
Citation: Zheng, X.; Liang, C.; Wang,

Y.; Shi, J.; Lim, G. Multi-AGV

Dynamic Scheduling in an

Automated Container Terminal: A

Deep Reinforcement Learning

Approach. Mathematics 2022, 10, 4575.

https://doi.org/10.3390/

math10234575

Academic Editor: Víctor Yepes

Received: 12 November 2022

Accepted: 28 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-AGV Dynamic Scheduling in an Automated Container
Terminal: A Deep Reinforcement Learning Approach
Xiyan Zheng 1, Chengji Liang 1, Yu Wang 1,*, Jian Shi 2 and Gino Lim 3

1 Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 Department of Engineering Technology, University of Houston, Houston, TX 77004, USA
3 Department of Industrial Engineering, University of Houston, Houston, TX 77004, USA
* Correspondence: wangyu@shmtu.edu.cn

Abstract: With the rapid development of global trade, ports and terminals are playing an increasingly
important role, and automatic guided vehicles (AGVs) have been used as the main carriers performing
the loading/unloading operations in automated container terminals. In this paper, we investigate a
multi-AGV dynamic scheduling problem to improve the terminal operational efficiency, considering
the sophisticated complexity and uncertainty involved in the port terminal operation. We propose to
model the dynamic scheduling of AGVs as a Markov decision process (MDP) with mixed decision
rules. Then, we develop a novel adaptive learning algorithm based on a deep Q-network (DQN)
to generate the optimal policy. The proposed algorithm is trained based on data obtained from
interactions with a simulation environment that reflects the real-world operation of an automated
in Shanghai, China. The simulation studies show that, compared with conventional scheduling
methods using a heuristic algorithm, i.e., genetic algorithm (GA) and rule-based scheduling, terminal
the proposed approach performs better in terms of effectiveness and efficiency.

Keywords: Multi-AGV scheduling; automated container terminal; mixed decision rules; deep rein-
forcement learning; simulation-based algorithm analysis

MSC: 90B06

1. Introduction

Ports and terminals play an important role in cargo transshipment and loading/unloading
operations to support the advancement of global trade. As the global throughputs of containers
have continued to grow for decades and are expected to continue increasing in the future [1], it
is crucial to improve the efficiency and competitiveness of container terminals. Driven by the
recent Industry 4.0 trends and the development of information technology, automated container
terminals have become an attractive concept that has been highly valued by terminal operators
around the world.

Figure 1 displays a representative process of container loading/unloading operations
in an automated terminal that involves vertical and horizontal transportation by multiple
equipment. By taking the import of containers as an example, quay cranes (QCs) are first
assigned to berthing ships to unload the containers and transfer them to the AGVs, and the
AGVs will transport the containers to a designated block of the container yard. When AGVs
reach the designated block, AGV mates are used as a buffer to unload the containers from
the AGVs and hold them until yard cranes (YCs) pick up the containers and transfer them
to the corresponding location. The coordination of QCs and AGVs directly determines the
efficiency of the loading and unloading operations on the sea side.

In order to make full use of scarce resources such as the QCs, it is important to
optimize the scheduling of AGVs such that the efficiency of horizontal transportation at
the automated terminal can be improved [2]. However, reaching this objective can be
very challenging due to the complex and dynamic operating environment of a terminal.

Mathematics 2022, 10, 4575. https://doi.org/10.3390/math10234575 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10234575
https://doi.org/10.3390/math10234575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10234575
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10234575?type=check_update&version=1

Mathematics 2022, 10, 4575 2 of 19

Situations such as early or late arrival of ships and conflicts and failures of the equipment
may occur. Moreover, AGVs may stop or delay due to unforeseen situations linked to other
equipment and facilities. It is thus evident that the complex and changing nature of the
automated terminal should be taken into account while making scheduling decisions for
the AGVs.

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 22

Figure 1. Automated terminal seaside scheduling scenario.

In order to make full use of scarce resources such as the QCs, it is important to opti-

mize the scheduling of AGVs such that the efficiency of horizontal transportation at the

automated terminal can be improved [2]. However, reaching this objective can be very

challenging due to the complex and dynamic operating environment of a terminal. Situa-

tions such as early or late arrival of ships and conflicts and failures of the equipment may

occur. Moreover, AGVs may stop or delay due to unforeseen situations linked to other

equipment and facilities. It is thus evident that the complex and changing nature of the

automated terminal should be taken into account while making scheduling decisions for

the AGVs.

Traditional static methods are hard to adapt to the varying environment of the auto-

mated terminals. In order to improve operational efficiency, it is necessary to develop

data-driven approaches to solve the dynamic scheduling problem of AGVs. In this paper,

we propose a dynamic decision-making approach based on deep Q-network (DQN) for

the multi-AGV dynamic scheduling problem in an automated terminal. As shown in Fig-

ure 2, key dynamic features in the terminal system are first recognized, and a deep Q-

network is defined by the information on container tasks, the AGVs and several operation

rules. Then, related data on the system status are sent to train the deep Q-network such

that scheduling decisions can be made adaptively. A trained deep Q-network will be ac-

quired after sufficient learning iterations, which can cope with most uncertainty factors in

ports and could be applied to the automated terminal AGV dynamic scheduling effi-

ciently.

Figure 1. Automated terminal seaside scheduling scenario.

Traditional static methods are hard to adapt to the varying environment of the au-
tomated terminals. In order to improve operational efficiency, it is necessary to develop
data-driven approaches to solve the dynamic scheduling problem of AGVs. In this paper,
we propose a dynamic decision-making approach based on deep Q-network (DQN) for the
multi-AGV dynamic scheduling problem in an automated terminal. As shown in Figure 2,
key dynamic features in the terminal system are first recognized, and a deep Q-network
is defined by the information on container tasks, the AGVs and several operation rules.
Then, related data on the system status are sent to train the deep Q-network such that
scheduling decisions can be made adaptively. A trained deep Q-network will be acquired
after sufficient learning iterations, which can cope with most uncertainty factors in ports
and could be applied to the automated terminal AGV dynamic scheduling efficiently.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 22

Figure 2. DQN-based dynamic scheduling method architecture of the automated terminal AGVs.

The main research contributions of this paper are as follows:

(1) The dynamic scheduling problem of AGVs at automated terminals is formulated as

a Markov decision process, in which the dynamic information of the terminal system,

such as the number of tasks, task waiting time, task transportation distance, the

working/idle status of the AGVs and the position of the AGVs, are modeled as input

states.

(2) A novel dynamic AGV scheduling approach based on DQN is proposed, where the

optimal mixed rule and AGV assignments can be selected efficiently to minimize the

total completion time of AGVs and the total waiting time of QCs.

(3) A simulation model is built on Tecnomatix Plant Simulation software according to

an automated terminal in Shanghai, China. Simulation-based experiments are con-

ducted to evaluate the performance of the proposed approach. The experimental re-

sults show that the proposed approach outperforms the conventional heuristic ap-

proach based on GA and rule-based scheduling.

The rest of this paper is organized as follows. Section 2 is the literature review. Sec-

tion 3 formally describes the dynamic scheduling AGV problem as an MDP. In Section 4,

the DQN-based dynamic scheduling approach of automated terminal AGVs is proposed.

Section 5 introduces the simulation-based training process, and Section 6 discusses the

experimental results. Section 7 offers conclusions and future directions.

2. Literature Review

In this section, we reviewed the related literature on the static scheduling problems

of AGVs, the traditional methods for dynamic scheduling of AGVs and the application of

machine learning-based approaches in scheduling optimization.

Most of the traditional approaches for AGV scheduling in automated terminals are

conducted based on analytical models that capture the configuration and operation status

of the terminal. For instance, Yang et al. [3] proposed an integrated problem for equipment

coordination and AGV routing. They set up a bilevel programming model to minimize

the makespan and used the congestion prevention rule-based bilevel genetic algorithm

(CPR-BGA) to solve the problem. Xu et al. [4] designed a load-in-load-out AGV route

planning model with the help of a buffer zone, where an AGV can carry at most two con-

tainers, and used a simulated annealing algorithm to solve it. Zhong et al. [5] combined

Figure 2. DQN-based dynamic scheduling method architecture of the automated terminal AGVs.

Mathematics 2022, 10, 4575 3 of 19

The main research contributions of this paper are as follows:

(1) The dynamic scheduling problem of AGVs at automated terminals is formulated
as a Markov decision process, in which the dynamic information of the terminal
system, such as the number of tasks, task waiting time, task transportation distance,
the working/idle status of the AGVs and the position of the AGVs, are modeled as
input states.

(2) A novel dynamic AGV scheduling approach based on DQN is proposed, where the
optimal mixed rule and AGV assignments can be selected efficiently to minimize the
total completion time of AGVs and the total waiting time of QCs.

