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Fast and Robust Techniques for the Euclidean p-Median Problem

with Uniform Weights

G. J. Lim∗ J. Reese† A. Holder‡

May 19, 2008

Abstract

We discuss new solution techniques for the p-median problem, with the goal being to improve

the solution time and quality of current techniques. In particular, we hybridize the discrete Lloyd

algorithm and the vertex substitution heuristic. We also compare three starting point techniques and

present a new solution method that provides consistently good results when appropriately initialized.

Keywords: p-median, facility location, Lloyd Algorithm, vector quantization, vertex substitution

1 Introduction

The well studied p-median problem has applications in operations research, facility location, machine
learning and graph theory [1, 8, 11, 12]. Hakimi developed the problem in the 1960s by generalizing his
concept of the absolute median [4], which is a point on a network minimizing the sum of the weighted
distances between that point and the vertices. Although such a point could lie anywhere (continuously)
along the graph’s edges, including vertices, Hakimi proved that there was always an optimal vertex
solution [5]. This result established a discrete representation of the original continuous problem. Hakimi
generalized the question to that of finding p medians, where the objective remained to minimize the
sum of the weighted distances between the vertices and their nearest median [5]. Again, these medians
could have been located anywhere along the edges of the graph, including vertices, but as in the case
of the absolute median, a solution of p vertices was shown to exist. Hakimi developed these concepts
to optimally locate switching centers in a communications network. Since his initial work, the p-median
problem has been an integral part of location theory, becoming one of the most common models.

The p-median problem is NP-hard for general p but is polynomial if p is fixed [2, 8]. Because the
integer programming formulation is computationally intractable on large problems, much of the literature
focuses on (meta-)heuristics, which are cataloged in [12]. We concentrate on vertex substitution (VS),
which is a well-studied p-median heuristic, and the discrete Lloyd algorithm (DLA), which is a discrete
version of Lloyd’s algorithm to design a vector quantizer [7, 9]. VS was introduced by Teitz and Bart [16]
and works by iteratively swapping solution with non-solution vertices. VS is robust in terms of solution
quality and requires less computation than integer programming approaches. DLA was first applied to
the p-median problem in [7]. The technique converges rapidly, but as is often the case with heuristics,
the speed often comes at the cost of solution quality. We form new hybrid techniques that combine
VS and DLA that provide quality solutions in a timely fashion. Solutions from all methods depend on
initialization, and we discuss three initialization schemes: Random-start, Greedy-start, and Multi-start.

The paper is organized as follows. Section 2 provides a mathematical description of the p-median
problem, and Section 3 presents our solution techniques. Section 4 presents numerical results, and
concluding thoughts are in Section 5.
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‡Department of Mathematics, Trinity University
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2 Problem Description

Let (V, E) be a connected, undirected network with vertex set V = {v1, . . . , vn} and nonnegative vertex
and edge weights wi and lij , respectively. Further let γ(vi, vj) be the length (distance) of the shortest path
between vertices vi and vj with respect to the edge weights and d(vi, vj) = wiγ(vi, vj) be the weighted
length (distance) of the corresponding shortest path. Notice d is not a metric since wi is not necessarily
wj . This notation is extended so that for any set of vertices X , we have γ(vi, X) = min{γ(vi, x) : x ∈ X}
and d(vi, X) = min{d(vi, x) : x ∈ X}. With this notation, the p-median problem is

min

{

∑

vi∈V

d(vi, X) : X ⊆ V, |X | = p

}

. (1)

Hakimi’s original work used a broader definition of d so that a solution could contain vertices and/or
points along edges, but one of his main results showed that there was always a solution comprised of
vertices. Most solution techniques exploit this fact and restrict the search to vertex solutions, a standard
we uphold.

The p-median problem is commonly stated as a binary optimization problem, originally found in [14].
Allowing

ξij =

{

1 if vertex vi is allocated to vertex vj

0 otherwise,

a binary formulation is

min
∑

ij

d(vi, vj)ξij

subject to
∑

j

ξij = 1, for i = 1, . . . , n,
∑

j

ξjj = p,

ξjj ≥ ξij , for i, j = 1, . . . , n, i 6= j,
ξij ∈ {0, 1}.

