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By providing objective measures, resilience metrics (RMs) help planners, designers, and 

decision makers to have a grasp of the resilience status of a system. Conceptual 

frameworks establish a sound basis for RM development. However, a significant 

challenge that the existing literature has not addressed is assessing the validity of and 

RM by determining whether it reflects all abilities of a resilient system and whether it 

overrates/underrates these abilities or not. This paper covers this gap by introducing a 

methodology that can show the validity of an RM against its conceptual framework. This 

methodology combines the experimental design methods and statistical analysis 

techniques that provide an insight into the RM’s quality. We also propose a new metric 

that can be used for general systems. The analysis of the proposed metric using the 

presented methodology shows that this metric is a better indicator of the system abilities 

comparing to the existing metrics. 

Keywords: resilience metric; resilience quantification; resilience metric assessment; statistical 

analysis; experimental design; power systems  

1. INTRODUCTION 

Natural or human-made disasters may impose costs, disrupt routine activities, and 

threaten human life. From 1980 to 2011, more than 130 extreme events resulted in 881 billion 

dollars in damages in the United States (Smith & Katz, 2013). Hurricane Katrina caused 108 

billion dollars and 1,833 fatalities in 2005 (FEMA, 2006). Hurricane Harvey in 2017 and Sandy 

in 2012 cost $125 (National Hurricane Center, 2018) and $70 billion, respectively (FEMA, 

2017). To improve understanding of unfavorable events and alleviate the resulting 

consequences, researchers and practitioners have developed several concepts such as risk, 
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robustness, stability, survivability, and reliability. Risk is the possibility of an undesired event 

and its sequenced loss (Corotis, 2012), robustness is the system’s ability to tolerate short-term 

adverse conditions (Corotis, 2012), stability is the ability of a system to withstand long-term 

disruptions and continue its critical operations (Jen, 2003), survivability is the ability of a 

system to minimize the impact of a finite disturbance on value delivery  to alleviate the 

consequences of unfavorable events (Sterbenz et al., 2010), and reliability is the ability of a 

system or component to function under stated conditions (operational and environmental) for 

a specified period of time  (Kiran, 2017; Tolk, Fritts, Cantu, & Gharehyakheh, 2017).  

However, in the face of the extreme events, like catastrophic hurricanes or earthquakes, some 

aspects are not covered by these concepts which led to the development of another concept: 

resilience. 

Resilience (or resiliency) comes from the Latin word “resiliō,” which means “to 

bounce” (Alexander, 2013). Disciplines like social systems (Kwok, Doyle, Becker, Johnston, 

& Paton, 2016), organizational systems (Sahebjamnia, Torabi, & Mansouri, 2018), economic 

systems (Rose, 2004), psychology (Brown, 2015), ecology (Holling, 1973), and 

engineering(Heinimann & Hatfield, 2017; Yodo & Wang, 2016) have been studying resilience. 

However, each discipline considers it from its point of view; hence, the definitions may vary.  

The common elements of resilience among them are disruption and returning to the normal 

situation. Compared to the other fields, not only the number of resilience studies in the realm 

of engineering are limited(Hosseini, Barker, & Ramirez-Marquez, 2016), but also there is not 

unanimity on its definition. We divided the literature review into two sections: 1) resilience 

conceptual framework that includes the studies on the concepts and fundamentals of resilient 

systems, and 2) resilience quantification which reviews the studies on the RMs.  
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1.1. A Conceptual Framework of A Resilient System  

Theoretical frameworks mainly discuss the characteristics of a resilient system and steps 

to enhance the system’s resilience. Omer et al. (Omer, Nilchiani, & Mostashari, 2009) 

characterized the disaster resilience’s goals to include reduced failure probabilities, reduced 

consequences from failures, and reduced time-to-recovery. The resilience of a network is a 

multidimensional, dynamic concept (Ji & Wei, 2015) that addresses its ability to absorb and 

recover from an external, high-impact, low-probability event (Liu, Wu, & Zhou, 2016). Both 

pre-disaster (preparedness) and post-disaster (recovery) activities are necessary for a resilient 

system (National Infrastructure Advisory Council, 2009).  

 

Performance (Ayyub, 2014; Ouyang & Dueñas-Osorio, 2012) or functionality (Cimellaro, 

Reinhorn, & Bruneau, 2010; Ganin et al., 2016) of a system refers to the requirements or 

objectives (Ayyub, 2014) of the system under study that indicates how well the system fulfills 

its intended goals (Jean-Paul Watson et al., 2014). It is measured as a dimensionless 

(percentage) function of time (Cimellaro et al., 2010; Ouyang & Dueñas-Osorio, 2014). For 

example, for a natural gas network it can be the combination of the normalized gas flow rate 

and the total length of the network (Cimellaro G. P., Villa O., & Bruneau M., 2015). For a 

power system, it can be the percentage of energized transmission substations, the percentage 

of critical facilities with power, or the percentage of customers with power (Ouyang & Dueñas-

Osorio, 2012).  

 

Four abilities of a resilient system are anticipation, absorption, adaptation, and rapid 

recovery (Ayyub, 2014; Collier, Panwar, Ganin, Kott, & Linkov, 2016; Francis & Bekera, 

2014; Ganin et al., 2016; J. Phillips, M. Finster, J. Pillon, F. Petit, & J. Trail, 2016; 

Kamalahmadi & Parast, 2016; L.Carlson et al., 2012), We merged the resilience profile from 
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Francis and Bekera (Francis & Bekera, 2014) and Ganin et al. (Ganin et al., 2016) to obtain 

four phases as seen in Figure 1. While the former does not assume separate phases for 

anticipation and absorption, the latter does not include the slack time (𝛿𝛿).  Anticipation is the 

phase before anything happens (𝑡𝑡 ≤ 𝑡𝑡𝑜𝑜) to the system while preparing for a hazard. This can 

include forecasting the adverse event, its severity, list of the components prone to failure, the 

plans for different scenarios, etc. In this phase, the functionality is in normal state (𝐹𝐹𝑜𝑜). 

Absorption is the phase in which the system absorbs the impact of the hazard and reduces the 

severity of consequences when a disaster strikes the system (𝑡𝑡𝑜𝑜 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑑𝑑). As a result, the 

system functionality drops to 𝐹𝐹𝑑𝑑. The value of 𝐹𝐹𝑑𝑑 is closer to one as the system becomes more 

resilient. Adaptation is the phase after a disaster and just before the recovery phase (𝑡𝑡𝑑𝑑 ≤ 𝑡𝑡 ≤

𝑡𝑡𝑟𝑟∗). During this time, the system can utilize its current resources to improve the functionality 

of the system from 𝐹𝐹𝑑𝑑 to 𝐹𝐹𝑟𝑟∗. This phase may include temporal repair, utilizing the redundant 

components, prioritizing and addressing the more critical demands. Francis and Bekera 

(Francis & Bekera, 2014) assumed initial recovery actions that take place at slack time (𝑡𝑡𝛿𝛿) to 

improve the functionality to 𝐹𝐹𝑟𝑟∗. These initial recovery actions are not final and are prone to 

change by the next phase. The final phase is recovery (𝑡𝑡𝑟𝑟∗ ≤ 𝑡𝑡 ≤ 𝑇𝑇) in which the system 

gradually returns to its initial state, or to a stable state. These phases are not mutually exclusive. 

