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Abstract

A critical component in the public health response to pandemics is the ability to determine

the spread of diseases via diagnostic testing kits. Currently, diagnostic testing kits, treatments,

and vaccines for the COVID-19 pandemic have been developed and are being distributed to

communities worldwide, but the spread of the disease persists. In conjunction, a strong level

of social distancing has been established as one of the most basic and reliable ways to mitigate

disease spread. If home testing kits are safely and quickly delivered to a patient, this has the

potential to significantly reduce human contact and reduce disease spread before, during, and

after diagnosis. This paper proposes a diagnostic testing kit delivery scheduling approach using

the Mothership and Drone Routing Problem (MDRP) with one truck and multiple drones. Due

to the complexity of solving the MDRP, the problem is decomposed into 1) truck scheduling

to carry the drones and 2) drone scheduling for actual delivery. The truck schedule (TS) is

optimized first to minimize the total travel distance to cover patients. Then, the drone flight

schedule is optimized to minimize the total delivery time. These two steps are repeated until

it reaches a solution minimizing the total delivery time for all patients. Heuristic algorithms

are developed to further improve the computational time of the proposed model. Experiments

are made to show the benefits of the proposed approach compared to the commonly performed

face-to-face diagnosis via the drive-through testing sites. The proposed solution method signifi-

cantly reduced the computation time for solving the optimization model (less than 50 minutes)

compared to the exact solution method that took more than 10 hours to reach a 20% optimality

gap. A modified basic reproduction rate (i.e., mR0) is used to compare the performance of

the drone-based testing kit delivery method to the face-to-face diagnostic method in reducing

disease spread. The results show that our proposed method (mR0=0.002) outperformed the

face-to-face diagnostic method (mR0=0.0153) by reducing mR0 by 7.5 times.

Keywords: Pandemic response, COVID-19, Testing kit delivery, Social distancing, Drone-

truck scheduling, Mothership and Drone Routing Problem

1 Introduction

Currently, while the world’s largest pharmaceutical companies are actively developing and distribut-

ing COVID-19 vaccines and treatments, the spread of the pandemic still persists and is entering

its fourth wave [46]. Countries are continuing to establish and maintain various policies to slow

the spread of infection. Health authorities in many countries have set up drive-through testing

sites to cover the enormous demand for diagnostics. The principal diagnostic method to confirm

COVID-19 cases at drive-through testing sites is by a molecular diagnostic kit such as Polymerase

Chain Reaction (PCR). However, there are drawbacks to the approach. The first is the slow pro-

cess to get the diagnostic result back to the patient. In many cases, it can take over 6 hours to

determine the status of the collected sample [27]. Additionally, it typically takes 2 to 5 days for

the patient to receive the result. If a patient with COVID-19 symptoms is not quarantined and

contacts other people during this waiting period, the spread of the virus will not be contained.

Secondly, the PCR testing kit requires a sterile plastic swab to be inserted deep into the nose to

collect sputum as a sample. Since the sample must be handled by someone else, it may also lead to
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personal contact with the possibility of infecting the testing personnel. Accordingly, more advanced

diagnostic methods are desired to help contain infectious diseases.

In November 2020, the Food and Drug Administration (FDA) in the United States approved

a diagnostic testing kit that allows patients to self-test for the COVID-19 at home. In particular,

this testing kit allows patients to take samples by themselves and check the results directly within

30 minutes. However, patients who become aware of suspected COVID-19 symptoms must go to

a hospital or pharmacy to obtain these testing kits, and there is still an opportunity to contact

another non-infected person in the process.

In this study, we propose a strategy to deliver COVID-19 self-testing kits to patients at home

using the Mothership and Drone Routing Problem (MDRP) with one truck and multiple drones.

Hence, potential patients can use at-home testing kits to determine whether they are infected with

COVID-19 while social distancing is assured as much as possible. The primary focus of this study is

to lower the infection rate by avoiding unnecessary personal contacts while testing for COVID-19.

The main contribution of this study is as follows:

• To propose an approach to test COVID-19 using the Mothership and Drone Routing Problem

(MDRP) that can help mitigate the possibility of human contact that may occur during the

diagnosis process. This has the potential to suppress the spread of COVID-19.

• To provide decision-makers with a performance metric for using a truck and drones to de-

liver testing kits to patients during a pandemic: We show that the proposed method has

the possibility of significantly reducing the risk of infection compared to the current testing

methods.