(3) A simulation model is built on Tecnomatix Plant Simulation software according to an
automated terminal in Shanghai, China. Simulation-based experiments are conducted
to evaluate the performance of the proposed approach. The experimental results show
that the proposed approach outperforms the conventional heuristic approach based
on GA and rule-based scheduling.

The rest of this paper is organized as follows. Section 2 is the literature review.
Section 3 formally describes the dynamic scheduling AGV problem as an MDP. In Section 4,
the DQN-based dynamic scheduling approach of automated terminal AGVs is proposed.
Section 5 introduces the simulation-based training process, and Section 6 discusses the
experimental results. Section 7 offers conclusions and future directions.

2. Literature Review

In this section, we reviewed the related literature on the static scheduling problems
of AGVs, the traditional methods for dynamic scheduling of AGVs and the application of
machine learning-based approaches in scheduling optimization.

Most of the traditional approaches for AGV scheduling in automated terminals are
conducted based on analytical models that capture the configuration and operation status
of the terminal. For instance, Yang et al. [3] proposed an integrated problem for equipment
coordination and AGV routing. They set up a bilevel programming model to minimize the
makespan and used the congestion prevention rule-based bilevel genetic algorithm (CPR-BGA)
to solve the problem. Xu et al. [4] designed a load-in-load-out AGV route planning model
with the help of a buffer zone, where an AGV can carry at most two containers, and used a
simulated annealing algorithm to solve it. Zhong et al. [5] combined the two problems of AGV
conflict-free path planning with quay cranes (QCs) and rail-mounted gantry (RMG) cranes to
implement the integrated scheduling of multi-AGVs with conflict-free path planning and a
series of small-scale and large-scale experiments were performed through the hybrid genetic
algorithm-particle swarm optimization (HGA-PSO). Zhang et al. [6] developed a collaborative
scheduling model of AGVs and ASCs in automatic terminal relay operation mode based on
the genetic algorithm by considering the buffer capacity constraint and twin ASC operation
interference. Even though the above approaches have shown good performance in a static
and non-varying environment, they cannot sufficiently handle the complexity and dynamics
involved in real-world terminal operations.

In order to address this issue, a handful of the literature has studied the dynamic AGV
scheduling problems to be more adaptive in automated terminals. In the early days, various
scheduling rules were used to dispatch AGVs in the dynamic scheduling problem [7,8],
such as the first-come-first-serve (FCFS) rule, shortest travel distance (STD) rule, longest
waiting time (LWT) rule, etc. Studies on dynamic scheduling problems indicated that using
multiple dispatching rules could enhance the scheduling performance to a greater extent
than using a single rule [9]. Angeloudis and Bell [10] studied job assignments for AGVs in
container terminals with various conditions of uncertainty. They developed a new AGV
dispatching approach that is capable of operating within a certain container terminal model.
Gawrilow et al. [11] enhanced a static approach to meet the requirements of the dynamic
problem. They developed a dynamic online routing algorithm that computes collision-free
routes for AGVs by considering implicit time-expanded networks. Cai et al. [12] inves-
tigated replanning strategies for container-transportation task allocation of autonomous

Mathematics 2022, 10, 4575 4 of 19

Straddle Carriers (SC) at automated container terminals. By focusing on the uncertainty of
the arrival of new jobs, this paper proposes two rescheduling policies, the newly arrived
job Rescheduling (RNJ) policy and the newly unexecuted job rescheduling (RCJ) policy.
The previous research on the dynamic scheduling of AGVs usually depends on specific
assumptions of uncertain tasks or environmental factors, thus can only solve the problem
within a given scenario. The related approaches are hard to generalize to other scenarios.
Moreover, the complex environment of real terminals is hard to be defined by simple
assumptions. Traditional optimization approaches cannot solve the dynamic scheduling of
AGVs efficiently in real-world applications.

In order to overcome the aforementioned drawbacks in previous studies, machine
learning techniques have been recently introduced [13–15]. Among the related studies,
reinforcement learning (RL) methods are the most used ones, which can constantly adjust
the agent’s behavior through trial and error such that dynamic and uncertain environmental
data can be fully considered. At present, most of the research on scheduling using RL is
focused on manufacturing shop floor production [16–18]. Several research has focused
on AGV scheduling in automated terminals [19,20]. Jeon et al. [21] studied an AGV
path optimization problem in automated container terminals and proposed a method
for estimating for each vehicle the waiting time that results from the interferences among
vehicles during traveling by using the Q-learning technique and by constructing the shortest
time routing matrix for each given set of positions of quay cranes. Choe et al. [22] proposed
an online preference learning algorithm named OnPL that can dynamically adapt the
policy for dispatching AGVs to change situations in an automated container terminal. The
policy is based on a pairwise preference function that can be repeatedly applied to multiple
candidate jobs to sort out the best one and to reduce waiting times for outside container
trucks at container terminals.

Despite the insights offered by the above RL-based studies, one limitation they share
is their performance and learning efficiency with the increase in environmental complexity.
As RL relies on storing all possible states and actions in policy tables, when the number of
state variables becomes larger, the performance of the algorithm may degrade significantly
due to the expansion of the state space. In some cases, the state space becomes so large that
the learning problem becomes intractable [23]. Deep reinforcement learning (DRL) was
then introduced and has achieved impressive successes over the last several years. DRL
methods use the deep neural network to capture the complex state features instead of the
policy table, such that the loss of state information is greatly reduced [24]. The application
of DQN in electric vehicle charging scheduling [23] and energy management [25] has also
demonstrated its strong superiority and effectiveness. However, it has not been applied to
the dynamic scheduling of AGVs in an automated terminal.

3. Problem Formulation
3.1. MDP Model the Dynamic Scheduling of Multi-AGVs

The dynamic scheduling of AGVs at a seaside terminal can be described and formu-
lated as a Markov decision process (MDP) as follows: After a ship arrives at the terminal,
the assigned QCs unload the imported containers one by one from the ship to the AGVs.
Then, the AGVs transport each of the containers to a prespecified location at the container
yard and then return for the next container. The dynamic scheduling of AGVs can be
modeled as a sequential decision-making process in which multiple rules can be used to
determine how to assign each of the containers to the available AGVs. Specifically, we
propose an MDP model to formulate the process, denoted by (S, a, P, R, γ, π). S is the set
of states, which contains all possible states of the AGV scheduling process; a represents the
actions that can be performed; P is the probability of transitioning from the current state
s ∈ S to the next state s′ ∈ S when action a is taken; γ is the discount factor; R(s, a, s′) is
the reward function that evaluates the reward obtained by performing action a in state s;
π is the policy that maps from the state set s to the set of actions a; and π(s, a) represents

Mathematics 2022, 10, 4575 5 of 19

the probability of taking action a in a given state s. The detailed definitions of the states,
actions, reward function and optimal mixed rule policy, are as follows:

3.2. State Definition

The state is used to represent the status information of the system. After a container
ship ports in a specific berth, the terminal schedules an AGV according to the required ship
total loading/unloading time and ship loading information. In the real-world scheduling
process, the scale of container tasks and their priorities, the operation efficiency and occu-
pied rates of the equipment, and the features of the infrastructure are usually considered
to be important while making scheduling decisions for the AGVs. In the proposed MDP
model, we define the state at time t as a five-tuple vector st = (Nt, Tawt, Dadt, Ast, Ailoc).

(1) Nt is the number of container tasks current on QCs which waiting for AGV transport,
indicating the current workload in the terminal.

(2) Tawt represents the average waiting time of the container task, which is waiting for
AGV transport currently on QCs. It indicates the average urgency of the current task.
The Tawt is defined as follows:

Tawt =
∑Nt

k=1 tk

Nt
(1)

where tk is the waiting time of the k-th container task that awaits transportation by
the AGVs.

(3) Dadt represents the average transportation distance of the container tasks on the QCs.
This metric reflects the average workload per task and is defined as follows:

Dadt =
∑Nt

k=1 dk

Nt
(2)

where dk is the travel distance of the k-th task from the related QC to its destination
location at the yard.

(4) Ast represents the working status of all the alternative AGVs, which can be represented
by a binary vector in the form of:

Ast = n1n2 . . . ni (3)

where ni = 1 represents the working status of AGV i as “Working” and ni = 0
represents the working status of AGV i as “Idle”.

(5) Ailoc represents the dynamic position of AGV i in the port, determined by a given pair
of coordinates (xi, yi).

3.3. Action Definition

The actions are all the possible scheduling decisions of all the AGVs. An action can be
denoted as at = (Rut , AGVt), where Rut is the scheduling rule that determines the order of
the task assignments and AGVt is the index of the AGV to be scheduled for the selected
task. Three typical scheduling rules are considered: first come, first serve (FCFS); shortest
task distance (STD); and longest wait task (LWT) [7,8]. The details of the rules are shown
in Table 1. Based on these rules, we can define Rut = {1 (if FCFS), 2 (if STD), 3 (if LWT)},
AGVt = i (if AGV i is selected). By evaluating possible actions, the container tasks can be
selected according to specific rules and assigned to the corresponding AGVs at time t.