For example, the recovery phase may start in the middle of adapt phase. 
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Figure 1: Phases that system undergoes in the face of an extreme event  (Adopted and modified from 

(Francis & Bekera, 2014) and (Ganin et al., 2016)). 

 

1.2. Resilience Quantification 

The extravagant cost of disasters justifies the investment to improve the system’s 

resilience. Quantification is an essential tool to achieve this goal. This tool can be utilized to 

identify, justify, and prioritize any need for improvement (Disaster Resilience: A National 

Imperative, 2012). Some other applications include monitoring changes in the resilience level, 

evaluating the effectiveness of the resilience strategies, or comparing the cost-effective benefits 

of improving resilience (Disaster Resilience: A National Imperative, 2012). RMs must reflect 

the abilities of a resilient system, and thus must serve the following goals (Goodykoontz et al., 

2015; Vugrin et al., 2012):  

(1) To provide objective evaluations of the system’s current state of resilience. 

(2) To provide a mean for identification of potential infrastructure vulnerabilities. 
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(3) To enable the evaluation of the changes in the resilience resulted from of the resilience 

enhancement activities.  

There are different approaches to assess resilience. Hosseini et al. (Hosseini et al., 

2016) categorized the quantitative measures into two groups: general and structural. General 

measures can be applied to any domain. They include deterministic and probabilistic, and static 

and dynamic models. In contrast, structural based measures are domain-specific 

representations of the components of resilience. Optimization, simulation, and fuzzy logic 

models are utilized in these models.  

Willis and Loa (Willis & Loa, 2015) classified the metrics by three characteristics: 

resolution, type, and maturity. Resolution refers to the scale of the system being described; type 

refers to where the metrics fit; and maturity relates to the suitability, systematically collection, 

and organization of the metrics. Moreover, an RM should not be difficult to implement 

(ENISA, 2011; Kwasinski, 2016), and it must produce the same result when the assessment is 

repeated (ENISA, 2011).  

While some papers assume that RM can be greater than 1 (Francis & Bekera, 2014; 

Wang, Gao, & Ip, 2010), Ayyub(Ayyub, 2014) defines the RM to be a function that maps a set 

of possible situations, to the interval [0,1] 

𝑅𝑅𝑅𝑅 ∶  𝐶𝐶 →  [0, 1], (1)  

in which C is an algebra.  

The network structure and components (Abbasi, Barati, & Lim, 2017; Khayatian, 

Barati, & Lim, 2016; Saeedeh Abbasi, Masoud Barati, & Gino Lim, 2017a, 2017b; Whitson & 

Ramirez-Marquez, 2009; Zhang & Wang, 2016) can also improve the resilience of a system, 

and network measures can be included in an RM. Abbasi et al. (Abbasi et al., 2017) presented 
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a resilience vector for a power grid which comprised of five sub-indices: load shedding cost 

savings, restoration cost savings, adaptability, weighted algebraic connectivity, and weighted 

betweenness centrality. The last two subindices are extracted from the network structure. 

Zhang and Wang (Zhang & Wang, 2016) introduced a network-based RM that does not 

consider the performance of the system. However, performance must be incorporated into a 

metric (Jean-Paul Watson et al., 2014)  because it reflects how well the system delivers on its 

intended purpose during and after an event (Jean-Paul Watson et al., 2014).  

 Some researchers used the ratio of the area of real performance region to the area of 

target performance as an RM (Bruneau et al., 2003; Jin, Tang, Sun, & Lee, 2014; Shen & Tang, 

2015; Zobel & Khansa, 2014). Others divided the previous metric by the recovery time to take 

into account the time-to-recovery (Baroud, Barker, Ramirez-Marquez, & Rocco S., 2014; 

Henry & Emmanuel Ramirez-Marquez, 2012; Kadri & Chaabane, 2015; Renschler et al., 

2010). The metric offered by Francis and Bekera (Francis & Bekera, 2014) is based on the few 

data points ((𝑡𝑡𝑜𝑜,𝐹𝐹0), (𝑡𝑡𝑑𝑑 ,𝐹𝐹𝑑𝑑), (𝑡𝑡𝑟𝑟∗ ,𝐹𝐹𝑟𝑟∗), (𝑡𝑡𝑒𝑒,𝐹𝐹𝑒𝑒)) on the functionality curve (Figure 1), which 

does not consider the whole functionality curve that indicates how the process degrades and 

recovers. Kwasinski (Kwasinski, 2016) used a metric from reliability as an indicator of 

resilience. Ayyub (Ayyub, 2014) used a weighted sum of normalized ratio of areas in two 

intervals, one from 𝑡𝑡𝑜𝑜 to 𝑡𝑡𝑑𝑑, and the other from 𝑡𝑡𝑑𝑑 to T.  

Definition. Valid Resilience Metric 

A valid RM associated with a conceptual framework is a metric that  

i) Reveals if a system has the abilities suggested by the associated conceptual 

framework, and  
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ii) Is not biased towards any of these abilities, i.e., it must not overemphasize or 

underemphasize the importance of any of these abilities. 

 Systems with different abilities’ settings can have the same resilience measure against 

the same incident (Figure 2), but it may be different for a biased metric. For example, consider 

System 2 in Figure 2 with a weak absorption but a rapid recovery, and System 3 with a better 

absorption but a tardy recovery compared to System 2; for an unbiased RM System 2 and 

System 3 have the same resilience value, but for a biased metric which overemphasizes the 

rapid recovery, System 2 shows a better resilience.  
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Figure 2: systems different settings of abilities: System 1 has a higher absorption 

and shorter recovery period comparing to other two systems. While System 2 has a 

shorter recovery and poorer absorption comparing to System 3, both have the same 

resilience measure 

 

Now that we defined a valid RM, the question that arises is “how can we validate an 

RM?” In the subsequent sections of this study, we present our proposed RM and a methodology 

to examine the validity of RMs. We provide numerical results, analyze our proposed metric, 

and compare it to other performance-based metrics. Throughout this document, we use RM 

and resilience index interchangeably. 
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2. EXISTING RESILIENCE METRICS  

So far, several RMs have been developed for the systems which are categorized as 

general or structural (Hosseini et al., 2016). In this section, we present the existing metrics and 

their limitations. We use the following notation in the rest of this document. We name the 

existing metrics as 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1 … 6. The pair (𝑡𝑡,𝐹𝐹) indicate the time and functionality of the 

system at that time (Figure 1). The point (𝑡𝑡𝑂𝑂,𝐹𝐹𝑂𝑂) on the curve corresponds to the normal or 

initial state when an incident occurs, at (𝑡𝑡𝑑𝑑 ,𝐹𝐹𝑑𝑑) system has degraded to its lowest functionality, 

𝑡𝑡𝛿𝛿 is the time that the initial recovery actions are started, (𝑡𝑡𝑟𝑟∗, 𝐹𝐹𝑟𝑟∗) is the end of adaptation, 

where initial recovery actions end, and (𝑇𝑇,  𝐹𝐹𝑇𝑇) corresponds to the point that recovery is 

achieved.   