The rest of this paper is organized as follows. Section 2 reviews literature related to this area.

Section 3 describes the problem in detail and presents the mathematical models applied to find a

solution. In Section 4, solution techniques to solve the MDRP (Mothership and Drones Routing

Problem). Section 5 describes an analysis tool for numerically measuring the risk of infection

in the process of each diagnostic method and provides a numerical experiment to illustrate the

effectiveness of the proposed model and numerical results for infection risk. Finally, our research

is summarized in Section 6 including potential extensions of the research.

2 Literature Review

Patients with suspected COVID-19 symptoms need to be tested and can crowds diagnostic locations

such as hospitals and drive-through sites. Despite the elevated disinfection efforts, the risk of

infection can still remain. In the case of MERS (Middle East Respiratory Syndrome) and SARS-

CoV-22, which are viruses of the same family as COVID-19, many cases of infection were reported

in hospitals [42]. For example, 99% (i.e., 185 cases) of the total confirmed cases of MERS in South

Korea in 2015 were infected in hospitals [23]. The data from the International Council of Nurses

(ICN) released in October 2020 estimated that more than four million healthcare workers worldwide

are infected with COVID-19 [2]. Social distancing has been shown to be most effective in reducing

the infection risk. This underscores an urgent need for a new technology for patients to be tested

without joining the crowd of numerous suspected patients. This underscores an urgent need for a

new technology for patients to be tested without joining the crowd of numerous suspected patients.

There have been recent studies on mathematical models for using drones to deliver medical

kits and packages to customers. The drone delivery routing problems can be classified into two

categories (see Figure 1): (1) delivery by both trucks and drones and (2) delivery by drones only.

Delivery by both trucks and drones: The main idea of this problem is to utilize both a truck

and drones to deliver medical testing kits to where the patients live. Optimization models are often

a variant of travelling salesman problem (TSP) or vehicle routing problem (VRP) depending on the

number of trucks to be used in the problem. In TSP with drones (TSP-D), the delivery schedule

is optimized for a combination of one truck and multiple drones[6, 43, 49]. Similarly, the VRP
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Figure 1: The categorization of drone routing problem by [30].

with drones (VRP-D) is to optimize the delivery schedule utilizing multiple trucks and multiple

drones [29, 31, 36, 52]. Common objectives in the literature include minimizing the duration of

operation (i.e., makespan) routing and operation cost, and customers waiting time [26, 35, 51].

Because this class of problem is identified as NP-hard, exact solution techniques are only used to

solve small problems. But, most solution approaches are largely heuristic methods to handle larger

scale problems providing good solutions in a timely manner [30, 34, 36, 38].

Delivery by drones only: This category of problems uses drones only for parcel delivery, and

there are two versions of models in the literature. The first version schedules drone flights to-

and-from a depot [24, 47]. Kim et al. (2017) propose a model in which drones are utilized to

deliver medical kits from fixed locations of ground control centers (GCCs) for patients with chronic

diseases in rural areas. Due to the limited battery capacity of drones, their model suggests using

a larger number of drones from multiple GCCs. Alternatively, the short flight range limitation

from a GCC can be addressed by operating drones from a mobile control center such as a truck.

It can also help ensure social distancing during a pandemic because people can stay at home to

get the testing done. The main idea of the Carrier-Vehicle Problem with Drones (CVP-D) is that

the mobile base (e.g., truck) serves as a mothership that dispatches and collects multiple drones to

perform delivery. Hence, it requires a fleet of cooperating vehicles with complementary functions

that perform autonomous delivery [8, 16, 28, 30]. Table 1 presents the main features of CVP-D

currently found in the literature. In the majority of the works the fleet is composed of one truck

and one or several drones.