(2)

A lower bound is available by relaxing the binary constraint with 0 ≤ ξij ≤ 1. This relaxation is often
exact since it commonly solves with a binary solution [15].

3 Solution Techniques

In this section we succinctly present the algorithms and starting point methods that we consider. The
initial discussion focuses on the established heuristics of VS and DLA, which are then combined into
hybrid techniques.

3.1 Vertex Substitution

There are numerous variations of vertex substitution, most being slight modifications of the original Teitz
and Bart procedure [16]. We consider implementations based on the work of Resende and Werneck [13],
which are based on the ideas of Hansen and Mladenović [6] and Whitaker [17]. The difference in the
techniques lies with how many comparisons are made before updating the collection of medians. Whitaker
used a first profit strategy, meaning that the first profitable (improving) swap was performed. Hansen and
Mladenović instead used a best profit strategy (as did the original Teitz and Bart algorithm), meaning
that all possible swaps were evaluated and the best was performed.

Let S be a candidate set of medians and N = V\S be the remaining vertices. We order S × N and
calculate for any pair (vr, vi) the gain associated with inserting vi into S, creating a p + 1 candidate set
of medians, and the respective loss of removing vr from S ∪ {vi}. Allowing I to be {v ∈ V : γ(v,S) =
γ(v, vr)}, we have that the profit is the difference between this gain and loss,

p(vr, vi) =
∑

v∈V

max {0, d(v,S) − d(v, vi)} −
∑

v∈I

(d(v,S ∪ {vi})− d(v, vr)) .

2



We investigate implementations using either a first or best profit swap. In the former we iterate through
S ×N until p(vr, vi) is positive, at which time we insert vi into the candidate set of medians and remove
vr. In the later, we find a pair (vr , vi) that maximizes p and preform the swap with this pair. The worst
case complexity for both implementations is O(n2). Pseudocode for the best profit implementation is
presented in Algorithm 1. The differences for the first profit implementation are that in step 5 we would
not investigate all pairs (vr , vi) to find the maximum but rather would stop once p(vr, vi) is positive, and
in step 7, (v∗

r , v∗r ) would be this pair. The subscript q on S indicates the iteration of the algorithm.

Algorithm 1 Pseudocode for Resende and Werneck’s implementation of vertex substitution

1: procedure VertexSubstitution(S0)
2: q ← 1
3: Sq ← S0

4: repeat

5: p∗q ← max{p(vr, vi) : vr ∈ Sq , vi 6∈ Sq}
6: if p∗q > 0 then

7: Sq+1 ← (Sq ∪ {v∗i })\{v
∗
r}, where (v∗

r , v∗i ) is a solution to 5
8: q ← q + 1
9: end if

10: until p∗q ≤ 0
11: end procedure

3.2 Discrete Lloyd Algorithm

DLA [7] is a modified version of the Lloyd algorithm, which is a heuristic addressing the optimal design
of a vector quantizer [9]. Vector quantization is a continuous problem in R

k, and we point readers to [3]
for further information. DLA is instead applied to the discrete case of at most a countable number of
vectors from R

k. Assuming the common Euclidean metric, the authors of [7] showed that DLA applied
to the complete graph of a discrete collection of vectors produces the same iterates as the Maranzana
heuristic [10] for the p-median problem, provided that lij = ‖vi − vj‖2 and wi = 1. Thus the original
Lloyd algorithm, which was intended to design an optimal quantizer, had a natural interpretation as a
heuristic to the p-median problem as long as the graph embedded in R

k and the vertex weights were equal.
Moreover, DLA uses the special Euclidean properties to achieve rapid convergence, which follows because
DLA replaces a O(n2) calculation in the Maranzana algorithm with a O(n) process that projects a center-
of-mass. Starting with an initial collection of possible medians S, DLA iterates between partitioning the
vertices into nearest neighbor cells, defined for i = 1, 2, . . . , p to be

Vi = {v ∈ V : γ(v, vi) ≤ γ(v, vk), ∀ vk ∈ S}, (3)

and forming a new candidate set of medians by projecting the center of mass of each Vi onto a nearest
element in V, denoted by µi. A vertex v with the property that |{vk : γ(v, vk) = γ(v,S)}| > 1 is assigned
to Vi with the lowest index. Pseudocode is found in Algorithm 2, where again q indicates the iteration
of the algorithm.