  

A normalized metric (Index1) indicates the percentage of the targeted functionality (TF) 

that has been satisfied (Bruneau et al., 2003; Jin et al., 2014; Shen & Tang, 2015; Zobel & 

Khansa, 2014).  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥1 =
∫ 𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡𝑇𝑇
0 

∫ 𝑇𝑇𝐹𝐹𝐼𝐼𝑡𝑡𝑇𝑇
0

  

The area ∫ 𝑇𝑇𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡 𝑇𝑇
0 is a normalizing factor which helps to compare resilience of different 

systems and different performance magnitudes together. However, Index1 does not show the 

importance of rapid recovery ability as we have elaborated in the discussion section.  

Kwasinski (Kwasinski, 2016) presented Index2 for power systems, which is similar to 

availability index (Calixto, 2016).   

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥2 =
 𝑇𝑇𝑢𝑢

𝑇𝑇𝑢𝑢 + 𝑇𝑇𝑑𝑑
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where 𝑇𝑇𝑢𝑢 and 𝑇𝑇𝑑𝑑 are the summations of the up and down times of the system’s components. 

An obvious weakness of this metric is that if we have two components with huge capacity 

differences, and Index2 cannot distinguish the differences between their impacts on the 

resilience measure.  

 In Index3 (Barker, Ramirez-Marquez, & Rocco, 2013; Chanda & Srivastava, 2016) the 

minimum functionality is subtracted from the numerator and denominator of Index1 to focus 

more on the after event activities (adaptability and recovery). However, their metric still has 

the same flaw as Index1. 

  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥3 =
∫ [𝐹𝐹(𝑡𝑡) − min{𝐹𝐹(𝑡𝑡)} ]𝐼𝐼𝑡𝑡𝑇𝑇
0 

∫ [𝑇𝑇𝐹𝐹 − min{𝐹𝐹(𝑡𝑡)} ]𝐼𝐼𝑡𝑡𝑇𝑇
0

 

Francis and Bekera (Francis & Bekera, 2014) proposed an index that includes 

absorptive capacity (𝐹𝐹𝑑𝑑/𝐹𝐹0 ) which shows the ability of the system to absorb shocks without 

recovery action, adaptive capacity (𝐹𝐹𝑅𝑅/𝐹𝐹0 ) which relates to those post-disaster activities taken 

after the disruption, and speed of recovery 𝑆𝑆𝑝𝑝 which is as follows: 

𝑆𝑆𝑝𝑝 =

⎩
⎨

⎧
𝑡𝑡𝛿𝛿
𝑡𝑡𝑟𝑟∗
𝐼𝐼−𝑎𝑎(𝑡𝑡𝑟𝑟−𝑡𝑡𝑟𝑟∗)                   𝑡𝑡𝑟𝑟≥𝑡𝑡𝑟𝑟∗

𝑡𝑡𝛿𝛿
𝑡𝑡𝑟𝑟∗

                  𝑜𝑜𝑡𝑡ℎ𝐼𝐼𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝐼𝐼 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥4 = 𝑆𝑆𝑝𝑝
𝐹𝐹𝑅𝑅
𝐹𝐹0 

𝐹𝐹𝑑𝑑
𝐹𝐹0

  

Although it includes sub-metrics for the abilities of the system, this metric just used few 

functionality points, and it cannot demonstrate how the functionality changes along the 

functionality curve (e.g., Systems 3 and 4 in Figure 2).  
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Ayyub (Ayyub, 2014) introduced 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥5: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥5 =
𝑡𝑡0 + 𝐹𝐹∆𝑇𝑇𝑑𝑑 + 𝑅𝑅∆𝑇𝑇𝑅𝑅
𝑡𝑡0 + ∆𝑇𝑇𝑑𝑑 + ∆𝑇𝑇𝑟𝑟

  

Where ∆𝑇𝑇𝑑𝑑 = 𝑡𝑡𝑑𝑑 − 𝑡𝑡0, F is the failure profile,  F =
∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑
𝑡𝑡𝑖𝑖

∫ 𝑇𝑇𝐹𝐹𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑
𝑡𝑡𝑖𝑖

 , ∆𝑇𝑇𝑅𝑅 = 𝑡𝑡𝑅𝑅 − 𝑡𝑡𝑑𝑑, R is the recovery 

profile, R =
∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟
𝑡𝑡𝑑𝑑

∫ 𝑇𝑇𝐹𝐹𝑑𝑑𝑡𝑡𝑡𝑡𝑅𝑅𝑟𝑟
𝑡𝑡𝑑𝑑

,  and 𝑡𝑡0 = 0.  

Kadri and Chaabane (Kadri & Chaabane, 2015) divided the value of Index1 by T to 

incorporate rapid recovery into the RM. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥 6 =

∫ 𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡𝑇𝑇
0

∫ 𝑇𝑇𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡𝑇𝑇
0

𝑇𝑇
 

 

These two last indices put a high weight on the recovery time, while a valid metric must be 

unbiased towards any of the abilities. 

3. PROPOSED RESILIENCE METRIC 

As an attempt to overcome the shortcoming of the existing metrics, we develop a 

performance-based valid RM that can be used in a variety of areas and is more consistent with 

various conceptual frameworks. This metric includes parameters that should be determined by 

the decision makers; hence, it is flexible to any application at hand. Our proposed RM is based 

on three post-disaster related abilities (absorption, adaptation, and recovery) because it is 

commonly reported in the literature. Although adding the anticipation ability (a pre-disasters 

component) can help improve the system resiliency, it is beyond the scope of this paper. 

 The first component is absorption (𝑒𝑒1). This component measures how well the system 

can maintain its functionality in the face of an unfavorable event, and how much the negative 

effects will be prevented. The formula for 𝑒𝑒1is: 
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𝑒𝑒1 =
∫ 𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡 𝑡𝑡𝑑𝑑
𝑡𝑡𝑜𝑜

∫ 𝑇𝑇𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡𝑡𝑡𝑑𝑑
𝑡𝑡𝑜𝑜

 
 (2)  

in which, F(t) is the functionality of the system at time t, and TF(t) is the required functionality 

or demand at time t. Since the functionality of a system cannot be negative (e.g., 0 indicates 

non-functional system), both functions map the time to 𝑅𝑅+ , the non-negative real numbers. 