Table 1: Summary of the CVP-D contributions in the scientific literature

References Trucks Drones
Objcetive function

(minimize)
Time-

Windows
Drop &
Pickup

Multiple
visits

Savuran and Karakaya (2016) 1 1 number of targets No No Yes
Mathew et al. (2015) 1 1 total distance No No No
Bin Othman et al. (2017) 1 1 total distance No No No
Gambella et al. (2018) 1 1 completion time No No No
Boysen et al. (2018) 1 multiple make span No No No
Dukkanci et al. (2019) multiple multiple operating cost Yes No No
Karak and Abdelghany (2019) 1 multiple operating cost No Yes Yes
Wikarek et al. (2019) multiple multiple total distance No Yes Yes
Bai et al. (2019) 1 1 completion time No No No
Poikonen and Golden (2020a) 1 1 completion time No No No
Poikonen and Golden (2020b) 1 multiple completion time No No Yes
Moeini and Salewski (2019) 1 multiple total distance No No No
Han et al. (2020) multiple multiple truck number Yes No No

Variants of the CVP-D have been proposed for pickup and delivery. For example, Karak and

Abdelghany (2019) proposed a model in which a drone is mounted on a single vehicle to visit more

than one customer to deliver and pick up parcels. Drones can be dispatched and collected multiple

times following the truck path to visit each customer only once. The truck returns to the depot
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after collecting all drones which completed the delivery missions. In another CVP-D variant by

Wikarek et al. (2019), drones can only be launched or retrieved from trucks at predefined mobile

distribution centers where the launch and retrieve locations are allowed to be different. Their

model focused on optimizing drone routing and the location of mobile distribution centers. But,

truck routing was not discussed. Mathew et al. (2015) presented a delivery system in which trucks

carry drones and the delivery is carried entirely by the onboard drones. A drone performs a single

delivery mission to a specific point.

Some researchers proposed drone routing approaches based on a predetermined route of the

carrying truck (Savuran and Karakaya (2016), Bin Othman et al. (2017) and Boysen et al. (2018)).

Typically, a large vehicle is used as a mobile depot for a single drone onboard. Unlike Mathew

et al. (2015), drones are allowed to visit multiple locations. With the goal of visiting as many

locations as possible, Savuran and Karakaya (2016) proposed a genetic algorithm to solve the

model. Bin Othman et al. (2017) allowed drones to take off from an intermediate node and get

picked up by a truck at another location. The problem was modeled as a graph problem and a

polynomial-time approximation algorithm was developed as a solution method. Boysen et al. (2018)

focus on optimizing the schedule of drones for a given truck path. The authors examined three

truck-drone operation policies: same take-off and pick-up location, different locations for takeoff

and pickup of drones, and no restriction on the locations.

Poikonen et al. (2019) consider the problem of optimizing both the truck routes and the drone

paths. They proposed a branch-and-bound algorithm to solve small-size instances, and heuristic

methods such as a greedy algorithm and local search strategies for larger instances. As an extension

to the previous work, Poikonen and Golden (2020b) allowed drones to visit multiple customers in one

flight path, and the energy consumption rate was also considered to account for the limited capacity

of a drone battery. A heuristic approach “path, transform, shortest path” was proposed to solve

the problem. In another extension, Poikonen and Golden (2020a) introduced the “Mothership and

Drone Routing Problem (MDRP)” which considers the routing of a mothership and a drone to visit

several designated locations. Unlike the previous model, the drone is allowed to visit multiple targets

consecutively before returning to the mothership for refueling In the infinite-capacity drone routing

problem (MDRP-IC) setting. They developed an exact branch-and-bound solution approach and

proposed two greedy heuristic approaches to find near-optimal solutions.

Although the existing approaches work well for their respective problems, they do not consider

the important public health concept of “social distancing” as we discuss in this paper. Hence, this

paper builds on the existing literature to solve the problem of delivering medical kits to patients

to minimize human contact within the context of an existing pandemic (i.e., COVID-19).

3 Problem Description and Model Formulation

We propose a medical kit delivery approach, in which a truck carries drones that perform the actual

delivery. The drones are assumed to follow the pre-determined routes within the line of sight of

the pilot. Due to the limited battery capacity of drones, the drone flight range is limited. Hence, a

truck acts as a mobile drone control center and carries the drones onboard to launch and retrieve

them while visiting patients in the designated region. Although it is limited, the truck is capable

of carrying multiple drones so that parallel flights can be performed to cover multiple patients to

speed up the delivery mission. Therefore, our goal is to find a coordinated schedule between the

truck and drones so that the total delivery completion time is minimized. Such a delivery system

is referred to “Mothership and Drones Routing Problem” (MDRP) [39].

Before describing the model formulation, we state few problem-specific assumptions used in this

paper. The maximum drone flight time is not affected by the amount of load to be carried by a

drone. Since most testing kits are lightweight, the payload has minimal impact on the flight time.