The strength of DLA is that its worst case complexity is O(pn), and since we commonly have p << n,
the iteration count is nearly linear. The drawback is that the solution quality is sensitive to initialization
and is often poor. DLA was used in [7] to initialize the best profit vertex substitution algorithm, but
this technique proved ineffective. Indeed, with this initialization technique DLA underperformed random
starts when comparing the final objective value in over 70% of the experiments.

3.3 Hybrid Approaches

VS and DLA update the candidate set of medians differently. Notice that VS searches S ×N to make a
single swap, and hence, VS changes a single candidate median per iteration. In contrast, DLA can change
all candidate medians per iteration, something it accomplishes with reduced complexity. However, DLA

3



Algorithm 2 Structure of the original discrete Lloyd algorithm

1: procedure discreteLloydAlgorithm(S0)
2: q ← 1
3: Sq ← S0

4: repeat

5: Calculate V(i,q), ∀i
6: Sq+1 ← {µ(i,q) : i = 1, 2, . . . , p}
7: q ← q + 1
8: until Sq = Sq+1

9: end procedure

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

6.1

6.2

6.3

6.4

6.5

6.6

6.7
x 10

4

Case Number

O
bj

ec
tiv

e 
V

al
ue

Figure 1: The objective value of VS with best
profit swap versus all possible

(

50
3

)

initiations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

4

Case Number

O
bj

ec
tiv

e 
V

al
ue

Figure 2: The objective value of DLA verses all
possible

(

50
3

)

initiations.

is more sensitive to its initialization than is VS, with DLA often returning poor quality solutions when
compared to VS. As an example, we considered the 3-median problem on a uniformly distributed, 50
node network in [0, 10]× [0, 10] with wi = 1, ∀i. We initiated both VS, with best profit swap, and DLA
with each of the

(

50
3

)

possible 3 element subsets. The global optimal solution of the problem was obtained
by solving (2) to verify optimality. Figures 1 and 2 depict how the terminal objective value adjusts to
the different initiations. Notice that VS terminated with only 6 different objective values, all of which
were within 8.1% of the global optimum. Compared to DLA, which instead terminated with 105 different
solutions within 70% of the global optimum, we see that VS more consistently returned quality solutions.
Note that 98% of the DLA solutions are within 20% of the optimality. Figure 3 has another depiction of
the frequency with which the techniques terminated with a certain value. In terms of quality, VS would
be preferred to DLA, but this quality comes with the cost of increased computational time. Indeed, the
average completion time for VS with best profit swap was about 100 times that of the average completion
time for DLA.

What should not be overlooked is that just because DLA is more sensitive to initialization does not
mean that it rarely returns quality solutions, and in fact, DLA found the global optimum with 8% of
the initializations and was within the same range of VS 45.3% of the time. This begs the question of
whether or not it might be possible to use the search iterations of VS to seed the expedient steps of
DLA to improve the probability of DLA finding a quality solution, or vice versa. It is this question that
supports the investigation into hybrid techniques that alternate between VS and DLA, and our numerical
experiments show that such methods are capable of finding a quality solution faster than VS alone.