Mathematics 2022, 10, 4575 6 of 19

Table 1. Scheduling rules.

Rule Description Advantage Shortcoming

FCFS Tasks are selected based on the
order of arrival

FCFS can ensure the overall
efficiency and smoothness of

scheduling

FCF is not effective at meeting other
metrics than efficiency, such as task

priorities and travel costs

STD Task with the shortest trip will be
selected first

STD can improve overall efficiency
to a certain extent

STD can cause longer wait times for
tasks and longer trips

LWT Task with the longest waiting time
will be selected first

LWT can effectively reduce the
waiting time for tasks and ensure

production efficiency

LWT cannot effectively meet other
metrics than waiting time, such as

efficiency and travel costs

3.4. Reward Function

In order to evaluate the actions, we first define the cost functions with the objective of
minimizing the total completion time of the AGVs and the total waiting time of the QCs
as follows.

Cr
ik = α(M− tr

ik) (4)

Cr = α ∑i ∑k Cr
ik = α ∑i ∑k(M− tr

ik) (5)

where Cr
ik is the cost determined by the completion time of AGV i after handling container

task k, the completion time is denoted as tr
ik, M is a sufficiently large constant, α is a given

cost coefficient and Cr is the total completion time cost of all the AGVs over the entire
scheduling process.

Cw
ik = β(N − tw

ik) (6)

Cw = β ∑i ∑k Cw
ik = β ∑i ∑k(N − tw

ik) (7)

In Equations (6) and (7), Cw
ik is the penalty cost of the QCs waiting for the AGV in the

process of AGV i handling task k, where tw
ik is the time that the QC waits for the AGV when

AGV i performs task k, N is a sufficiently large constant, β is the waiting time cost coefficient
of the QCs and Cw is the total waiting time cost of the QC in the whole scheduling process.

Based on the above cost functions, the reward function can be defined as follows:

Rt = µ1Cr
ik + µ2Cw

ik (8)

R f = µ1Cr + µ2Cw (9)

where Rt is the current reward for evaluating the operation of each individual container
task, R f is the final reward for evaluating the overall performance of the schedule and µ1
and µ2 are the given weight parameters.

3.5. Optimal Mixed Rule Policy Based on Reinforcement Learning

In the RL framework, the learning process consists of repeated interactions between
the system, usually known as the agent, and the environment, through continuous trial
and error. At each stage of this iterative process, two steps need to be completed as
described below:

(1) Prediction: given a policy and evaluation function, the value function corresponding
to a state and action, denoted as Qπ(s, a), is:

Qπ(s, a) = Eπ{R|st = s, at = a} (10)

where Eπ{R|st = s, at = a} is the expected value of reward when the state starts from
s, takes action a and follows policy π [26–28]. For any pair of (s, a), we can calculate
its value function based on Equation (10).

(2) Control: to find the optimal policy based on the value function. As the goal of
reinforcement learning is to obtain the optimal policy, i.e., the optimal selection of
actions in different states, with multiple scheduling rules used as actions, the mixed

Mathematics 2022, 10, 4575 7 of 19

rule policy in our proposed model can be defined as the expected discounted future
reward when the agent takes action a in state s as follows:

Qπ(s, a) = Eπ{R|st = s, at = a} = Eπ{Rt+1 + γRt+2 + · · ·+ γ∗Rt+k+1} (11)

where γ is the discount factor and Rt+k+1 is the current reward at time t + k + 1.
Based on Equation (12), the multi-AGV dynamic scheduling problem is to find an
optimal mixed rule policy π∗ in each state s such that the reward obtained in the
following form is maximized:

Qπ∗(s, a) = maxEπ{R|st = s, at = a} = maxQπ(s, a), ∀s ∈ S, ∀a ∈ A (12)

4. DQN-Based Scheduling Approach

In order to obtain the optimal mixed rule policy, a DQN-based approach is proposed
in this paper. Based on the problem formulation described in Section 2, it is evident that
the states of the automated terminal system contain uncertain values, so the state space
will be very large. A large state space would not only need a huge amount of replay
memory to store large tables but would also consume a long time to fill and search the
tables accurately. In order to address this issue, we propose a deep Q-network (DQN) in
which a neural network is used as a nonlinear approximation of the optimal action-value
function; it is denoted as Q(s, a, θ)→ Q∗(s, a) , where θ represents all the parameters of
the neural network.

4.1. DQN Training Process

The goal of the training process is to reduce the estimation error between the DQN
network and the optimal value function. The process is conducted by iteratively updating
the parameters of the neural network [29–31]. DQN directly takes raw data (states) as
input and generates the Q-value function of each state-action pair defined by Equation (10),
which can handle a complex decision-making process with a large continuous state space.

Based on the proposed model, we designed two fully connected neural networks,
namely, the main Q-network and the target Q-network. Each network consists of one input
layer, two hidden layers and one output layer, and each layer contains a given number
of neuron nodes. According to the definition of states and actions, the first three nodes
of the input layer represent the task information Nt , Tawt and Dadt, and the remaining
nodes correspond to the status information of each of the AGVs, including the working
status ni and the position coordinates Ailoc(xi, yi). The number of nodes in the output
layer is determined by a combination of the AGVs and the scheduling rules. Each node of
the output layer represents a possible combination of the AGVs and the scheduling rules.
The number of nodes in each of the hidden layers and the activation functions among the
different layers are key parameters to be decided based on the input and output layers,
which will impact the calculation accuracy of the neural network. There is no perfect theory
to determine the number of hidden layer neurons or activation functions. The number of
nodes in each hidden layer is decided by the simulations in our work, as in most of the
literature. The ReLU function is used as the activation function between the input layer
and the first hidden layer, as well as between the two hidden layers. The ReLU function
is commonly used to increase the nonlinear relationship between the various layers of
the neural network and to alleviate the occurrence of the overfitting problem [32]. The
softmax function is adopted as the activation function between the second hidden layer
and the output layer in our approach, which is also known as the normalized exponential
function and is commonly used to show the results of multiple classifications in the form of
a probability [33]. As shown in Figure 3, the major steps of the training algorithm can be
described as follows:

Mathematics 2022, 10, 4575 8 of 19
Mathematics 2022, 10, x FOR PEER REVIEW 9 of 22

Figure 3. DQN training process.

Step 1: Initialization of parameters, including the parameters 𝜃 of the main Q-net-

work and the target Q-network, discount factor 𝛾, training times M and replay memory

size D;

Step 2: When a QC completes the unloading of a container from ships or an AGV

completes its current task, the scheduling process is triggered to calculate the current sys-

tem state 𝑠𝑡 and sent it to the main Q-network;

Figure 3. DQN training process.

Step 1: Initialization of parameters, including the parameters θ of the main Q-network
and the target Q-network, discount factor γ, training times M and replay memory size D;

Step 2: When a QC completes the unloading of a container from ships or an AGV
completes its current task, the scheduling process is triggered to calculate the current
system state st and sent it to the main Q-network;

Step 3: Main Q-network outputs action value function Q(st; θ) for action selected by
the ε-greedy policy. This policy is to produce a random number of r when r < ε, select
one action at randomly in all actions, and when r > ε, select the action at corresponding to
maxQ(st; θ);

Mathematics 2022, 10, 4575 9 of 19

Step 4: The port environment parses the selected actions into AGV ID and scheduling
rule and performs them, gaining the reward Rt and the next state st+1. A complete set of
information denoted as the vector (st, at, Rt, st+1) is stored in the replay memory;

Step 5: When the samples in the replay memory reach a predetermined amount, the
stored records are randomly sampled from the replay memory store to avoid an excessive
correlation of the network. The sampled records are sent to the main Q-network and the
target Q-network. These two Q-networks have the same neural network structure, and
the parameters of the main Q-network and target Q-network are denoted as θ and θ′,
respectively. The value of the action-value function is predicted by the two networks, and
the loss function is calculated according to the error between the two networks. The action
value function Q(st, at; θ) is directly calculated by the main Q-network, and the action
value function Q(st, at; θ′) predicts the maximum Q(st+1, at+1; θ′):

Q
(
st, at; θ′

)
=

{
Rt, st = Terminal

Rt + γmaxQ(st+1; θ′), else
(13)

Therefore, the loss function L(θ) is defined as:

L(θ) = (Q
(
st, at; θ′

)
−Q(st, at; θ))

2
= (Rt + γmaxQ

(
st+1; θ′

)
−Q(st, at; θ))

2 (14)

Step 6: The parameters θ of the main Q-network will be updated iteratively by a
gradient descent algorithm to reduce the loss function, which is widely used in deep
learning [34]. The parameter θ update formula of the gradient descent algorithm is shown
in Equation (15):

θt+1 = θt − η∇θt L(θt) (15)

