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Abstract 
 

Restoration of a power system network following a disaster or an extreme event is an urgent action. This process can 

be carried out through sectionalization of the power grid. The system sectionalization consists of determining the 

proper disjoint points to divide the entire blackout area into several sections. Then, in each section the electrical loads 

could be supplied by emergency power resources called “black-start” generation units for disaster management. In 

this study, to find the optimal sectionalization set, three critical objectives are minimized: load shedding, restoration 

time, and the cost of power generation. The proposed model is composed of two levels: an upper level and a lower 

level. The upper level model is “network sectionalization” which includes a set of innovative mixed integer linear 

constraints while the lower level model is “electrical loads energizing”; in which the restoration of all sections is 

conducted at the same time.  A novel mathematical programming with equilibrium constraints (MPEC) solution 

methodology and pre-emptive programming (PEP) are both presented to solve the proposed multi-objective MPEC 

model. The efficiency of model is examined by two case studies 6- and 118-bus IEEE test systems. Promising 

numerical results are reported.  
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Nomenclature 
Sets    

g Index for generators/sections, 𝑔={1, ..., NG} di  /  Cost rate of restoration of bus i/demand d 

i, j Index for buses, i ={1, ..., NB}. gc  Cost of power generation at unit 𝑔 

d Index for demand loads, d={1, ..., ND}   KG  Incident matrix of generation units 

t Index for time, t={1, ..., NT} KL  Incident matrix of transmission lines 

l Index for transmission lines, l={1, ..., NL} KD  Incident matrix of demands 

Parameters  Variables  

max,min, / gg PP  Maximal and minimal generating capacity of 

generation unit 𝑔. 
gtP  Generated power of unit g at time t 

gg DURU /  Ramp up/down rate of generation unit 𝑔 dtgt SLLS
~

/  Load shedding of section 𝑔/demand d at time t 

dtit DD
~

/  Load demand on bus i/demand d at time t igs  State of bus i at section g 

max,lPL  Power line capacity of line l ltPL  Power flow on line l at time t 

lx  Reactance of line l it  Phase angle of bus i at time t 

ija  State of connection between bus i and j igT  total restoration time of bus i in section 𝑔 

lU  State of line l Load
dT  Load pick up time of demand d 

VOLL  Value of lost load equal to 1000 $/MWh t  Auxiliary current time equal to t at time t. 

 

1. Introduction   
The severity of disaster damage varies from year to year, but disasters often cause power outages that have 

considerable influences on both quality of life and social economic. Long outages have been reported recently which 
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are caused mostly by extreme weather such as storms and hurricanes. Hurricane Ike was one the worst disasters that 

occurred in 2008 which was the third-costliest among Atlantic hurricanes with $25 billion damages. Electricity failure 

was a terrible consequence of hurricane Ike, and this costly failure took weeks to be restored [1]. Substantial human 

and financial assets are always spent to prepare for aggressive disasters, and recover from them. Therefore, industrial 

engineers work together with power system engineers to make the crucial decisions corresponding to how resources 

are allocated for preparation and recovery of a power system. Unfortunately, due to the complex nature of electrical 

grid, these provision and recovery procedures are imperfect by the expertise and intuition of power engineers. Repair 

or replacement of failed facilities is usually a long procedure, therefore, it is required to run an emergency restoration 

before. In a disaster management plan, the system will be enabled to provide the critical loads by available components 

and emergency power generation units. These generation units are called black-start (BS) units. Restoration through 

BS units is performed with a sectionalization approach to build the network within the separated sections and be 

prepared to reconfigure the network when the damaged components are back [2]. 