3.4 Geometric Stability of DLA

Before discussing the numerical results, it is natural to ask why DLA frequently terminates with a poor
quality solution. The answer to this question is that DLA is somewhat geometrically stable, a fact
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Figure 3: Comparison of terminal objective value for VS with best profit search and DLA.

highlighted by the following calculation. Consider the one dimensional problem where n nodes are i.i.d
with respect to the uniform distribution on [a, b]. Let

S0 =

{

vi =

(

a +
b− a

2p

)

+

(

b− a

p

)

i : i = 1, 2, . . . p

}

be the initial collection of candidate medians and further let q0 = a, qp = b and qi = (vi + vi+1)/2, for
i = 1, 2, . . . , p− 1. With this notation, the cells in (3) are

Vi = V ∩ [qi−1, qi).

The new medians are found by projecting the center of mass of each of these cells onto V, but if we ignore
this projection and instead recalculate the cells with the centroids themselves, then the expected update
to the boundary point qi is

∣

∣

∣

∣

∣

qi −
1

2

(∫ qi+1

qi

xdx
∫ qi+1

qi

dx
+

∫ qi

qi−1
xdx

∫ qi

qi−1
dx

)∣

∣

∣

∣

∣

= 0, (4)

where i = 1, 2, . . . , p−1. This calculation does not perfectly align with DLA since it ignores the projection.
However, although the boundary elements qi, for i = 1, 2, . . . , p−1, would be adjusted by this projection,
the cells themselves may not since they only include the vertices within [qi−1, qi). What (4) highlights
is that if the distance between the centroids and their projections is small, then we don’t expect much,
if any, change from one iteration to the next. The geometric interpretation is that if the centroids are
close to their projections, then only those vertices near a cell’s border are likely to switch to another
cell; if any switch at all. This discussion relates to the underlying Voronoi diagram associated with the
centroids and essentially states that these diagrams stabilize quickly as DLA moves from one iteration
to another. From this geometric perspective, we interpret DLA as a search in which the most significant
adjustments occur in the first few iterations when the centroids may not be close to their projections.
Figure 4 compares convergence speed between VS and DLA based on a problem instance with 500 nodes
and p = 5. Both methods are initialized with a random starting point. As expected, DLA converges

5



0 20 40 60 80
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Time (sec)

O
bj

ec
tiv

e 
V

al
ue

(A)

0 0.02 0.04 0.06 0.08
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Time (sec)

(B)

VS Iterations VS

DLA Iterations

4

1

2

3
9

DLA 

1

2

Figure 4: Convergence of DLA and VS for a problem instance with |N | = 500, p = 5, and a random
starting point.

to a local solution quickly, with most of the improvements being made in the first two iterations, see
Figure 4(B). Alternatively, VS converges slower to a solution with a better objective value: 1,783 for VS
and 1,839 for DLA, see Figure 4(A).

Unlike DLA, VS considers all possible swaps (in the best profit case) or depends on the ordering of
S ×N (in the first profit case), but in either situation, the updated collection of medians is not limited
by the geometric stability of DLA. The cost to remove this limitation is that we have to possibly search
the entirety of S ×N , something DLA forgoes. The hope in alternating between VS and DLA is to use
the more computationally expensive search of VS to get geometrically “close” to a quality solution and
then use DLA to quickly identify it. We continue the iteration consisting of M steps of VS in either first
or best profit mode followed by N steps of DLA. Numerical results are presented in the next section.

4 Computational Comparisons

The purpose of this section is to compare performance (both solution speed and quality) between VS,
DLA, and the hybrids of the previous section. We begin by discussing how the techniques were initialized.

4.1 Initialization Techniques

Figures 1 and 2 demonstrate that both DLA and VS depend on how they are initialized, and part of our
numerical work is to explore different initialization schemes. We compare three starting-point techniques.

1. Random-start. This method calculates a random p-element subset of V and uses it as the initial set
of candidate medians.

2. Greedy-start. This method calculates for each vertex the number of vertices within a radius r, and
the vertex with the most vertices is added to the initial collection of candidate medians (ties are
decided by lowest index). Vertices within a slightly smaller neighborhood of the selected vertex are
removed from the selection process, and the process repeats until the pool is empty or an initial set
is constructed. If the pool becomes empty before identifying p candidate medians, then vertices are
added at random until completion.