Step 7: The parameter θ′ of the target Q-network will be updated every C step, and
the update method is to completely assign the parameter θ of the main Q-network to the
target Q-network. This event will continue to repeat until the reward function converges or
the number of training iterations reaches a certain value;

Step 8: If all the tasks are being performed, conduct the next training time. Otherwise,
make st = st+1, and jump to Step 2;

Step 9: If the training times episode reaches M, terminate the training;
The training Algorithm 1 can be summarized as the following pseudocode:

Algorithm 1: deep Q-learning with experience reply

Initialize reply memory D to capacity N
Initialize action− value function Q with random weights θ

Initialize target action− value function Q with random weights θ′= θ

For episode = 1, M do
Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
For t = 1, T do
With probability ε select a random action at
Otherwise select at = argmaxQ(φ(s), a, θ)
Execute action at in emulator and observe reward rt and image xt+1
Set st+1 = st, at, st+1 and preprocess Q(φt+1) = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions

(
φj, aj, rj, φj+1

)
from D

Set yj =

{
rj if episode terminates at step j + 1

rj + γmaxa′Q
(

φj, a′; θ′
)

otherwise

Perform a gradient descent step on
(

yi −Q
(

φj, aj; θ
))2

with respect to the network
parameters θ

Every C steps reset Q = Q
End For
End For

Mathematics 2022, 10, 4575 10 of 19

4.2. Scheduling Procedure with Mixed Rules

Using the well-trained main Q-network as the optimal mixed rule policy to guide the
dynamic scheduling of AGVs in automated terminals is shown in Figure 4. First, when the
QC spreader grabs a new container task or one of the AGVs completes the transportation
of a container task and becomes idle, a scheduling request is triggered. At this point, the
current automated terminal system state will be sent to the main Q-network. Then, select
the action corresponding to the maximum node output from the main Q-network, and
convert it into the corresponding scheduling rule and AGV index i. Finally, when AGV i
completes the corresponding container task, it recalculates the system state and sends it to
the main Q-network for the next action selection. The whole process ends when all ships
and containers are handled.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 22

 Set yj={
 𝑟𝑗 if episode terminates at step 𝑗 + 1

𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎′�̅�(𝜙𝑗, 𝑎′; 𝜃′) otherwise

 Perform a gradient descent step on (𝑦𝑖 − 𝑄(𝜙𝑗, 𝑎𝑗 ; 𝜃))2 with respect to the

network== parameters 𝜃

 Every 𝐶 steps reset �̅� = 𝑄

 End For==End For

4.2. Scheduling Procedure with Mixed Rules

Using the well-trained main Q-network as the optimal mixed rule policy to guide the

dynamic scheduling of AGVs in automated terminals is shown in Figure 4. First, when

the QC spreader grabs a new container task or one of the AGVs completes the transpor-

tation of a container task and becomes idle, a scheduling request is triggered. At this point,

the current automated terminal system state will be sent to the main Q-network. Then,

select the action corresponding to the maximum node output from the main Q-network,

and convert it into the corresponding scheduling rule and AGV index 𝑖. Finally, when

AGV 𝑖 completes the corresponding container task, it recalculates the system state and

sends it to the main Q-network for the next action selection. The whole process ends when

all ships and containers are handled.

Figure 4. Optimal mixed rule scheduling of automated terminal AGVs.

5. Simulation-Based Experiments

In this section, we evaluate the performance of the proposed approach through a set

of simulation-based case studies created based on an automated terminal in Shanghai,

China.

5.1. Simulation Set Up

We used Siemens Tecnomatix Plant Simulation 15.0 to simulate the seaside horizon-

tal transportation and vertical loading/unloading of the automated terminal. Through the

Figure 4. Optimal mixed rule scheduling of automated terminal AGVs.

5. Simulation-Based Experiments

In this section, we evaluate the performance of the proposed approach through a set of
simulation-based case studies created based on an automated terminal in Shanghai, China.

5.1. Simulation Set Up

We used Siemens Tecnomatix Plant Simulation 15.0 to simulate the seaside horizontal
transportation and vertical loading/unloading of the automated terminal. Through the
built-in SimTalk language, a series of complex processes, such as unloading the container
from the quayside crane to the AGV, transporting it from the AGV to the container yard
and grabbing the container from the yard crane to the corresponding container position,
can be simulated. As shown in Figure 5, we considered an automated terminal that consists
of 4 berths, 8 QCs, 12 AGVs, 8 container yards and 8 YCs. There are four ships waiting to
be unloaded in one training session, and each ship has 96 container tasks for a total of 384
container tasks.

Mathematics 2022, 10, 4575 11 of 19

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 22

built-in SimTalk language, a series of complex processes, such as unloading the container

from the quayside crane to the AGV, transporting it from the AGV to the container yard

and grabbing the container from the yard crane to the corresponding container position,

can be simulated. As shown in Figure 5, we considered an automated terminal that con-

sists of 4 berths, 8 QCs, 12 AGVs, 8 container yards and 8 YCs. There are four ships waiting

to be unloaded in one training session, and each ship has 96 container tasks for a total of

384 container tasks.

Figure 5. Schematic of the automated container terminal considered in the case studies.

In order to properly take into account the practical operation processes and dynamics

involved in an automated container terminal, we adopted the following assumptions:

(1) All pending containers are standardized 20 ft TEUs;

(2) The problem of turning over the box is not considered;

(3) The information of the container task is randomly generated;

(4) The order of unloading of the QCs is predetermined;

(5) All containers are import containers;

(6) All AGV roads in the simulation scene are one-way streets;

(7) Each AGV can only transport one container at a time;

(8) When the AGV transports the container to the designated yard, it needs to wait for

the YC to unload the container it carries for the task to be considered “completed”;

(9) When the AGV completes its current task, and there are currently no incoming tasks,

it will return to the AGV waiting area;

(10) All AGVs’ navigation methods are the shortest path policy. Each container has its

own key attributes, including container ID, the container from QC, container desti-

nation, container yard, the current waiting time for the AGV and the estimated dis-

tance to be transported.

Figure 5. Schematic of the automated container terminal considered in the case studies.

In order to properly take into account the practical operation processes and dynamics
involved in an automated container terminal, we adopted the following assumptions:

(1) All pending containers are standardized 20 ft TEUs;
(2) The problem of turning over the box is not considered;
(3) The information of the container task is randomly generated;
(4) The order of unloading of the QCs is predetermined;
(5) All containers are import containers;
(6) All AGV roads in the simulation scene are one-way streets;
(7) Each AGV can only transport one container at a time;
(8) When the AGV transports the container to the designated yard, it needs to wait for

the YC to unload the container it carries for the task to be considered “completed”;
(9) When the AGV completes its current task, and there are currently no incoming tasks,

it will return to the AGV waiting area;
(10) All AGVs’ navigation methods are the shortest path policy. Each container has its own

key attributes, including container ID, the container from QC, container destination,
container yard, the current waiting time for the AGV and the estimated distance
to be transported.

5.2. Implementation of DQN-Based Multi-AGV Dynamic Scheduling

The proposed AGV dynamic scheduling algorithm based on DQN is programmed in
TensorFlow, which is integrated with the simulation platform through a socket module,
as shown in Figure 6. The simulation program includes several subprograms, namely, the
terminal operation logic subprogram, the state calculation subprogram, the communication
subprogram and the scheduling subprogram, to provide specific functions. The state
calculation subroutine is used to calculate the current system state. The communication
subroutine is responsible for transmitting the status information to the DQN module and
receiving the action information transmitted by the DQN module, including the selected
AGV and the scheduling rules. When the scheduling is triggered, the dynamic information
of the current task and AGV will be sent to the state subroutine to calculate the current
system state st =

(
Nt, Tawt, Dadt, Ast, Aix, Aiy, . . .

)
and will be sent to the communicator

after processing the subprograms. The communicator establishes a network connection
with the DQN program through the TCP/IP protocol and sends the status record to the
DQN program. The optimal combined action is calculated by the main Q-network, and
the output is sent back to the scheduling subprograms to be parsed into the corresponding

Mathematics 2022, 10, 4575 12 of 19

scheduling rules and AGV indices. After the AGVs finish the tasks based on the outputs,
the corresponding information of the tasks will be sent back to the DQN program and
stored in the replay memory.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 22

5.2. Implementation of DQN-Based Multi-AGV Dynamic Scheduling

The proposed AGV dynamic scheduling algorithm based on DQN is programmed in

TensorFlow, which is integrated with the simulation platform through a socket module,

as shown in Figure 6. The simulation program includes several subprograms, namely, the

terminal operation logic subprogram, the state calculation subprogram, the communica-

tion subprogram and the scheduling subprogram, to provide specific functions. The state

calculation subroutine is used to calculate the current system state. The communication

subroutine is responsible for transmitting the status information to the DQN module and

receiving the action information transmitted by the DQN module, including the selected

AGV and the scheduling rules. When the scheduling is triggered, the dynamic infor-

mation of the current task and AGV will be sent to the state subroutine to calculate the

current system state 𝑠𝑡 = (𝑁𝑡 , 𝑇𝑎𝑤𝑡 , 𝐷𝑎𝑑𝑡 , 𝐴𝑠𝑡 , 𝐴𝑖𝑥, 𝐴𝑖𝑦 , . . .) and will be sent to the communi-

cator after processing the subprograms. The communicator establishes a network connec-

tion with the DQN program through the TCP/IP protocol and sends the status record to

the DQN program. The optimal combined action is calculated by the main Q-network,

and the output is sent back to the scheduling subprograms to be parsed into the corre-

sponding scheduling rules and AGV indices. After the AGVs finish the tasks based on the

outputs, the corresponding information of the tasks will be sent back to the DQN program

and stored in the replay memory.

