐴𝐴𝑖𝑖𝑇𝑇𝑖𝑖 +
𝐴𝐴𝑖𝑖
2

(𝑡𝑡𝑑𝑑 + 𝑇𝑇𝑖𝑖 − 1) + (𝑇𝑇 − 𝑡𝑡𝑑𝑑) − 𝐴𝐴𝑖𝑖𝑇𝑇𝑖𝑖 +
𝐴𝐴𝑖𝑖
2

(𝑡𝑡𝑑𝑑 + 𝑇𝑇𝑖𝑖 + 1) + (𝑇𝑇 − 𝑡𝑡𝑑𝑑)

= −2𝐴𝐴𝑖𝑖𝑇𝑇𝑖𝑖 +
𝐴𝐴𝑖𝑖
2

(2𝑡𝑡𝑑𝑑 + 2𝑇𝑇𝑖𝑖) + 2(𝑇𝑇 − 𝑡𝑡𝑑𝑑) = −𝐴𝐴𝑖𝑖(𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑) + 2(𝑇𝑇 − 𝑡𝑡𝑑𝑑) 

Replacing the ∑  𝑓𝑓𝑖𝑖,𝑡𝑡𝑇𝑇−1
𝑡𝑡=𝑡𝑡𝑑𝑑 + ∑  𝑓𝑓𝑖𝑖,𝑡𝑡+1𝑇𝑇

𝑡𝑡=𝑡𝑡𝑑𝑑+1  in the я2 yields 

я2 =
1

2𝑁𝑁(𝑇𝑇 − 𝑡𝑡𝑑𝑑)
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖�−𝐴𝐴𝑖𝑖(𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑) + 2(𝑇𝑇 − 𝑡𝑡𝑑𝑑)�
𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 �

−𝐴𝐴𝑖𝑖
2

(𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑑𝑑)
(𝑇𝑇 − 𝑡𝑡𝑑𝑑) + 1�

𝑁𝑁

𝑖𝑖=1

. 
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Appendix 2: Calculating я after investment 

The parameters 𝛼𝛼1,𝛼𝛼2,𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 ,𝐴𝐴𝑖𝑖 ,𝑇𝑇𝑖𝑖 , 𝛾𝛾𝑖𝑖,2, and 𝑡𝑡𝑑𝑑 are inputs to the model and they are known prior to the 
optimization. Let 𝑏𝑏𝑖𝑖1 = 𝛼𝛼1𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝐴𝐴𝑖𝑖

2
, 𝑏𝑏′𝑖𝑖1 = −𝑏𝑏𝑖𝑖1 + 𝛼𝛼1𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝑡𝑡𝑑𝑑 , 𝑏𝑏𝑖𝑖2 = 𝛼𝛼2𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝐴𝐴𝑖𝑖

2
, and 𝑏𝑏𝑖𝑖2′ = 𝑏𝑏𝑖𝑖2𝑇𝑇𝑖𝑖 , then я1 and 

я2 can be calculated as follows: 

я1 =
1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 �−

1
2
𝐴𝐴𝑖𝑖(1 − 𝑎𝑎𝑖𝑖) + 1�

𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁
�(𝑏𝑏𝑖𝑖1𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖1′ )
𝑁𝑁

1

 

я2 =
1
𝑁𝑁
�𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖 �

−𝐴𝐴𝑖𝑖(1 − 𝑎𝑎𝑖𝑖)
2

[𝑇𝑇𝑖𝑖 (1 − 𝑟𝑟𝑖𝑖) − 𝑡𝑡𝑑𝑑]
(𝑇𝑇 − 𝑡𝑡𝑑𝑑) + 1�

𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁
�

−𝛼𝛼2𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝐴𝐴𝑖𝑖
2

[𝑇𝑇𝑖𝑖 (1 − 𝑟𝑟𝑖𝑖) − 𝑡𝑡𝑑𝑑]
(𝑇𝑇 − 𝑡𝑡𝑑𝑑)

𝑁𝑁

𝑖𝑖=1

+
1
𝑁𝑁
�

𝛼𝛼2𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖𝐴𝐴𝑖𝑖
2

𝑎𝑎𝑖𝑖[𝑇𝑇𝑖𝑖 (1 − 𝑟𝑟𝑖𝑖) − 𝑡𝑡𝑑𝑑]
(𝑇𝑇 − 𝑡𝑡𝑑𝑑) + 𝛼𝛼2𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