6



Data Type Node Size Algorithm Starting Point
Unclustered 250 DLA Random-start
Clustered-R 500 VS Greedy-start
Clustered-p 1000 DLA-FP Multi-start

DLA-BP

Table 1: Combinations of Experiments

3. Multi-start. We use the expediency of DLA together with a multi-start technique to calculate
candidate medians. This method initializes DLA with several randomly generated collections of
candidate medians, each of which leads to a terminal collection after DLA ends. The terminal
collection with the lowest objective is selected. This method is embarrassingly parallel, and would
reduce time in a parallel environment.

The multi-start method is viewed as both a solution heuristic and as an initialization scheme for VS and
the hybrids. This differs from how DLA initialized VS in [7], which started DLA with a single, random
collection of medians. Again, the insight is that although DLA often gives poor solutions, it also regularly
gives quality solutions, and since it is computationally inexpensive, it makes sense to spend a bit of time
to search for an improved collection of candidate medians to seed another technique.

4.2 Design of Experiments

Although the general hybrid discussed in Section 3.3 layers an arbitrary number of DLA iterations with
an arbitrary number of VS iterations, our experience indicates that representative results are typical
with a few VS steps followed by a complete DLA heuristic, meaning that DLA runs until the median set
stabilizes. The reason for completing DLA is that it typically takes only a few iterations to converge,
and in fact, our numerical work shows that DLA typically converges in (0.0015n+5.738) steps. Multiple
steps of VS are needed since each iteration changes a single node, and hence, to sufficiently alter the
candidate medians we use more than a single step of VS before returning to DLA. We consider these four
heuristics in our numerical comparisons.

DLA The discrete Lloyd algorithm.

VS Vertex substitution with best profit swap.

DLA-FP A hybrid with a complete DLA sequence and 3 iterations of VS with first profit swaps.

DLA-BP A hybrid with a complete DLA sequence and 2 iterations of VS with best profit swaps.

Each initialization scheme was paired with each heuristic, except that multi-start was not used to initialize
DLA since multi-start is DLA with multiple random starts.

Table 1 shows the combinations of our experiments. The numerical comparisons were conducted on
90 random, 2-dimensional networks in [0, 10]× [0, 10], for which n was 250, 500 and 1000 and p = 5. The
vertices for the first 30 graphs, referenced as Unclustered, were distributed uniformly over [0, 10]× [0, 10],
whereas the vertices for the second 30, referenced by Clustered-R, were clustered by aggregating normal
distributions, see Figures 5 and 6. Note that the number of clusters in the clustered data is determined
randomly and is not necessarily the same as p. We added a third category of 30 graphs called Clustered-p

that assumes R = p.
The heuristics and initialization methods were implemented in MATLAB 7.0. The radius for Greedy-

start was r =
√

pM/2π, where M was the largest vertex coordinate. This value is based on the hypothesis
that we want to roughly divide the space defined by the data into equally sized circles. The value of the
removal radius was (0.8)r, a value that gave increased stability over r itself. The number of p-element,
random samples for the multi-start technique was investigated. Figure 7 shows that the average objective
value decreases as the number of samples increases, which is not surprising. We decided to use 0.05n as
the number of random initializations, a value that consistently provided quality and efficiency. Stability
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250