Figure 6. Dynamic scheduling of automated terminal AGVs based on DQN.

As described in Section 3.1, two fully connected neural networks are generated based

on the simulation scenario established in Section 4.1. For each of the Q-networks, there are

two hidden layers, with 350 nodes in the first layer and 140 nodes in the second layer,

which are determined by previous simulation analysis. As there are 12 AGVs and 3 sched-

uling rules in the simulation scenario, according to the definitions of states and actions,

there are 28 nodes in the input layer and 36 nodes in the output layer. The specific settings

of the main Q-network and target Q-network are shown in Table 2.

Table 2. Network parameter settings.

Layer Number of Nodes Activation Function Description

Input layer 28 None Used to accept system state𝑠𝑡

hidden layer 1 350 ReLU None

hidden layer 2 140 ReLU None

Figure 6. Dynamic scheduling of automated terminal AGVs based on DQN.

As described in Section 3.1, two fully connected neural networks are generated based
on the simulation scenario established in Section 4.1. For each of the Q-networks, there are
two hidden layers, with 350 nodes in the first layer and 140 nodes in the second layer, which
are determined by previous simulation analysis. As there are 12 AGVs and 3 scheduling
rules in the simulation scenario, according to the definitions of states and actions, there are
28 nodes in the input layer and 36 nodes in the output layer. The specific settings of the
main Q-network and target Q-network are shown in Table 2.

Table 2. Network parameter settings.

Layer Number of Nodes Activation Function Description

Input layer 28 None Used to accept system state st
hidden layer 1 350 ReLU None
hidden layer 2 140 ReLU None
Output layer 36 Softmax Value function Q(s, a) for output action

By taking a process in one episode of training as an example, the training process is
intuitively illustrated in Figure 6. Suppose the current task is as shown in Table 3, and
the scheduling is triggered at this time. AGV1, AGV2, AGV4, AGV8 and AGV11 are in
the working state, and AGV3, AGV5, AGV6, AGV7, AGV9, AGV10 and AGV12 are in the
idle state at the same time. The positions of some AGVs, such as AGV1, AGV2 and AGV3,
are AGV1 (20.0, 34.0), AGV2 (53.0, 41.0) and AGV3 (39.0, 13.0), respectively. Therefore,
according to the definition of the system state in Section 2, the current state st = (5, 194.0,
258.68, 1920.0, 20.0, 34.0, 53.0, 41.0, 39.0, 13.0 . . .).

After inputting this state into the main Q-network, the action value function value
Q-value is obtained, and the action is determined to be (2, 9) according to the selection
policy; that is, the 9th AGV is used to perform STD and use transport container No. 004.
When the action is completed, the reward function value Rt = 2.41, and the next state
st+1 = (3, 191.0, 129.0, 3872.0, 66.0, 39.0, 53.0, 41.0, 15.0, 33.0...); therefore, the complete
record of the scheduling process Re can be obtained, Re = ((5, 194.0, 258.68, 1920.0, 20.0,

Mathematics 2022, 10, 4575 13 of 19

34.0, 53.0, 41.0, 39.0, 13.0 . . .), (2, 9), 2.41, (5, 194.0, 258.68, 1920.0, 20.0, 34.0, 53.0, 41.0,
39.0, 13.0 . . .)), and then stored in the replay memory for the main Q-network to perform
training. The training of DQN takes 5000 times to learn the optimal mixed rule policy for
the dynamic scheduling of the AGVs. The training process is conducted on a server with
an i7-6700 CPU @ 3.40 GHz and with 16 G RAM. The training result is shown in Figure 7:

Table 3. Container task information.

ID From Destination Waiting Time Transport Distance

001 QC1 container yard6 55 s 284.54
002 QC4 container yard2 186 s 247.0
003 QC3 container yard7 255 s 278.9
004 QC5 container yard4 78 s 203.6
005 QC8 container yard3 396 s 279.4

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 22

Output layer 36 Softmax Value function 𝑄(𝑠, 𝑎) for output action

By taking a process in one episode of training as an example, the training process is

intuitively illustrated in Figure 6. Suppose the current task is as shown in Table 3, and the

scheduling is triggered at this time. AGV1, AGV2, AGV4, AGV8 and AGV11 are in the

working state, and AGV3, AGV5, AGV6, AGV7, AGV9, AGV10 and AGV12 are in the idle

state at the same time. The positions of some AGVs, such as AGV1, AGV2 and AGV3, are

AGV1 (20.0, 34.0), AGV2 (53.0, 41.0) and AGV3 (39.0, 13.0), respectively. Therefore, ac-

cording to the definition of the system state in Section 2, the current state 𝑠𝑡 =(5, 194.0,

258.68, 1920.0, 20.0, 34.0, 53.0, 41.0, 39.0, 13.0...).

Table 3. Container task information.

ID From Destination Waiting Time Transport Distance

001 QC1 container yard6 55 s 284.54

002 QC4 container yard2 186 s 247.0

003 QC3 container yard7 255 s 278.9

004 QC5 container yard4 78 s 203.6

005 QC8 container yard3 396 s 279.4

After inputting this state into the main Q-network, the action value function value

Q-value is obtained, and the action is determined to be (2, 9) according to the selection

policy; that is, the 9th AGV is used to perform STD and use transport container No. 004.

When the action is completed, the reward function value 𝑅𝑡 =2.41, and the next state

 𝑠𝑡+1 =(3, 191.0, 129.0, 3872.0, 66.0, 39.0, 53.0, 41.0, 15.0, 33.0...); therefore, the complete

record of the scheduling process Re can be obtained, 𝑅𝑒 =((5, 194.0, 258.68, 1920.0, 20.0,

34.0, 53.0, 41.0, 39.0, 13.0...), (2,9), 2.41, (5, 194.0, 258.68, 1920.0, 20.0, 34.0, 53.0, 41.0, 39.0,

13.0...)), and then stored in the replay memory for the main Q-network to perform train-

ing. The training of DQN takes 5000 times to learn the optimal mixed rule policy for the

dynamic scheduling of the AGVs. The training process is conducted on a server with an

i7-6700 CPU @ 3.40 GHz and with 16 G RAM. The training result is shown in Figure 7:

Figure 7. Final reward changing process during training.

Figure 7 shows that the total reward value obtained during the entire scheduling
process in the early stage of training is relatively random, the total reward value begins
to converge after approximately 1500 training iterations, and the training results tend to
stabilize after approximately 2000 iterations.

6. Results and Discussions
6.1. Testing Case Description

After the training is completed, the performance of the neural network trained by DQN
is tested through the scheduling procedure described in Section 3.2. First, we consider the
cases of four different problem sizes that are determined by the number of container tasks N,
and the number of AGVs A: (1) 4 AGVs and 48 container tasks; (2) 6 AGVs and 96 container
tasks; (3) 8 AGVs and 192 container tasks; and (4) 12 AGVs and 384 container tasks to
analyze the experimental results. The Gantt of the four case scheduling by DQN is shown
in Figure 8. Then, the total waiting time of the QCs, the total completion time of the AGVs
and the computational efficiency are used as the performance indicators. In order to verify
the superiority of the DQN-based mixed-rule scheduling approach, this section first designs

Mathematics 2022, 10, 4575 14 of 19

a genetic algorithm (GA) for the automated terminal AGV scheduling global optimization
solution, comparing the results with the proposed DQN-based dynamic scheduling method
in different task sizes and the AGV numbers, as detailed in Section 5.1. Finally, the results
of the DQN-based mixed-rule scheduling approach and the three scheduling rules of FCFS,
STD and LWT were compared, as described in Section 5.2.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 22

(a) (b)

(c) (d)

Figure 8. AGV scheduling Gantt chart. (a) 48 × 4, (b) 96 × 6, (c) 192 × 8, (d) 384 × 12.