 

Sectionalization is a build-up approach that could restore a large area in a minimum time period if the appropriate 

sectionalization plan is chosen. In a deterministic sectionalization, the post disturbance status of a power system is 

assumed to be available. Also, the target area includes the critical loads to be determined [2]. Afterwards, a plan should 

be provided to rebuild the transmission network. The main objective of a sectionalization plan for power system 

restoration is minimization of unserved load [2, 3]. The restoration time is also minimized to restore the system as 

quickly as possible [4]. Since the amount of unserved load and the restoration time are critical in a restoration plan, 

this study focuses on both of them to be minimized. In this order, heuristic algorithms and mathematical models have 

been developed [5, 6]. Due to the nature of this problem, respected mathematical models are mixed integer 

programming (MIP) with binary sectionalization sets and binary components’ state variables. Hence, without any 

modifications, solving the model for large scale networks is pretty complicated. Model decomposition is a common 

approach to reduce the complexity of model’s solution. For instance, a bi-level programming (BLP) approach has 

been taken to model sectionalization and restoration within two levels [4]. The BLP approach can be solved through 

iterative solution methodology or directly by mathematical program with equilibrium constraints (MPEC) [7].  

 

MPEC solution methodology is a common approach in strategic electricity market problems in power system area [8, 

9] in which the upper level model is the decision making model and the lower level is the market clearing model. The 

other application of MPEC in this area is market-based power system maintenance scheduling that can be modeled as 

a BLP with revenue optimization in the upper level model and market clearing in lower level model [10]. A power 

system restoration model can be formulated with BLP [4] and since the lower model is a linear programming (LP), 

here, the MPEC approach is applied to recast the MIP model as explained in Section 2. MPEC approach finds the 

solution by introducing a new model based on strong duality theory and integration of the two models. The new 

integrated model is the upper level model with the Karush–Kuhn–Tucker (KKT) conditions of the lower level model. 

The equivalent MPEC of a model is a non-linear programming (NLP) because of the complementary slackness 

conditions. Hence, this study solves the restoration model through an equivalent linearized MPEC model. 

Additionally, since the proposed MPEC model is a multi-objective mathematical model, it is solved through a goal 

programming approach, called pre-emptive programming (PEP) [11].  

 

The main contributions and novelty of this study are: formulating an MPEC to derive the optimum sectionalization 

for power system restoration and solving a multi-objective model in this order. This paper is organized as follows: the 

model description is presented at Section 2. Section 3 describes the solution methodology. The numerical results on 

6- and 118 bus IEEE test systems are shown in Section 4, and the paper is concluded in Section 5. 

 

2. Model description 
Power system restoration minimizes the load shedding and restoration time subjected to three sets of constraints: the 

physical constraints, the sectionalization constraints, and the line state constraints. The physical constraints includes 

power generation limitation (1), ramp-up (2), ramp-down (3), and sections’ load balance constraints (4): 

tgPPP ggtg  ,,max,min,  (1) 

tgRUPP gtggt   ,,)1(  (2) 

tgRDPP ggttg  ,,)1(  (3) 
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tgDsLSP NB
i itiggtgt   ,,1  (4) 

The sectionalization constraints vary based on consideration of the power system network. Excluding the network in 

the sectionalization process might lead to many disconnections inside sections that make it impossible to fully restore 

those sections. On the other hand, the grid connectivity imposes complexity in assigning buses to sections and requires 

more constraints, e.g., line power flow constraints. To reduce the amount of load loss, a network-based sectionalization 

is brought into this study, and line power flow constraints are added to the physical constraints as follows: 

tlPLPL llt  ,,max,  (5) 

tjilxPL ljtitlt  ),,(~,/)(   (6) 

0ref  (7) 

Sectionalization is the assignment of grid’s buses to sections. The number of sections assumed to be given is equal to 

the number of BS generation units [4]. Here, the assignment is performed according to the restoration time of a bus 

by a BS unit. Therefore, an initial restoration time matrix NGNB
o
ig

o t  ][T is determined. Each element of this matrix

)( o
igt  includes: (i) all inevitable delays between bus i and BS unit g that is considered to be given [4] and (ii) load pick 

up times of BS unit g. By this definition, the main sectionalization constraints is the assignment constraint (8) [4]. The 

following two constraints guarantee the assignment of each bus to exactly one section (9) and prevent any empty 

section (10). 

gisMstT igig
o
igig  ,,0)1(  (8) 

isNG
g ig   ,11  (9) 

gsNB
i ig   ,11  (10) 

To push the model to form interconnected sections, another constraint is required which implies assignment of a bus 

to a section only when it has at least one connection within that section (11) [12]. 

giass NB
j ijigig    ,,1  (11) 

The line state constraint set (12) is determining the dis-joint transmission line which are found upon the selected 

sectionalization pattern.  