Also, for 𝑡𝑡 ∈ [0, 𝑡𝑡𝑑𝑑), the following inequality holds true, 𝐹𝐹(𝑡𝑡) ≤ 𝑇𝑇𝐹𝐹(𝑡𝑡); hence 0 ≤ 𝑒𝑒1 ≤ 1. 

 The second component is adaptation (𝑒𝑒2). This component shows how well we 

assigned and utilized the existing resources to mitigate the consequences of the event, which 

can be measured by the loss of functionality after degradation until recovery over the target 

functionality. The recovery actions may result in two situations for the functionality. If the 

system recovers to a steady state at the same level or below the initial state (𝐹𝐹𝑅𝑅 ≤ 𝐹𝐹𝑜𝑜), then we 

use 𝑇𝑇 = 𝑡𝑡𝑅𝑅. Otherwise (𝑖𝑖. 𝐼𝐼. ,𝐹𝐹𝑅𝑅 > 𝐹𝐹𝑜𝑜), we choose T to be the time that the functionality 

recovers to its initial state (𝑇𝑇 = 𝐹𝐹−1(𝐹𝐹𝑜𝑜) and 𝑇𝑇 > 𝑡𝑡𝑜𝑜, where 𝐹𝐹−1 is the inverse of functionality 

function). Because the goal of recovery is to bring the system back to the initial state, any 

efforts made beyond the initial state falls under capacity enhancement (“Capacity planning,” 

2018). Using this T, the formula for 𝑒𝑒2 is as follows: 

𝑒𝑒2 =
∫ 𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡 𝑇𝑇
𝑡𝑡𝑑𝑑

∫ 𝑇𝑇𝐹𝐹(𝑡𝑡)𝐼𝐼𝑡𝑡𝑇𝑇
𝑡𝑡𝑑𝑑

 
 (3)  

Where 

𝑇𝑇 = �
𝑡𝑡𝑅𝑅 𝐹𝐹𝑅𝑅 ≤ 𝐹𝐹𝑜𝑜

𝐹𝐹−1(𝐹𝐹𝑜𝑜) 𝐹𝐹𝑅𝑅 > 𝐹𝐹𝑜𝑜 𝑎𝑎𝐼𝐼𝐼𝐼 𝑡𝑡 > 𝑡𝑡𝑜𝑜
 

With a reasoning like the previous part, we will have 0 ≤ 𝑒𝑒2 ≤ 1. 
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The third component is time-to-recovery (𝑒𝑒3). Each system has a favorite time-to-recovery 

(𝑇𝑇0) which can be determined in several ways, such as expert opinion. Having 𝑇𝑇0 we calculate 𝑒𝑒3 

using formula (4). 

𝑒𝑒3 = 𝑓𝑓(𝑇𝑇) = �
1 𝑇𝑇 ≤ 𝑇𝑇0
𝑇𝑇0
𝑇𝑇

𝑜𝑜𝑒𝑒
 (4)  

When 𝑒𝑒3 = 1, it tells us that the time-to-recovery is shorter than the favorable time and if the 

recovery time is terrible (𝑇𝑇 → ∞) then the corresponding component is very small (𝑒𝑒3 → 0). The 

function 𝑓𝑓(𝑇𝑇) can be replaced by the function that best suits the system. Also, it holds that           

0 ≤ 𝑒𝑒3 ≤ 1. 

 Our proposed RM is a convex combination of the three components.  

𝑒𝑒 = 𝜆𝜆1𝑒𝑒1 + 𝜆𝜆2𝑒𝑒2 + 𝜆𝜆3𝑒𝑒3, 

∑ 𝜆𝜆𝑖𝑖3
𝑖𝑖=1 = 1 and 𝜆𝜆𝑖𝑖 ≥ 0 for i=1,2,3, 

(5)  

where 𝑒𝑒1, 𝑒𝑒2, and r3 are values of absorption, adaptation, and recovery components, respectively. 

The weight parameters (𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) can be obtained using any priority ranking method among 

those three abilities such as  analytic hierarchical process (AHP) (Brink, 1994).   

4. A RESILIENCE METRIC ASSESSMENT METHODOLOGY  

When we talk about a valid RM, the question arises: “how can we assess its validity”. In this 

section, we introduce a methodology that can be used for this purpose. This methodology is not 

just for a particular case or domain and can be applied to any performance-based RM. Our 

methodology utilizes experimental design (Montgomery, 1991) and statistical analysis.  
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 “An experiment is a test or a series of tests in which purposeful changes are made to the input 

variables of a process or a system so that we may observe and identify the reasons for changes 

that may be noticed in the output response” (Montgomery, 1991). Experimental design is an 

efficient procedure for planning experiments so that the data obtained can be analyzed to yield 

valid and objective conclusions. It is used to choose between alternatives, select the key factors 

affecting a response, model a process, "fine tune" a process, and optimize a process output. 

We use the experimental design method to assess the validity of a metric. The steps of 

the proposed methodology are as follows.  

Step 1: Select factors and their levels. We must have a factor for each of the items we want 

to study, which in our case they are abilities of the system. Each factor can be a function of sub-

factors. Combinations of factor levels are called treatments. The response variable is the RM 

value. 

Step 2: Obtain the performance measure for each treatment. The probability of occurrence 

of extreme events is minimal, and it is not feasible to get the real data for experiments. Hence, we 

use simulation to obtain the data. The output of a simulation is the functionality of the system 

which will be used in calculating the resilience.  

Step 3: Calculate RM. In this step, we use the performance data in the previous step to 

calculate the resilience for each treatment.  

Step 4: Analyze the results. Now use analysis of variance (ANOVA) to test the statistical 

significance of factors’ effects on the resilience of the system. The output of ANOVA includes 

the p-values for the factors. In statistics, we compare this p-value with a significance level. The 

smaller the p-value, the more significant it is. If p-value for a factor is significant, it signals that 

changing the value or level of that factor (ability) will not change the resilience; hence we can say 
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that that metric is not valid. For example, if a factor associated with absorption has a p-value of 

0.1, then it shows that this factor is not significant, and that means that absorption has no 

significant effect on the resilience of the system. However, from the conceptual framework, we 

know that it is one of the key abilities of a resilient system.  

5. NUMERICAL STUDIES  

In this section, we will examine our proposed RM by the methodology that we 

presented in Section 4. For this, we need a system to simulate the events (i.e., feed input factors 

for each treatment and extract response and calculate the output of the proposed RM). We 

adopted security constrained unit commitment (SCUC) which models electrical power systems 

(Bertsimas, Litvinov, Sun, Zhao, & Zheng, 2013; Khodaei & Shahidehpour, 2010). The SUSC 

model and description can be found in Appendix A. 

For simplicity, without loss of generality, we assumed that the disruption just affects 

the nodes (generators), however, it can be extended to include links and other components as 

well. We applied SCUC on a 57-bus test case which consists of 57 buses, seven units, and 80 

lines. The data can be found in Appendix B. Now we go through the steps of our methodology 

for metric assessment.  