6.2. Results Analysis

6.2.1. Comparison of Results Based on DQN and Genetic Algorithm (GA)

In order to show the effectiveness of the proposed DQN-based approach in solving

dynamic scheduling of AGVs in automated terminals, we designed a genetic algorithm

(GA) to solve the static version of the scheduling problem using the testing data. We

solved the dynamic scheduling problem by taking random features, such as the arrival

time of ships and the travel speed of the AGVs, into consideration while using the DQN-

based approach. The random features that are accomplished in the simulation environ-

ment and the relevant data are considered deterministic instances while solving the sched-

uling problem of AGVs by GA. We compared the results of the GA to those of the DQN-

based approach, including the completion time of AGVs, the waiting time of QCs and the

makespan of the system, respectively.

In order to integrate with the simulation case in 4.1, the implementation of the pre-

sent-designed GA chromosome code in Python and the fitness values were calculated

from the simulation program. We designed the GA chromosome in the form of real code;

the chromosome length is equal to m (total number of container tasks), the position of the

chromosome in the container task number and the gene value is the AGV number, which

Figure 8. AGV scheduling Gantt chart. (a) 48 × 4, (b) 96 × 6, (c) 192 × 8, (d) 384 × 12.

6.2. Results Analysis
6.2.1. Comparison of Results Based on DQN and Genetic Algorithm (GA)

In order to show the effectiveness of the proposed DQN-based approach in solving
dynamic scheduling of AGVs in automated terminals, we designed a genetic algorithm
(GA) to solve the static version of the scheduling problem using the testing data. We solved
the dynamic scheduling problem by taking random features, such as the arrival time of
ships and the travel speed of the AGVs, into consideration while using the DQN-based ap-
proach. The random features that are accomplished in the simulation environment and the
relevant data are considered deterministic instances while solving the scheduling problem
of AGVs by GA. We compared the results of the GA to those of the DQN-based approach,
including the completion time of AGVs, the waiting time of QCs and the makespan of the
system, respectively.

In order to integrate with the simulation case in 4.1, the implementation of the present-
designed GA chromosome code in Python and the fitness values were calculated from
the simulation program. We designed the GA chromosome in the form of real code; the

Mathematics 2022, 10, 4575 15 of 19

chromosome length is equal to m (total number of container tasks), the position of the
chromosome in the container task number and the gene value is the AGV number, which is
the container for which the AGV performs. The chromosome form is shown in Figure 9,
where the sequential gene values of 4,5,8,1,2,4 indicate that container tasks numbered 1 to 6
are performed by the AGVs numbered 4,5,8,1,2,4, respectively.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 22

is the container for which the AGV performs. The chromosome form is shown in Figure

9, where the sequential gene values of 4,5,8,1,2,4 indicate that container tasks numbered 1

to 6 are performed by the AGVs numbered 4,5,8,1,2,4, respectively.

Figure 9. Chromosomal form.

Detailed steps of GA:

Step 1: Random numbers of 1 to 12 were generated at each gene locus;

Step 2: Python sends the generated chromosomes to the simulation program via the

TCP/IP protocol;

Step 3: The simulation program schedules the AGV according to the chromosome

information. The scheduling process is when the QC spreader grabs a new container task

and finds the corresponding AGV number in the chromosome. According to the container

task number, it is sent to the corresponding AGV task sequence. The AGV performs the

corresponding schedules by its own sequence of tasks. When all container tasks have been

performed, the objective function is calculated and converted to fitness values.

Step 4: The simulation program sends the calculated fitness values to the GA of Py-

thon through the TCP/IP protocol;

Step 5: When the fitness of all chromosomes is calculated, the selection, crossover and

variation are processed;

Step 6: After generating a new population, we switch to Step 2;

Step 7: The optimal individual fitness is calculated after completing the iteration.

In the following analysis, the scheduling results of the DQN algorithm are compared

with those generated by the traditional genetic algorithm (GA), and more comparisons

are made based on the instances of four different scales described at the beginning of this

section. As the results show in Table 4, the total completion time of the AGVs and the total

waiting time of the QCs are compared, as well as the maximum completion time of the

system, i.e., the makespan.

Table 4. Comparison of the results of DQN and GA at different instance scales.

N × A
Total Waiting Time of QCs (min) Total Completion Time of AGVs (min) Makespan (min)

DQN GA DQN GA DQN GA

48 × 4 142.89 144.84 103.74 96.93 28.14 27.29

96 × 6 181.54 217.58 210.43 198.57 38.64 41.56

192 × 8 294.54 425.63 439.78 405.20 60.21 73.45

384 × 12 397.40 801.61 937.09 829.30 93.08 143.93

From the results of Table 4, for instances with different numbers of container tasks

and AGVs, the proposed DQN algorithm could always sharply reduce the waiting time

of the QCs compared to the GA. Even though the total completion time of the AGVs gen-

erated by the dynamic scheduling approach based on DQN is slightly worse than those

generated by the GA, the final makespan appears to be improved for each of the instances.

Computational efficiency is extremely important for the AGV dynamic scheduling to

meet the stringent operational requirements for an automated container terminal, espe-

cially when the size of the problem increases. In the following analysis, we documented

the computational time for the instances with the four different problem sizes mentioned.

The computational performance of the GA and proposed DQN-based approach, along

with that of the benchmark models, are given in Table 5 below:

Figure 9. Chromosomal form.

Detailed steps of GA:
Step 1: Random numbers of 1 to 12 were generated at each gene locus;
Step 2: Python sends the generated chromosomes to the simulation program via the

TCP/IP protocol;
Step 3: The simulation program schedules the AGV according to the chromosome

information. The scheduling process is when the QC spreader grabs a new container task
and finds the corresponding AGV number in the chromosome. According to the container
task number, it is sent to the corresponding AGV task sequence. The AGV performs the
corresponding schedules by its own sequence of tasks. When all container tasks have been
performed, the objective function is calculated and converted to fitness values.

Step 4: The simulation program sends the calculated fitness values to the GA of Python
through the TCP/IP protocol;

Step 5: When the fitness of all chromosomes is calculated, the selection, crossover and
variation are processed;

Step 6: After generating a new population, we switch to Step 2;
Step 7: The optimal individual fitness is calculated after completing the iteration.
In the following analysis, the scheduling results of the DQN algorithm are compared

with those generated by the traditional genetic algorithm (GA), and more comparisons
are made based on the instances of four different scales described at the beginning of this
section. As the results show in Table 4, the total completion time of the AGVs and the total
waiting time of the QCs are compared, as well as the maximum completion time of the
system, i.e., the makespan.

Table 4. Comparison of the results of DQN and GA at different instance scales.

N × A
Total Waiting Time of QCs (min) Total Completion Time of AGVs (min) Makespan (min)

DQN GA DQN GA DQN GA

48 × 4 142.89 144.84 103.74 96.93 28.14 27.29
96 × 6 181.54 217.58 210.43 198.57 38.64 41.56
192 × 8 294.54 425.63 439.78 405.20 60.21 73.45

384 × 12 397.40 801.61 937.09 829.30 93.08 143.93

From the results of Table 4, for instances with different numbers of container tasks and
AGVs, the proposed DQN algorithm could always sharply reduce the waiting time of the
QCs compared to the GA. Even though the total completion time of the AGVs generated
by the dynamic scheduling approach based on DQN is slightly worse than those generated
by the GA, the final makespan appears to be improved for each of the instances.

Computational efficiency is extremely important for the AGV dynamic scheduling to
meet the stringent operational requirements for an automated container terminal, especially
when the size of the problem increases. In the following analysis, we documented the
computational time for the instances with the four different problem sizes mentioned. The
computational performance of the GA and proposed DQN-based approach, along with
that of the benchmark models, are given in Table 5 below:

Mathematics 2022, 10, 4575 16 of 19

Table 5. Comparison of the computational efficiency.

N × A DQN GA

48 × 4 3.24 s 20 min
96 × 6 7.95 s 42 min

192 × 8 10.95 s 69 min
384 × 12 21.02 s 135 min

As shown in Table 5, at the same scale, when compared to the DQN, the GA takes
significantly longer to calculate. However, DQN has a good speed advantage compared
with the response time of genetic algorithms in the simulation environment.

The above results imply that the GA algorithm tends to pursue global optimization
based on the known information over the entire horizon, while the proposed dynamic
scheduling approach based on DQN is capable of handling dynamic information and
generating better solutions based on the waiting times of the QCs and the makespan. The
decreases in the QC waiting time and the makespan could be the reason that the AGVs
have to be occupied more during the dynamic decision-making process. It reveals that the
DQN-based algorithm outperforms the GA in terms of making full use of scarce resources
and improving the working efficiency of the automated terminal.

6.2.2. Dynamic Scheduling Comparison

Three dynamic scheduling rules, FCFS, STD and LWT, are considered in our DQN-
based approach as the basis to generate an optimized mixed-rule policy for the dynamic
scheduling of AGVs. In this section, the total waiting time of the QCs and the total
completion time of the AGVs are compared while applying the proposed DQN-based
approach and applying each of the three rules independently.