),(~,1 jilssU NG
g jgigl     (12) 

This constraint set is nonlinear which makes the model complicated. In order to solve the model at lower complexity, 

a decomposition can be conducted to first find the sectionalization solution in a model without network consideration. 

Afterwards, the optimal power flow could be found in a second model. Therefore, the line state constraints would be 

extracted from the model to be calculated offline before solving the second model. 

 

As a result, the first level model minimizes the total load shedding at each section and the restoration time (13). 

Constraints (1)-(3), (8)-(11) restrict the solution area at this level. The first model is upper level or “network 

sectionalization” model. 

     


NB

i

NG

g
igi

NT

t

NG

g
gt

sPTLS
TLSVOLL

1 11 1,,,
min   (13) 

    
ND
d

Load
dd

NT
t

ND
d dt

PLPTLS
TSLVOLL 11 1

,,,

~
min   (14) 

The second level is the lower level or “electrical loads energizing” that minimizes the load shedding of each load bus 

as well as restoration time (14) and is subjected to constraints (1)-(3) and (5)-(7). In order to find the load pick up time 

and also reflect it on restoration time of each load bus, the following constraint set is added: 

tdSLMT dtt
Load

dt  ,,
~

  (15) 

The load balance constraint in the second level model is shown by equation (16) that provides the load balance on 

each bus while the load balance constraint of the first level (4) was on each section. 
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tiDKDSLKDPLKLPKG ND
d dtid

ND
d dtid

NL
l ltil

NG
g gtig   ,,

~~
1111  (16) 

Another objective of the proposed model in the both upper and lower level models is cost of generation (17). 

Minimization of power generation cost besides load shedding, motivates the model to find a solution at lower cost.  

  
NT
t

NG
g gtg Pc1 1  (17) 

In general, there are some different approaches to deal with a bi-level model such as iterative optimization algorithm 

(IOA) and MPEC. However, according to the literature [12] MPEC can find better solution for power grid restoration 

model than IOA if its complexity get reduced to be solved faster. In order to present the equivalent MPEC of the 

restoration model, the second level model can be rewritten to minimize Cx while x  is a matrix of all variables. All the 

inequality constraint sets of this model, (1)-(3), (5), and (15) can be rewritten in the form of bAx  and the equalities, 

(6), (7), and (16) can be drafted as fE x . As a result, the KKT condition of this model would be as presented in (18), 

where μ  is the dual variable regarding the inequality constraint and υ  is dual variable of equality constraint. 

0EυAμC  TT
 (18a) 

0Axbμ  )(T
 (18b) 

fEx   (18c) 

0μ   (18d) 

The MPEC model objective is the same as the upper level objective (13) subjected to the upper level constraints and 

the lower level KKT conditions (18). Hence, the MPEC solution ensures the optimality of the lower level model as 

well as the upper level model. To reduce the complexity of MPEC model, the non-linear complementary slackness 

condition (18b) is replaced by the following linear constraints, where z  is a binary vector, and M and M are two 

parameters with a large enough value to relax respected constraints according to the value of auxiliary variable z [13].  

MzAxb  T  (19) 

Mzμ  )1(  (20) 

3. Solution Methodology 
The objectives of the proposed model include load shedding, restoration time, and cost of generation. There may be 

conflicts between these two terms such as decreasing load shedding which can enhance cost of generation and vice 

versa. Furthermore, these three terms can have different scales. In this order, pre-emptive goal programming (PEP) 

could find an optimal point which guarantees the optimality of all terms at the same time.  

 

To solve the proposed MPEC model with PEP, the model is solved to optimize the first priority term in the feasible 

area of the model. For the next term, a new variable (1) is added to the second priority term to keep the optimality of 

the first term. A new constraint (21) is also introduced to support the first term optimality. The same steps is required 

to consider the term with the lowest priority [11]. In this study, due to the terms’ criticality, one can decide load 

shedding as the first, then restoration time, and finally cost of generation.  