LP Obj: 853.68 DLA DLA-FP DLA-BP VS

LP Time: 13.10 Time Obj Time Obj Time Obj Time Obj

Random-start 0.03 920.82 1.46 907.04 9.29 864.48 14.62 869.65

Greedy-start 0.02 894.50 1.40 894.50 9.41 858.50 13.37 867.51

Multi-start 0.39 859.77 2.07 859.56 5.87 855.55 5.84 856.66

500

LP Obj: 1710.50 DLA DLA-FP DLA-BP VS

LP Time: 148.67 Time Obj Time Obj Time Obj Time Obj

Random-start 0.07 1789.87 4.43 1777.46 39.78 1736.69 52.76 1731.48

Greedy-start 0.04 1773.35 4.41 1773.35 28.76 1736.17 48.23 1733.53

Multi-start 1.46 1717.73 5.79 1717.07 14.74 1713.28 16.34 1714.64

1000

LP Obj: 3455.11 DLA DLA-FP DLA-BP VS

LP Time: 2173.13 Time Obj Time Obj Time Obj Time Obj

Random-start 0.15 3552.21 15.70 3569.39 143.72 3482.04 201.19 3498.22

Greedy-start 0.09 3557.68 17.13 3556.81 165.05 3483.16 202.59 3492.25

Multi-start 7.83 3459.77 22.11 3459.52 63.87 3457.43 63.30 3457.33

Table 2: Average values on 30 Unclustered data sets, for n = 250, 500, 1000, p = 5

of the candidate set of medians was used as the termination criteria, where this check was only performed
after the VS iterations in DLA-FP and DLA-BP.

Recall that the relaxation of (2) is often exact [15], but even if it is not, it provides a lower bound
on the objective. We found that we could solve this relaxation in reasonable time with CPLEX 10.0
for our problems. For each heuristic and initialization scheme, the average objective value was no worse
than 1.5% of the relaxed optimal value. This is somewhat surprising with regards to randomly initialized
DLA since Figure 2 indicates that DLA often leads to significant duality gaps. However, the end result
is that DLA counters its poor solutions with quality solutions, and that on average, the quality solutions
outnumber the poor solutions.

4.3 Numerical Results

Tables 2, 3 and 4 display our numerical results for Unclustered, Clustered-R and Clustered-p, respectively,
where each value is the average over the 30 respective problems. Figure 12 shows the average time of
each solution technique initialized with multi-start. Likewise, Figure 13 shows the ratio of the average
heuristic objective value to the average LP relaxation objective value, again each solution technique was
initialized with multi-start.

The results show a clear indication that DLA outperforms the other heuristics with regards to speed
(see Figures 8, 10, 14, 16, 20 and 22). Both hybrids (DLA-FP and DLA-BP) run faster than VS in all
tests. The solution quality of DLA with Random-start or Greedy-start is not as consistent as DLA with
Multi-start as evidenced by Figures 9, 11, 15, 17, 21, and 23. Note that DLA-BP often performs better
than VS in both computational time and solution quality. The speed of DLA-FP is attractive, but its

8



250

LP Obj: 447.69 DLA DLA-FP DLA-BP VS

LP Time: 9.37 Time Obj Time Obj Time Obj Time Obj

Random-start 0.03 549.36 1.79 494.20 7.23 460.44 12.80 459.51

Greedy-start 0.03 538.91 1.51 498.04 5.58 460.18 15.34 458.22

Multi-start 0.41 449.76 1.73 449.76 4.48 449.38 4.71 449.38

500

LP Obj: 1149.43 DLA DLA-FP DLA-BP VS

LP Time: 99.62 Time Obj Time Obj Time Obj Time Obj

Random-start 0.10 1248.30 5.64 1243.61 24.11 1165.71 52.06 1174.03

Greedy-start 0.04 1248.30 4.97 1266.12 27.04 1172.48 53.10 1169.53

Multi-start 1.49 1152.58 7.56 1151.26 16.00 1149.96 17.78 1151.35

1000

LP Obj: 2496.81 DLA DLA-FP DLA-BP VS

LP Time: 1381.28 Time Obj Time Obj Time Obj Time Obj

Random-start 0.20 2596.92 18.22 2591.73 130.65 2550.47 241.66 2525.87

Greedy-start 0.17 2592.65 16.48 2592.47 140.31 2508.13 234.39 2511.61

Multi-start 7.84 2498.35 24.00 2498.35 54.18 2498.35 65.64 2497.77

Table 3: Average values on 30 Clustered-R data sets, for n = 250, 500, 1000, p = 5