First, we considered a case with 384 container tasks and 12 AGVs with odd indices, in
the above automated terminal simulation scenario, as an example. A total of 384 container
tasks were randomly generated in the four different scenes and performed by 12 AGV sets.
Twenty episodes for each scene were carried out, and the results of the average performance
of all the methods are shown. The comparison between the total waiting time of the QCs
and the total completion time of the AGVs is shown in Figure 10.

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 22

6.2.2. Dynamic Scheduling Comparison

Three dynamic scheduling rules, FCFS, STD and LWT, are considered in our DQN-

based approach as the basis to generate an optimized mixed-rule policy for the dynamic

scheduling of AGVs. In this section, the total waiting time of the QCs and the total com-

pletion time of the AGVs are compared while applying the proposed DQN-based ap-

proach and applying each of the three rules independently.

First, we considered a case with 384 container tasks and 12 AGVs with odd indices,

in the above automated terminal simulation scenario, as an example. A total of 384 con-

tainer tasks were randomly generated in the four different scenes and performed by 12

AGV sets. Twenty episodes for each scene were carried out, and the results of the average

performance of all the methods are shown. The comparison between the total waiting time

of the QCs and the total completion time of the AGVs is shown in Figure 10.

(a) (b)

Figure 10. Results comparison: (a) improvements in total completion time of AGVs; (b) improve-

ments in total waiting time of QCs.

As shown in Figure 10, the results generated by the proposed approach based on the

DQN algorithm outperform those approaches applying the individual scheduling rule.

The maximum improvements are 2.2% in terms of the total completion time of the AGVs

and 7.2% in terms of the total waiting time of the QCs.

The scheduling results of the DQN algorithm are compared with those individual

scheduling rules in 5.1 using the same four sets of instances with different scales. By solv-

ing the instances by the proposed DQN-based algorithm and the individual scheduling

rules, the total waiting time of the QCs is shown in Table 6, and the total completion time

of the AGV is shown in Table 7.

Table 6. Total waiting time of QCs (min) under different scales.

N × A DQN FCFS STD LWT

48 × 4 142.891 162.609 138.67 128.69

96 × 6 181.545 204.3 189.323 207.723

192 × 8 294.548 350.697 325.924 318.611

384 × 12 397.404 426.185 424.501 422.681

Figure 10. Results comparison: (a) improvements in total completion time of AGVs; (b) improvements
in total waiting time of QCs.

Mathematics 2022, 10, 4575 17 of 19

As shown in Figure 10, the results generated by the proposed approach based on the
DQN algorithm outperform those approaches applying the individual scheduling rule. The
maximum improvements are 2.2% in terms of the total completion time of the AGVs and
7.2% in terms of the total waiting time of the QCs.

The scheduling results of the DQN algorithm are compared with those individual
scheduling rules in 5.1 using the same four sets of instances with different scales. By solving
the instances by the proposed DQN-based algorithm and the individual scheduling rules,
the total waiting time of the QCs is shown in Table 6, and the total completion time of the
AGV is shown in Table 7.

Table 6. Total waiting time of QCs (min) under different scales.

N × A DQN FCFS STD LWT

48 × 4 142.891 162.609 138.670 128.690
96 × 6 181.545 204.300 189.323 207.723

192 × 8 294.548 350.697 325.924 318.611
384 × 12 397.404 426.185 424.501 422.681

Table 7. Total completion time of AGVs (min) under different scales.

N × A DQN FCFS STD LWT

48 × 4 103.748 107.570 111.710 110.347
96 × 6 210.433 219.130 217.960 211.420

192 × 8 439.785 441.478 442.928 442.493
384 × 12 937.090 958.891 947.500 947.610

From the comparison of the results in Tables 6 and 7, it can be seen that the dynamic
scheduling performance of our DQN-based approach with a mixed-rule policy can always
outperform the scheduling results applying individual rules under different input scales.
The results show that a better performance can be achieved only by selecting the most
appropriate scheduling rules according to the different situations, and the computational
performance of the proposed approaches, along with that of the benchmark models, are
given in Table 8 below:

Table 8. Comparison of the computational efficiency.

N × A DQN FCFS STD LWT

48 × 4 3.24 s 1.11 s 1.15 s 1.10 s
96 × 6 7.95 s 2.08 s 2.29 s 2.05 s

192 × 8 10.95 s 4.05 s 4.16 s 4.03 s
384 × 12 21.02 s 8.06 s 8.28 s 7.91 s

As shown in Table 8, the CPU processing time of DQN is slightly higher than that
of FCFS, STD and LWT in the different task sizes and AGV sizes, but it is still within a
relatively acceptable range for dynamic scheduling because the mixed scheduling rules
based on DQN have a high computing complexity. Therefore, the experimental results
prove that the deep reinforcement learning DQN algorithm applied to horizontal trans-
portation scheduling can greatly improve the horizontal transportation efficiency of the
automated terminals.

Based on the above analysis, compared with the traditional global optimization algorithm,
GA, although the GA can approximate the optimal results infinitely, due to the disadvantages
of dynamic performance and the operational efficiency of the formal GA, DQN has relatively
significant advantages in dynamic performance and operational efficiency. Compared to the
three dynamic scheduling rules, the appropriate scheduling rules can be selected according to
the different states, which can achieve better overall performance.

Mathematics 2022, 10, 4575 18 of 19

7. Conclusions and Future Directions

In this paper, a DQN-based dynamic scheduling approach is proposed to optimally
schedule the horizontal transportation of AGVs in automated terminals. We first cast the
scheduling problem as a Markov decision process (MDP) that is composed of the system
state, action space and reward function. Then, we used the Tecnomatix simulation platform
to generate the data for model training, based on which the optimal AGV scheduling
policies can be determined under different situations. Finally, we compared the proposed
approach with conventional optimization-based approaches, including GA and three
scheduling rules. In four cases with different task numbers and AGV number sizes, DQN
does not have a particularly obvious advantage in small-scale cases compared with the rule-
based scheduling and GA; however, as the number of tasks and AGV numbers increases, the
optimization performance of the DQN-based mixed scheduling rules becomes increasingly
obvious. The comparison results show that, compared to rule-based scheduling and
the GA, the DQN-based approach has a better optimization performance. In terms of
computational efficiency, DQN runs slightly slower than rule-based scheduling due to
the complexity of its own calculations but has a significant advantage over GA. With the
increasing number of tasks and AGVs, the advantage of the DQN-based AGV dynamic
scheduling in computational efficiency is more significant than that of the GA.

Future studies can be conducted in the following ways: The DQN-based dynamic
decision-making method can be extended to include AGV collision avoidance and dynamic
path planning to further improve the effectiveness of scheduling. More dynamic uncertainty
features of the terminal can be included to improve the proposed DRL approach. A more
complex problem where the import and export containers are handled in mixed operations
could be considered in future studies.

Author Contributions: Conceptualization, X.Z., C.L. and Y.W.; methodology, X.Z., C.L., Y.W., J.S.
and G.L.; software, X.Z.; writing—original draft preparation, C.L., Y.W. and J.S.; writing—review
and editing, X.Z., Y.W. and G.L.; project administration. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (No.2019YFB1704403), the National Natural Science Foundation of China (No.71972128), the
Soft Science Research Project of National Natural Science Foundation of Shanghai Science and Tech-
nology Innovation Action Plan (No.22692111200) and the Shanghai Sailing Program (21YF1416400).

Acknowledgments: The authors are grateful to the editors and the anonymous reviewers for the
numerous valuable suggestions and comments.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Wu, Y.; Li, W.; Petering, M.E.H.; Goh, M.; Souza, R.D. Scheduling Multiple Yard Cranes with Crane Interference and Safety

Distance Requirement. Transp. Sci. 2015, 49, 990–1005. [CrossRef]
2. Chen, X.; He, S.; Zhang, Y.; Tong, L.; Shang, P.; Zhou, X. Yard crane and AGV scheduling in automated container terminal:

A multi-robot task allocation framework. Transp. Res. Part C Emerg. Technol. 2020, 114, 241–271. [CrossRef]
3. Yang, Y.; Zhong, M.; Dessouky, Y.; Postolache, O. An integrated scheduling method for AGV routing in automated container

terminals. Comput. Ind. Eng. 2018, 126, 482–493. [CrossRef]
4. Xu, Y.; Qi, L.; Luan, W.; Guo, X.; Ma, H. Load-In-Load-Out AGV Route Planning in Automatic Container Terminal. IEEE Access

2020, 8, 157081–157088. [CrossRef]
5. Zhong, M.; Yang, Y.; Dessouky, Y.; Postolache, O. Multi-AGV scheduling for conflict-free path planning in automated container

terminals. Comput. Ind. Eng. 2020, 142, 106371. [CrossRef]
6. Zhang, Q.L.; Hu, W.X.; Duan, J.G.; Qin, J.Y. Cooperative Scheduling of AGV and ASC in Automation Container Terminal Relay

Operation Mode. Math. Probl. Eng. 2021, 2021, 5764012. [CrossRef]
7. Klein, C.M.; Kim, J. AGV dispatching. Int. J. Prod. Res. 1996, 34, 95–110. [CrossRef]
8. Sabuncuoglu, I. A study of scheduling rules of flexible manufacturing systems: A simulation approach. Int. J. Prod. Res. 1998,

36, 527–546. [CrossRef]
9. Shiue, Y.-R.; Lee, K.-C.; Su, C.-T. Real-time scheduling for a smart factory using a reinforcement learning approach. Comput. Ind.