5.1.METRIC ASSESSMENT 

The following steps are followed to assess the proposed resilience metric and check if 

it is a valid RM for the power system example. 

Step 1: Select factors and levels. Let labels A, B, and C stand for the three design factors 

(absorption, adaptation, and recovery, respectively). The factors should be extracted from the 

primary items that influence the resiliency of the power system units. These items are time-to-
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recovery, generation capacity, ramp up, ramp down (Khodaei & Shahidehpour, 2010), and 

severity, where severity is the number of generators that are inoperable. In 57-bus test case 

data, there is a high correlation among the generation capacity, ramp up, and ramp down. Due 

to this correlation we arbiterarily choose one of them, e.g. generation capacity. During an 

adverse event, a better absorption can result in fewer inoperable generators. Hence we use 

severity as a measure of A. Generation capacity can be used for B. This is because, after an 

adverse event, the high capacity generators can inject more spinning and non-spinning reserves 

into the system and satisfy more demand (Ahmadian, Vahidi, Jahanipour, Hoseinian, & 

Rastegar, 2016; Matos, Bessa, Botterud, & Zhou, 2017). Factor C is time-to-recovery. 

For factors A and B, we selected two levels using the Pareto rule in a way that the 

distance between two levels is 80% of the range of data. In a severe situation, the number of 

inoperable generators will increase. In the 57-bus test case, there are seven generators with 

generation capacities of 20, 30, 50, and 80 Megawatts.  Since we have seven generators, at its 

lowest level, B assumes 1, which means that only one generator will become inoperable and 

the rest of generators will continue their regular production. At its highest level, four generators 

will become inoperable. For factor C, which is the time-to-recovery, we used the time-to-repair 

(TTR). Researchers use lognormal and exponential probability distributions for TTR 

(O’Connor, 2002). We collected the mean time-to-repair (MTTR) of each generator (unit)  

(Janusz Buchta, Andrzej Oziemski, & Maciej Pawlik, 2014; Lee C. Cadwallader, 2012; 

Oyedepo, Fagbenle, & Adefila, 2015; Podofillini, L., Sudret, B., Stojadinovic, B., Zio, E., & 

Kröger, W., 2015) and we fit an exponential probability distribution for the TTR. We assume 

that generator is operable after this TTR. The time horizon for usual SCUC is 24 hours, 

however, since the MTTR for some generators was more than 24, we considered a 96 hours 

horizon. Let g(t) be the exponential probability distribution function of time-to-repair, t, and 

𝐺𝐺(𝑡𝑡) is its cumulative distributin function. Therefore, the TTR corresponding to a probability 
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p is calcuated as 𝐺𝐺−1(𝑝𝑝). We expect a complicated relationship between time-to-recovery and 

the RM value. Hence, five levels(says, 2014) are selected to reflect the actual effect of recovery 

time on the RM. The first four levels are 𝐺𝐺−1(0.25), 𝐺𝐺−1(0.5), 𝐺𝐺−1(0.63), and 𝐺𝐺−1(0.75). 

The last level (T) is the minimum of the time horizon (96) and 𝐺𝐺−1(0.99) for the selected 

generator.  

Table I. Factor and levels. For recovery time f is the exponential probability density function 

Factor Name Factor ID Levels 

Generating capacity (MW) A Low (-) = 20, High (+) = 80 

Severity (#of inoperable 

generators) B Low (-) = 1, High (+) = 4 

Time-to-recovery (Hours) C 𝐺𝐺−1(0.25), 𝐺𝐺−1(0.5), 𝐺𝐺−1(0.63), 𝐺𝐺−1(0.75), T 

Figure 3 shows the treatments resulted from experimental design. The name of each 

treatment consists of the AB treatment label (i.e., 1, a, b, ab), an underscore, and probability 

of factor C. For example, case a_0.25 corresponds to the TTR for the probability of 0.25 and 

AB at a (i.e., factors A is at its high level (+) with a value of 80 and B is at its low level (–) 

with a value of 1.)  For each treatment, we generated the data for inoperable generators.  

 

Figure 3: design of the experiment for analysis of metrics 

 -  A  + 

+ 

B 

- 
1 a 

b ab 

0.25 0.5 0.63 0.75 T 

C 
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Step 2: Obtain the performance measures. For this step, we coded the SCUC in Java 

and used Java API of IBM CPLEX Studio 12.6 for optimization(“IBM Knowledge Center - 

Java tutorial,” 2018). For each of the treatments, we fed the input data into the SCUC, extracted 

load shedding, and calculated the demand served (demand served equals actual demand minus 

load shedding). Figure 4 plots the demand served and actual demand. 

 

Figure 4: Demand vs. supply for each treatment. The columns correspond to levels of factor C, and the 

rows correspond to level combinations of AB.  

Step 3: Calculate RM. For our proposed metric, we first calculated the metric 

components (Figure 5). Then, to study the effect of the choice of 𝜆𝜆𝑖𝑖s on the resilience, we 

devised different combinations of 𝜆𝜆𝑖𝑖s (Appendix C). The name of each combination is derived 

from the values of the 𝜆𝜆𝑖𝑖s (e.g., m145 is for 𝜆𝜆1 = 0.1, 𝜆𝜆2 = 0.4, and 𝜆𝜆3 = 0.5; and m25255 is 

for 𝜆𝜆1 = 0.25, 𝜆𝜆2 = 0.25, and 𝜆𝜆3 = 0.5). Finally, we calculated the resilience for each 

treatment and each combination of 𝜆𝜆𝑖𝑖s. 
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Figure 5: resilience metric components 

Step 4: Analyze the results: First we determined the effect model using the 

experimental design techniques, and then calculated the ANOVA table. To see if there are 

interactions among the factors we drew interaction plots (Appendix D). Since there were no 

interactions (interaction lines does not cross each other) we used the following linear model: 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋3 + 𝜖𝜖 (6)  

in which the variables 𝑋𝑋1,  𝑋𝑋2, 𝑎𝑎𝐼𝐼𝐼𝐼 𝑋𝑋3 correspond to the factors A, B, and C. 𝛽𝛽𝑖𝑖 are 

parameters and 𝜖𝜖 is the error term. Table II contains the ANOVA table for the metric 

corresponding to vector 𝜆𝜆 = (0.25,0.25,0.5)  

 
Table II. ANOVA table for 𝜆𝜆 = (0.25,0.25,0.5) 

  df sum_sq mean_sq F PR(>F) 
A 1 0.4258 0.4258 75.75 1.57054E-06 
B 1 0.3008 0.3008 54 8.87232E-06 
C 4 0.3501 0.3501 15.75 0.000101334 
Residual 12 0.0668 0.0042 nan nan 
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We calculated ANOVA for all 𝜆𝜆 vectors (Table III). Among these combinations, for 

cases m451 and m541 the factor A is not significant at 0.01 significance level. Thus, we will 

exclude these two from the possible 𝜆𝜆𝑖𝑖𝑒𝑒. All other combinations are validated through our 

model. For application, one can choose one of these 𝜆𝜆𝑖𝑖 combinations using AHP.  