250

LP Obj: 122.0 DLA DLA-FP DLA-BP VS

LP Time: 4.39 Time Obj Time Obj Time Obj Time Obj

Random-start 0.02 277.80 2.40 129.45 4.02 122.00 10.58 122.00

Greedy-start 0.02 185.38 1.83 128.52 2.99 122.00 10.67 122.00

Multi-start 0.31 122.00 1.59 122.00 1.94 122.00 3.24 122.00

500

LP Obj: 248.52 DLA DLA-FP DLA-BP VS

LP Time: 45.62 Time Obj Time Obj Time Obj Time Obj

Random-start 0.13 444.71 7.89 283.78 13.15 248.52 36.08 248.52

Greedy-start 0.07 347.43 6.69 258.71 9.62 248.52 39.35 248.52

Multi-start 1.62 248.52 5.51 248.52 6.13 248.52 11.17 248.52

1000

LP Obj: 497.79 DLA DLA-FP DLA-BP VS

LP Time: 445.97 Time Obj Time Obj Time Obj Time Obj

Random-start 0.12 897.32 30.57 561.68 42.67 497.79 135.37 497.79

Greedy-start 0.11 843.75 22.94 562.42 37.73 497.79 143.45 497.79

Multi-start 4.67 497.79 25.08 497.79 22.84 497.79 41.95 497.79

Table 4: Average values on 30 Clustered-p data sets, for n = 250, 500, 1000, p = 5
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Figure 7: Box plot of objective values resulting multi-start with different number of samples
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Figure 8: Average time with Random-start

plotted against problem size for Unclustered

data
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Figure 9: Relative duality gap for the relaxed
LP with Random-start plotted against problem
size for Unclustered data
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Figure 10: Average time with Greedy-start plot-
ted against problem size for Unclustered data
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Figure 11: Relative duality gap for the relaxed
LP with Greedy-start plotted against problem
size for Unclustered data
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Figure 12: Average time with Multi-start plot-
ted against problem size for Unclustered data
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Figure 13: Relative duality gap for the relaxed
LP with Multi-start plotted against problem
size for Unclustered data
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Figure 14: Average time with Random-start

plotted against problem size for Clustered-R

data
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Figure 15: Relative duality gap for the relaxed
LP with Random-start plotted against problem
size for Clustered-R data
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Figure 16: Average time with Greedy-start plot-
ted against problem size for Clustered-R data
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Figure 17: Relative duality gap for the relaxed
LP with Greedy-start plotted against problem
size for Clustered-R data
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Figure 18: Average time with Multi-start plot-
ted against problem size for Clustered-R data
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Figure 19: Relative duality gap for the relaxed
LP with Mutli-start plotted against problem
size for Clustered-R data
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Figure 20: Average time with Random-start

plotted against problem size for Clustered-p

data
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Figure 21: Relative duality gap for the relaxed
LP with Random-start plotted against problem
size for Clustered-p data
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Figure 22: Average time with Greedy-start plot-
ted against problem size for Clustered-p data
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Figure 23: Relative duality gap for the relaxed
LP with Greedy-start plotted against problem
size for Clustered-p data
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Figure 24: Average time with Multi-start plot-
ted against problem size for Clustered-p data
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Figure 25: Relative duality gap for the relaxed
LP with Multi-start plotted against problem
size for Clustered-p data
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solution quality is below that of DLA-BP and VS. The highlight of the numerical work is that Multi-

start significantly outperformed both Random-start and Greedy-start with regards to solution quality in
all tests. All four algorithms converged to solutions within a 0.7% dual gap, which is almost globally
optimal for all three cluster types. Multi-start shines when the data is already clustered. For Clustered-p,
all four algorithms converged to global optimality when initialized with Multi-start (see Figure 25).

5 Conclusion

We investigated hybrid solution methods for the p-Median problem that combine elements of DLA and
VS. These methods perform well when initialized with Multi-start, delivering superior solution quality in
an efficient manner. Our experiments show the new hybrids outperform best profit vertex substitution,
which is widely regarded as one of the most robust solution techniques. The overriding trend is that the
DLA with Multi-start provides a robust and efficient solution heuristic. A direction of future research is
to use the speed of DLA to address stochastic variants that require numerous solves to evaluate scenarios.
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