Eng. 2018, 125, 604–614. [CrossRef]

http://doi.org/10.1287/trsc.2015.0641
http://doi.org/10.1016/j.trc.2020.02.012
http://doi.org/10.1016/j.cie.2018.10.007
http://doi.org/10.1109/ACCESS.2020.3019703
http://doi.org/10.1016/j.cie.2020.106371
http://doi.org/10.1155/2021/5764012
http://doi.org/10.1080/00207549608904893
http://doi.org/10.1080/002075498193877
http://doi.org/10.1016/j.cie.2018.03.039

Mathematics 2022, 10, 4575 19 of 19

10. Angeloudis, P.; Bell, M.G.H. An uncertainty-aware AGV assignment algorithm for automated container terminals. Transp. Res.
Part E Logist. Transp. Rev. 2010, 46, 354–366. [CrossRef]

11. Gawrilow, E.; Klimm, M.; Möhring, R.H.; Stenzel, B. Conflict-free vehicle routing. EURO J. Transp. Logist. 2012, 1, 87–111.
[CrossRef]

12. Cai, B.; Huang, S.; Liu, D.; Dissanayake, G. Rescheduling policies for large-scale task allocation of autonomous straddle carriers
under uncertainty at automated container terminals. Robot. Auton. Syst. 2014, 62, 506–514. [CrossRef]

13. Clausen, C.; Wechsler, H. Quad-Q-learning. IEEE Trans. Neural Netw. 2000, 11, 279–294. [CrossRef] [PubMed]
14. Jang, B.; Kim, M.; Harerimana, G.; Kim, J.W. Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE

Access 2019, 7, 133653–133667. [CrossRef]
15. Tang, H.; Wang, A.; Xue, F.; Yang, J.; Cao, Y. A Novel Hierarchical Soft Actor-Critic Algorithm for Multi-Logistics Robots Task

Allocation. IEEE Access 2021, 9, 42568–42582. [CrossRef]
16. Watanabe, M.; Furukawa, M.; Kakazu, Y. Intelligent AGV driving toward an autonomous decentralized manufacturing system

[Article; Proceedings Paper]. Robot. Comput.-Integr. Manuf. 2001, 17, 57–64. [CrossRef]
17. Xia, Y.; Wu, L.; Wang, Z.; Zheng, X.; Jin, J. Cluster-Enabled Cooperative Scheduling Based on Reinforcement Learning for

High-Mobility Vehicular Networks. IEEE Trans. Veh. Technol. 2020, 69, 12664–12678. [CrossRef]
18. Kim, D.; Lee, T.; Kim, S.; Lee, B.; Youn, H.Y. Adaptive packet scheduling in IoT environment based on Q-learning. J. Ambient

Intell. Hum. Comput. 2020, 11, 2225–2235. [CrossRef]
19. Fotuhi, F.; Huynh, N.; Vidal, J.M.; Xie, Y. Modeling yard crane operators as reinforcement learning agents. Res. Transp. Econ. 2013,

42, 3–12. [CrossRef]
20. de León, A.D.; Lalla-Ruiz, E.; Melián-Batista, B.; Marcos Moreno-Vega, J. A Machine Learning-based system for berth scheduling

at bulk terminals. Expert Syst. Appl. 2017, 87, 170–182. [CrossRef]
21. Jeon, S.M.; Kim, K.H.; Kopfer, H. Routing automated guided vehicles in container terminals through the Q-learning technique.

Logist. Res. 2010, 3, 19–27. [CrossRef]
22. Choe, R.; Kim, J.; Ryu, K.R. Online preference learning for adaptive dispatching of AGVs in an automated container terminal.

Appl. Soft Comput. 2016, 38, 647–660. [CrossRef]
23. Wan, Z.; Li, H.; He, H.; Prokhorov, D. Model-Free Real-Time EV Charging Scheduling Based on Deep Reinforcement Learning.

IEEE Trans. Smart Grid 2019, 10, 5246–5257. [CrossRef]
24. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
25. Han, X.; He, H.; Wu, J.; Peng, J.; Li, Y. Energy management based on reinforcement learning with double deep Q-learning for a

hybrid electric tracked vehicle. Appl. Energy 2019, 254, 113708. [CrossRef]
26. Buşoniu, L.; de Bruin, T.; Tolić, D.; Kober, J.; Palunko, I. Reinforcement learning for control: Performance, stability, and deep

approximators. Annu. Rev. Control 2018, 46, 8–28. [CrossRef]
27. Kubalik, J.; Derner, E.; Zegklitz, J.; Babuska, R. Symbolic Regression Methods for Reinforcement Learning. IEEE Access 2021,

9, 139697–139711. [CrossRef]
28. Montague, P.R. Reinforcement learning: An introduction. Trends Cogn. Sci. 1999, 3, 360. [CrossRef]
29. Pan, J.; Wang, X.; Cheng, Y.; Yu, Q.; Jie, P.; Xuesong, W.; Wang, X. Multisource Transfer Double DQN Based on Actor Learning.

IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2227–2238. [CrossRef]
30. Stelzer, A.; Hirschmüller, H.; Görner, M. Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain.

Int. J. Robot. Res. 2012, 31, 381–402. [CrossRef]
31. Zheng, J.F.; Mao, S.R.; Wu, Z.Y.; Kong, P.C.; Qiang, H. Improved Path Planning for Indoor Patrol Robot Based on Deep

Reinforcement Learning. Symmetry 2022, 14, 132. [CrossRef]
32. Liu, B.; Liang, Y. Optimal function approximation with ReLU neural networks. Neurocomputing 2021, 435, 216–227. [CrossRef]
33. Wang, B.; Osher, S.J. Graph interpolating activation improves both natural and robust accuracies in data-efficient deep learning.

Eur. J. Appl. Math. 2021, 32, 540–569. [CrossRef]
34. da Motta Salles Barreto, A.; Anderson, C.W. Restricted gradient-descent algorithm for value-function approximation in reinforce-

ment learning. Artif. Intell. 2008, 172, 454–482. [CrossRef]

http://doi.org/10.1016/j.tre.2009.09.001
http://doi.org/10.1007/s13676-012-0008-7
http://doi.org/10.1016/j.robot.2013.12.007
http://doi.org/10.1109/72.839000
http://www.ncbi.nlm.nih.gov/pubmed/18249760
http://doi.org/10.1109/ACCESS.2019.2941229
http://doi.org/10.1109/ACCESS.2021.3062457
http://doi.org/10.1016/S0736-5845(00)00037-5
http://doi.org/10.1109/TVT.2020.3029561
http://doi.org/10.1007/s12652-019-01351-w
http://doi.org/10.1016/j.retrec.2012.11.001
http://doi.org/10.1016/j.eswa.2017.06.010
http://doi.org/10.1007/s12159-010-0042-5
http://doi.org/10.1016/j.asoc.2015.09.027
http://doi.org/10.1109/TSG.2018.2879572
http://doi.org/10.1038/nature14236
http://doi.org/10.1016/j.apenergy.2019.113708
http://doi.org/10.1016/j.arcontrol.2018.09.005
http://doi.org/10.1109/ACCESS.2021.3119000
http://doi.org/10.1016/S1364-6613(99)01331-5
http://doi.org/10.1109/TNNLS.2018.2806087
http://doi.org/10.1177/0278364911435161
http://doi.org/10.3390/sym14010132
http://doi.org/10.1016/j.neucom.2021.01.007
http://doi.org/10.1017/S0956792520000406
http://doi.org/10.1016/j.artint.2007.08.001

	Introduction
	Literature Review
	Problem Formulation
	MDP Model the Dynamic Scheduling of Multi-AGVs
	State Definition
	Action Definition
	Reward Function
	Optimal Mixed Rule Policy Based on Reinforcement Learning

	DQN-Based Scheduling Approach
	DQN Training Process
	Scheduling Procedure with Mixed Rules

	Simulation-Based Experiments
	Simulation Set Up
	Implementation of DQN-Based Multi-AGV Dynamic Scheduling

	Results and Discussions
	Testing Case Description
	Results Analysis
	Comparison of Results Based on DQN and Genetic Algorithm (GA)
	Dynamic Scheduling Comparison

	Conclusions and Future Directions
	References