Table III. P-values extracted from ANOVA for some combinations of 𝜆𝜆𝑖𝑖s 

  m145 m235 m25255 m325 m415 m154 m253 m25525 

A 1.0E-06 1.3E-06 1.5E-06 1.9E-06 3.3E-06 2.3E-07 5.6E-07 1.3E-06 

B 7.9E-06 8.2E-06 9.0E-06 1.0E-05 1.4E-05 3.2E-06 9.7E-06 2.4E-05 

C 7.7E-05 8.9E-05 1.0E-04 1.2E-04 2.0E-04 2.2E-04 4.1E-03 2.0E-02 

         
  m352 m451 m514 m523 m52525 m532 m541 

 
A 3.2E-06 1.7E-05 4.7E-06 7.1E-06 1.0E-05 1.5E-05 3.2E-05 

 
B 6.1E-05 3.1E-04 2.8E-05 6.8E-05 1.1E-04 1.9E-04 4.9E-04 

 
C 7.9E-02 4.5E-01 2.5E-03 2.5E-02 7.2E-02 1.7E-01 5.2E-01 

 

 

6. DISCUSSION 

The presented methodology enables us to study various resilience metrics 

quantitatively. Since we are looking for a general metric to quantify the system resilience, all 

metrics are compared based on the conceptual framework of a resilient system (Section 1.1). 

If two out of three resilience abilities are fixed as constant and leave the other one to change, 

we must be able to identify the change in a resilient metric. If it does not show that the altered 

ability have a significant effect on the metric, and the resulting metric is not valid.  

We now examine the performance of the existing resilience metrics using the proposed 

assessment methodology for the power network system discussed in Section 5. For this specific 
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example, the results of Step 1 and Step 2 are the same as those presented in Section 5. Hence, 

we will perform the remaining two steps for each of the metrics in this section. The result of 

Step 3 is summarized in Figure 6. As we expected, Index2 is less sensitive to the generation 

capacity in a way that when we have four high capacity inoperable generators (case ab_0.99), 

the rest of the indices are close to 0. Index6 has the least correlation with other metrics, and it 

shows less variability compared to other RMs. One can see that when we have a long time-to-

recovery and more significant severity (cases ab_0.99 and case b_0.99), Index3 drops 

dramatically. Also for case 1_0.25 which is the least severe case, Index3 has an unfavorable 

result, and we have weaker resilience than case 1_0.63, which has the same treatment setting 

except for time-to-recovery. 

 

 

Figure 6: Chart of RM values for experimental design treatments 

Analysis of variance will demonstrate which factors have a significant effect on the 

metrics. The p-values from ANOVA tables for these metrics are summarized in Table IV.  
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Table IV. The p-values extracted from ANOVA analysis 

 Index1 Index2  Index3  Index4  Index5 Index6  
Our proposed 

Metric* 

A  4.24E-06 3.23E-02 1.29E-05 4.67E-07 5.18E-02 1.57E-06 1.49E-06 

B  1.71E-04 1.17E-04 1.41E-02 1.40E-03 5.67E-02 1.31E-05 1.49E-06 

C  5.15E-01 9.75E-03 8.93E-01 9.97E-01 2.20E-01 1.72E-02 3.85E-05 

*Results are based on 𝜆𝜆 = (0.25,0.25,0.5) 

The p-value is a good way to assess statistical significance of a factor on resilience. 

Index1 shows that at a significance level of 1%, recovery time is not a statistically significant 

factor for resilience, while the other two factors are significant. Resilience frameworks 

emphasize that time-to-recovery is one of the important abilities of a resilient system. Based 

on this perspective, Index1 is not valid. Likewise, Index2 underrates the effect of factor A. 

Index3, Index4, Index5, and Index6 do not show the significance of time-to-recovery (their p-

value is larger than 0.01). Table V summarizes the pros and cons of the existing metrics. 

Table V. Pros and cons of the current RMs derived from the ANOVA analysis 

 
Pros Cons 

Index1 Considers the absorption and adaptation   Does not reflect recovery time 
Index2 Considers adaptation and time-to-recovery Undervalues the significance of 

absorption 
Index3 it better shows the significance of 

absorption  
 Does not reflect adaption and 
recovery time 

Index4 Considers absorption and adaptation It is more sensitive to the absorption 
than to the time to rcovery.  

Index5  A absorption and adaptation have 
significance (by adjusting significance 
level) 

underrates the effect of the time to 
recovery.  

Index6 Considers the absorption and adaptation Time to recovery is not important. 
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Overall, the p-values of all factors in our proposed metric are close to 0 as seen in Table 

VI; hence, they are all significant. Furthermore, the proposed metric is not biased toward any 

of the three factors. Therefore, our proposed metric is a valid resilience metric.  

7. CONCLUSION 

Building a resilient system or community cannot be overemphasized against disasters. 

There have been several approaches reported in the literature to quantify resilience of a system. 

However, they were often designed to work for a specific application and there is a large 

variability on the performance of resilient metrics. Therefore, we have developed a statistical 

assessment method for a resilient metric to be valid according to the concept of resilience. The 

design of experiments and ANOVA are utilized. We have tested well-known resilience metrics 

to compare performance using a power network system. Because those metrics exhibited a 

large variation in performance, a new resilience metric was developed.  Using the proposed 

assessment methodology, the new resilience metric was evaluated and compared with the 

existing metrics. The results showed that the proposed metric is a valid resilience metric, which 

is not biased towards any of the abilities of a resilient system. As an extension to this work, 

one can include pre-disaster information for the resilience metric, i.e., “anticipation” ability. 

Such a metric may be able to capture the resilience of a system more accurately.  

APPENDIX A : SECURITY CONSTRAINED UNIT COMMITMENT 
The objective of the SCUC problem is to find a unit commitment schedule that minimizes the 
commitment and dispatch costs while meeting the forecasted system load. It takes into account 
various physical or intertemporal constraints of generating resources, transmission, and system 
reliability requirements (Bertsimas et al., 2013). The following notations will be used in the 
mathematical model: 

• Sets/indices: GG stands for the number of gas generation units, NG the number of units, 
NT the number of periods, and NB the number of buses.  Index b is  for the buses, index i 
for units, l for lines, and t for the time. 