1
1 1

1*,

1 1
       

NT

t

NG

g
gt

NT

t

NG

g
gt LSVOLLLSVOLL  (21) 

 

4. Numerical Examples 
This section examines the performance of the proposed multi-objective MPEC model by two case studies: 6-bus IEEE 

test system as a small scale case and 118-bus IEEE test system which is a large scale case [14]. Both of these 

experiments are implemented using CPLEX 12.3.0.0 under GAMS 24.4.5 on a PC with Intel Xeon 2.53GHz, 12-core, 

and 128GB of RAM. It is assumed that the post-disturbance states of cases are given based on a predicted extreme 

weather and the given fragility of transmission lines which gives a set of probably failed lines. Also, the model is 

supposed to find the best switching pattern in order to sectionalize these networks and perform an emergency 

restoration for each of them. The 6-bus test system is given with two BS units on bus 1 and 6. The BS units’ properties 

are presented at Table 1. The transmission line data and the load demands are as defined in IEEE standard test systems. 
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The loads on bus 3 and 4 are assumed to be critical loads. Noted that in a real case the criticality of loads are given by 

the power grid owner or the decision maker. 

Table 1: 6-bus IEEE test system BS units 

Unit # Bus # Min (MW) Max (MW) Ramp up/down (MW/h) 

1 1 100 220 55 

2 6 10 100 50 

 

The model solution gives the 6-bus sectionalized grid as presented in Fig. 1. In the optimal sectionalization, BS unit 

1 provides the demand on bus 4 and BS unit 2 provides the demands on buses 3 and 5. BS unit 1 and line 1-4 both 

have nearly enough capacity to satisfy bus 4’s demand, except at pick load hours which caused 0.03% load shedding 

in this section. BS unit 2’s maximum power generation limits the demand’s satisfaction on section 2 to 100 MW, 

therefore, 62% load is lost while the critical load on bus 3 is 100% provided. 

 

             

 

 

 

 

Figure 1: 6-bus IEEE test system before/ after sectionalization and 118-bus IEEE test system after sectionalization 

          

Figure 2 illustrates the hourly critical demands as well as the total demands versus the served load in the optimal 6-

bus sectionalized grid. Although there is some distance between the total demands and the served load curves, all 

critical loads in this case has been provided by the proposed emergency restoration as fast as 7.55 hrs. Line availability 

also represents the robustness of the sectionalized grid that is equal to 57% in small scale case [15]. 

 

                  

Figure 2: 6-bus IEEE test system’s load satisfaction 



Abbasi, Barati, and Lim 

The 118-bus case study is assumed to have five fast-response BS units on buses 12, 25, 49, 66, and 100 with same 

power generation capacity of 2000 MW. The results of both cases have been summarized in Table 2 which shows 

fully restoration of critical loads within 9.16 hours in 118-bus case study while there is 26% load shedding in total 

loads. The resulted grid depicted by Fig. 1 is a robust and well-connected network in the view of fact that 75% of 

transmission lines are available after sectionalization [15]. The CPU time of both cases, 1.25 and 11.232 seconds, 

shows the efficiency of the model. 

Table 2: Post-restoration results of small and large scale case studies 

 
Load shedding % Critical load 

 restoration time (h) 
Line availability % CPU time 

Critical load Total load 

Small scale case 0.02% 37% 7.55 57% 0:00:01.250 

Large scale case 0.00% 26% 9.16 75% 0:00:11.232  

 

5. Conclusion 
A linear MPEC model is proposed for a power system restoration. The restoration is performed by a network-based 

sectionalization. The proposed model is a multi-objective model to minimize the load shedding as well as the 

restoration time. The simulation results confirm the efficiency of the model for both small and large scale case studies. 

Rather than the computation time, the sectionalization results in 100% restoration of critical loads in both cases. Both 

small and large scale case studies are restored in 7.55 and 9.16 hours, respectively, which are low enough following 

an extreme blackout. The model is open to consider the uncertainty of a system’s state following a disruption as a 

future work. 
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