=
1
𝑁𝑁
��

[𝑏𝑏𝑖𝑖2′  𝑟𝑟𝑖𝑖 − 𝑏𝑏𝑖𝑖2′ + 𝑏𝑏𝑖𝑖2𝑡𝑡𝑑𝑑] + [ 𝑏𝑏𝑖𝑖2′  𝑎𝑎𝑖𝑖−𝑏𝑏𝑖𝑖2′  𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖2𝑡𝑡𝑑𝑑𝑎𝑎𝑖𝑖]
𝑇𝑇 − 𝑡𝑡𝑑𝑑

�
𝑁𝑁

𝑖𝑖=1

+ 𝛼𝛼2𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖

=
1
𝑁𝑁
��

𝑏𝑏𝑖𝑖2′  𝑟𝑟𝑖𝑖 + (𝑏𝑏𝑖𝑖2′  + 𝑏𝑏𝑖𝑖2𝑡𝑡𝑑𝑑)𝑎𝑎𝑖𝑖−𝑏𝑏𝑖𝑖2′  𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖 + (𝑏𝑏𝑖𝑖2𝑡𝑡𝑑𝑑 − 𝑏𝑏𝑖𝑖2′ )
𝑇𝑇 − 𝑡𝑡𝑑𝑑

� + 𝛼𝛼2𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

 

я = 𝛼𝛼1я1 + 𝛼𝛼2я2 + 𝛼𝛼3
𝑇𝑇0
𝑇𝑇

=
1
𝑁𝑁
��

𝛽𝛽𝑖𝑖1 𝑎𝑎𝑖𝑖 + 𝛽𝛽𝑖𝑖2 𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖 + 𝛽𝛽𝑖𝑖3 𝑟𝑟𝑖𝑖 + 𝛽𝛽𝑖𝑖4𝑇𝑇 + 𝛽𝛽𝑖𝑖5𝑎𝑎𝑖𝑖𝑇𝑇 + 𝛽𝛽𝑖𝑖6
𝑇𝑇 − 𝑡𝑡𝑑𝑑

� +
𝑇𝑇0
𝑇𝑇

𝑁𝑁

𝑖𝑖=1

 

where 𝛽𝛽𝑖𝑖1 = 𝑏𝑏𝑖𝑖1𝑡𝑡𝑑𝑑 + 𝑏𝑏𝑖𝑖2′  + 𝑏𝑏𝑖𝑖2𝑡𝑡𝑑𝑑, 𝛽𝛽𝑖𝑖2 = −𝑏𝑏𝑖𝑖2′ , 𝛽𝛽𝑖𝑖3 = 𝑏𝑏𝑖𝑖2′ , 𝛽𝛽𝑖𝑖4 = 𝑏𝑏𝑖𝑖1′ , 𝛽𝛽𝑖𝑖5 = 𝑏𝑏𝑖𝑖1 and 

𝛽𝛽𝑖𝑖6 = 𝑏𝑏𝑖𝑖1′ 𝑡𝑡𝑑𝑑 + 𝑏𝑏𝑖𝑖2𝑡𝑡𝑑𝑑 − 𝑏𝑏𝑖𝑖2′ . 
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Appendix 3: IEEE 6-Bus data 

Figure A1 shows the Bus-6 network configuration, and Figure A2 shows the hourly power demand for 
this test network. Table 1 contains power generation data, and Table 2 contains data for the transmission 
lines. 

 

 
 

Figure A1: Bus-6 network diagram Figure A2: Bus-6 hourly total demand 
 

Table A1: Bus-6 data for generation units. 
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Table A2: Bus-6 data for transmission lines. 
Names 

begin end phase capacity linemttr investment 
E3 1 2 0.17 200 12 10 
E4 

2 3 0.037 100 8 7 
E5 

1 4 0.258 100 8 7 
E6 

2 4 0.197 100 8 7 
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4 5 0.037 100 8 7 
E8 

5 6 0.14 100 8 7 
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3 6 0.018 100 8 7 
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Appendix 4: Cost Factors 
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