• Parameters: The parameters in the mathematical formulation consist of, 𝐻𝐻 for gas heating 
value (39 MJ/MBTU),  𝑃𝑃𝐷𝐷,𝑡𝑡 for system demand at time t, 𝑃𝑃𝐿𝐿,𝑡𝑡 for system losses at time t, 
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𝑃𝑃min / 𝑃𝑃max  for the Lower / upper limit of the real power generation of the unit, 
𝑃𝑃𝐿𝐿𝑙𝑙,𝑚𝑚𝑎𝑎𝑚𝑚

𝑡𝑡 /𝑃𝑃𝐿𝐿𝑙𝑙,𝑚𝑚𝑖𝑖𝑚𝑚
𝑡𝑡  for the maximum/minimum capacity of the line l, 𝑅𝑅𝑂𝑂,𝑡𝑡 / 𝑅𝑅𝑆𝑆,𝑡𝑡  for the system 

operating / spinning reserve requirement at time t, 𝑇𝑇𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 / 𝑇𝑇𝑖𝑖𝑜𝑜𝑚𝑚 for minimum down and up 

time of the unit i, 𝑈𝑈𝑅𝑅𝑖𝑖/ 𝐷𝐷𝑅𝑅𝑖𝑖 for the maximum Ramp  up/down, and finally 𝜂𝜂𝑖𝑖 for the 
efficiency of the generator. Parameter 𝑍𝑍𝑖𝑖𝑡𝑡 and 𝐺𝐺𝑖𝑖𝑡𝑡 are the control variables in our 
simulations that are designed specifically for each scenario. 

• Decision variables. 𝐼𝐼𝑖𝑖𝑡𝑡 is the commitment state of the unit i at time t , 𝑃𝑃𝑖𝑖𝑡𝑡  is the generation 
of unit i at time t, 𝑃𝑃𝐿𝐿𝑙𝑙𝑡𝑡 is the real power flow on line l, 𝑅𝑅𝑂𝑂,𝑖𝑖𝑡𝑡 and 𝑅𝑅𝑆𝑆,𝑖𝑖𝑡𝑡 are the operating and 
spinning reserve of the unit i at time t respectively. 𝑋𝑋𝑖𝑖𝑡𝑡

𝑜𝑜𝑜𝑜𝑜𝑜and 𝑋𝑋𝑖𝑖𝑡𝑡𝑜𝑜𝑚𝑚 are the OFF and ON time 
of the unit i at time t, 𝜃𝜃𝑏𝑏𝑖𝑖 is the phase angle, and 𝑄𝑄𝑖𝑖𝑡𝑡 the quantity of gas consumed by the 
(gas fired) generator i at time t. 

Equation (7) is the objective function, which is the cost of generation and load shedding 
cost with a value of lost load (VOLL) $1000/MWh. The objective function is comprised of the 
fuel cost for producing electric power, the startup cost, and the shutdown cost. Originally the 
fuel cost is a quadratic and convex function, and we used a piecewise linear function to estimate 
it. Equation (8) is the generation limit. Constraint (9) indicates the capacity boundaries of each 
unit. The C problem must meet the required system spinning and operating reserves (10) which 
are defined by the independent system operator (ISO). The ramp up (11) and ramp down (12) 
constraints, minimum uptime and minimum down time (13) constraints have to satisfy in 
operation of the power system.  Constraint (14) shows the static network security constraints, 
including power flow and transmission line flow. The constraint (15) reflects the dependency 
of power generation dispatch and natural gas supply as an input of a power plant. We extract 
load shedding from the last equation (16). 
 

𝑚𝑚𝑖𝑖𝐼𝐼��[𝐹𝐹𝑐𝑐𝑖𝑖(𝑃𝑃𝑖𝑖𝑡𝑡) + 𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡 + 𝑆𝑆𝐷𝐷𝑖𝑖𝑡𝑡]
𝑁𝑁𝑇𝑇

𝑡𝑡=1

𝑁𝑁𝑁𝑁

𝑖𝑖=1

+ ��𝑉𝑉𝑜𝑜𝑉𝑉𝑉𝑉 × 𝐿𝐿𝑆𝑆𝑖𝑖𝑡𝑡

𝑁𝑁𝑇𝑇

𝑡𝑡=1

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (7)  

 𝑃𝑃min 𝐼𝐼𝑖𝑖𝑡𝑡 ≤ 𝑃𝑃𝑖𝑖𝑡𝑡 ≤ 𝑃𝑃max 𝐼𝐼𝑖𝑖𝑡𝑡 ∀𝒊𝒊,∀𝒕𝒕 (8)  

 
�𝑝𝑝𝑖𝑖𝑡𝑡

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= 𝑃𝑃𝐷𝐷,𝑡𝑡  ∀𝒕𝒕 (9)  

 
�𝑅𝑅𝑆𝑆,𝑖𝑖𝑡𝑡 × 𝐼𝐼𝑖𝑖𝑡𝑡 ≥ 𝑅𝑅𝑆𝑆,𝑡𝑡

𝑁𝑁𝑁𝑁

𝑖𝑖=1

    ,�𝑅𝑅𝑂𝑂,𝑖𝑖𝑡𝑡 × 𝐼𝐼𝑖𝑖𝑡𝑡 ≥ 𝑅𝑅𝑂𝑂,𝑡𝑡

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 ∀𝒕𝒕 (10)  

 𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑃𝑃𝑖𝑖(𝑡𝑡−1) ≤ [1 − 𝐼𝐼𝑖𝑖𝑡𝑡�1 − 𝐼𝐼𝑖𝑖(𝑡𝑡−1)�𝑈𝑈𝑅𝑅𝑖𝑖 + 𝐼𝐼𝑖𝑖𝑡𝑡�1 − 𝐼𝐼𝑖𝑖(𝑡𝑡−1)�𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚 ∀𝒊𝒊,∀𝒕𝒕 (11)  

 𝑃𝑃𝑖𝑖(𝑡𝑡−1) − 𝑃𝑃𝑖𝑖𝑡𝑡 ≤ [1 − 𝐼𝐼𝑖𝑖𝑡𝑡�1 − 𝐼𝐼𝑖𝑖(𝑡𝑡−1)�𝐷𝐷𝑅𝑅𝑖𝑖 + 𝐼𝐼𝑖𝑖𝑡𝑡�1 − 𝐼𝐼𝑖𝑖(𝑡𝑡−1)�𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚 ∀i,∀t (12)  
 �𝑋𝑋𝑖𝑖(𝑡𝑡−1)

𝑜𝑜𝑚𝑚 − 𝑇𝑇𝑖𝑖𝑜𝑜𝑚𝑚��𝐼𝐼𝑖𝑖(𝑡𝑡−1) − 𝐼𝐼𝑖𝑖𝑡𝑡� ≥ 0,  �𝑋𝑋𝑖𝑖(𝑡𝑡−1)
𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜��𝐼𝐼𝑖𝑖𝑡𝑡 − 𝐼𝐼𝑖𝑖(𝑡𝑡−1)� ≥ 0 ∀𝒊𝒊,∀𝒕𝒕 (13)  
 −𝑃𝑃𝐿𝐿𝑙𝑙𝑡𝑡,max ≤ 𝑃𝑃𝐿𝐿𝑙𝑙𝑡𝑡 ≤ 𝑃𝑃𝐿𝐿𝑙𝑙𝑡𝑡,max , 𝑃𝑃𝐿𝐿𝑙𝑙𝑡𝑡 = 𝜃𝜃𝑏𝑏𝑖𝑖−𝜃𝜃𝑏𝑏𝑏𝑏

𝑚𝑚𝑏𝑏𝑖𝑖,𝑏𝑏𝑏𝑏 
 ∀i,∀t (14)  

 𝑝𝑝𝑖𝑖𝑡𝑡 =  𝜂𝜂𝑖𝑖 𝑄𝑄𝑖𝑖𝑡𝑡𝐻𝐻 ,   𝑄𝑄𝑖𝑖𝑡𝑡 ≤ 𝑄𝑄𝐺𝐺𝑖𝑖𝑡𝑡 ∀i
∈ GG, t (15)  

 
�𝑃𝑃𝐿𝐿𝑙𝑙𝑡𝑡 = 𝑃𝑃𝑏𝑏𝑡𝑡 − 𝑃𝑃𝐷𝐷𝑏𝑏𝑡𝑡 + 𝐿𝐿𝑆𝑆𝑏𝑏𝑡𝑡 
𝑁𝑁𝐿𝐿

𝑙𝑙=1

 
∀b,∀t 

(16)  
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Appendix B: 57-bus system data 
Table B1 unit data 

bu
s 

pm
in

  

pm
ax

  

cn
l  

sd
c 

 

su
c 

 

m
u 

 

m
d 

 

ru
  

rd
  

m
sr

  

qs
c 

 

la
st

st
at

  

m
n 

 

la
st

p 
 

m
f  

ps
eg

m
ax

  

ps
eg

m
ax

  

cs
eg

  

cs
eg

  

1 30 80 74 0 0 4 4 40 40 3 0 1 4 30 96 40 40 17 52 

2 5 20 18 0 0 1 1 10 10 1 0 1 1 5 96 10 10 38 114 

3 20 50 59 0 0 1 1 50 50 1 0 1 1 20 96 25 25 23 70 

6 30 80 74 0 0 4 4 40 40 3 0 1 4 30 96 40 40 17 52 

8 5 30 32 0 0 1 1 30 30 1 0 1 1 5 96 15 15 27 82 

9 5 20 18 0 0 1 1 10 10 1 0 1 1 5 96 10 10 38 114 

12 5 20 18 0 0 1 1 10 10 1 0 1 1 5 96 10 10 38 114 
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Table B2 line data 

start  end  maxFlow  x   start  end  maxFlow  x  
23 24 100 0.0492  30 31 500 0.127 
25 27 500 0.163  31 32 100 0.4115 
31 32 100 0.0985  32 33 100 0.0355 
23 24 100 0.0492  34 32 100 0.196 
1 3 100 0.0424  34 35 100 0.18 

25 27 500 0.163  35 36 100 0.0454 
25 27 500 0.163  36 37 100 0.1323 
8 9 100 0.0605  37 38 100 0.141 
9 10 100 0.0487  37 39 500 0.122 
9 11 100 0.289  36 40 100 0.0406 
9 12 100 0.291  22 38 100 0.148 
9 13 100 0.0707  11 41 100 0.101 

13 14 100 0.00955  41 42 100 0.1999 
13 15 100 0.0151  41 43 100 0.0124 
1 15 100 0.0966  38 44 100 0.0244 
1 16 100 0.134  15 45 500 0.0485 
1 17 100 0.0966  14 46 500 0.105 
3 15 100 0.0719  46 47 100 0.0704 
4 18 100 0.2293  47 48 500 0.0202 
4 18 100 0.251  48 49 500 0.037 
5 6 100 0.239  49 50 100 0.0853 
7 8 100 0.2158  50 51 100 0.03665 

10 12 100 0.145  10 51 100 0.132 
11 13 100 0.15  13 49 100 0.148 
12 13 500 0.0135  29 52 100 0.0641 
12 16 100 0.0561  52 53 500 0.123 
12 17 100 0.0376  53 54 500 0.2074 
14 15 500 0.0386  54 55 100 0.102 
18 19 500 0.02  11 43 100 0.173 
19 20 500 0.0268  44 45 500 0.0712 
21 20 500 0.0986  40 56 500 0.188 
21 22 500 0.0302  56 41 500 0.0997 
22 23 500 0.0919  56 42 100 0.0836 
23 24 500 0.0919  39 57 500 0.0505 
24 25 100 0.218  57 56 500 0.1581 
24 25 100 0.117  38 49 100 0.1272 
24 26 500 0.037  38 48 100 0.0848 
26 27 100 0.1015  9 55 100 0.158 
27 28 500 0.016  
28 29 100 0.2778  
7 29 100 0.324  

25 30 500 0.037  
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Table B3 demand data for the first 24 hours 

Hour demand ssr sor  Hour demand ssr sor 
1.  131.97 0 0  13.  183.43 0 0 
2.  136.12 0 0  14.  188.41 0 0 
3.  128.65 0 0  15.  189.24 0 0 
4.  123.67 0 0  16.  193.39 0 0 
5.  120.35 0 0  17.  199.2 0 0 
6.  120.35 0 0  18.  199.2 0 0 
7.  125.33 0 0  19.  191.73 0 0 
8.  135.29 0 0  20.  191.73 0 0 
9.  138.61 0 0  21.  185.09 0 0 
10.  145.25 0 0  22.  185.09 0 0 
11.  161.02 0 0  23.  180.94 0 0 
12.  177.62 0 0  24.  152.72 0 0 

 
Table B4 percent of total load at each bus 

bus percent load bus percent load bus percent load 
1 0 21 18.05 41 17 
2 24.42 22 25.48 42 18 
3 37 23 45.65 43 23 
4 0 24 62.63 44 113 
5 21.23 25 24.42 45 63 
6 24.42 26 62.63 46 84 
7 24.42 27 35.03 47 12 
8 49.89 28 32.91 48 12 
9 36.09 29 27 49 277 

10 14.86 30 20 50 78 
11 95.54 31 37 51 77 
12 26.54 32 37 52 39 
13 11.68 33 18 53 28 
14 63.69 34 16 54 66 
15 47.77 35 53 55 68 
16 19.11 36 28 56 47 
17 14.86 37 34 57 68 
18 10.62 38 20   
19 7.43 39 87   
20 65.82 40 17 
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Figure B1 graph of 57-bus, source: http://icseg.iti.illinois.edu/ieee-57-bus-system/ 

 
 
 
Appendix C: 𝝀𝝀 scenarios 

 
Figure C1: different 𝜆𝜆 combinations  

http://icseg.iti.illinois.edu/ieee-57-bus-system/
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Appendix D: Interaction plots

 

 
Figure D1 Interaction plots  
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