The truck driving range is also not affected by the number of drones or testing kits loaded. The

truck can stop and collect a drone at intermediate nodes (I) only.

Using sets, parameters, and variables defined in Table 2, the proposed MDRP model is formu-
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Table 2: Sets, parameters, and variables that are used in MDRP.

Sets Notation Description
I Set of the intermediate nodes on the truck network.
At Set of arcs representing road segments
N Set of patients
Ad Set of all possible flight arcs.

Parameters

Gt(I, At) The directed network graph of truck
Gd({N ∪ I}, Ad) The directed network graph of flights
wti,j(min) Travel time of truck traversing arc (i, j) ∈ At

wdi,j(min) Flight time of drone traversing link (i, j) ∈ Ad

si(min) Service time at patient location i
n Total number of drones
m Total number of operators performing launch and retrieve
Wmax(min) Maximum waiting time.
Hmax(min) Maximum hovering time.
δ(min) Setup time for a drone
θ(min) Drone retrieval time
M A very big number
Rmax(min) Maximum flight time of drone.

Variables

yi,j ∈ {0, 1} If truck chooses link (i, j) ∈ At to traverse it gets 1 otherwise 0.
xi,j ∈ {0, 1} If drone chooses link (i, j) ∈ Ad to flight it gets 1 otherwise 0.
vi ∈ Z0

+ Order of visiting node i ∈ I in truck path.
ui ∈ Z0

+ Order of visiting node i ∈ I ∪N in flight path.
wi ∈ R0

+ Waiting time of truck at node i ∈ I.
hi ∈ R0

+ Waiting time of drone (hovering) over node i ∈ N .
Ti ∈ R0

+ Time of entrance of truck at node i ∈ I.
ti ∈ R0

+ Time of entrance of drone at node i ∈ I ∪N .
bi ∈ R0

+ Remaining flight range, at the time of reaching node i ∈ I ∪N .
Di ∈ Z0

+ The number of drones mounted in truck after leaving node i ∈ I.

lated as follows:

min
x, y, w, h, t, T, b, u, v,D

Z =

( ∑
i,j∈At

wti,jyi,j +
∑
i∈I

wi

)
+

( ∑
i,j∈Ad

wdi,jxi,j +
∑
i∈N

(hi + si)

)
(1)

s.t.∑
(i,C)∈At

yi,C =
∑

(C,j)∈At

yC,j = 1 (2)

∑
(i,j)∈At

yi,j =
∑

(j,i)∈At

yj,i, ∀j ∈ I\{C} (3)

vi − |I|(1− yi,j) + 1 ≤ vj , ∀(i, j) ∈ At, j 6= C (4)

Ti + wi + wti,j ≤ Tj +M(1− yi,j), ∀(i, j) ∈ At (5)

Ti + wi + wti,j ≥ Tj −M(1− yi,j), ∀(i, j) ∈ At (6)

wi ≤Wmax ∀i ∈ I (7)

hi ≤ Hmax ∀i ∈ N (8)∑
(i,j)∈Ad

xi,j =
∑

(j,i)∈Ad

xj,i = 1, ∀j ∈ N (9)

1− |N |(1− xi,j) ≤ uj , ∀(i, j) ∈ Ad, i ∈ I (10)

1 + ui − |N |(1− xi,j) ≤ uj , ∀(i, j) ∈ Ad, j /∈ I (11)

bj + si + hi + wdi,j −M(1− xi,j) ≤ bi, ∀(i, j) ∈ Ad, i /∈ I (12)

bj + si + hi + wdi,j −M(1− xi,j) ≤ Rmax, ∀(i, j) ∈ Ad, i ∈ I (13)

ti + si + hi + wdi,j ≤M(1− xi,j) + tj , ∀(i, j) ∈ Ad, i /∈ I (14)

ti + si + hi + wdi,j ≥ tj −M(1− xi,j), ∀(i, j) ∈ Ad, i /∈ I (15)
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Ti −M(1− xi,j) ≤ ti ≤ Ti + wi +M(1− xi,j), ∀(i, j) ∈ Ad, i ∈ I (16)

Tj −M(1− xi,j) ≤ tj ≤ Tj + wj +M(1− xi,j), ∀(i, j) ∈ Ad, j ∈ I\{C} (17)

Di −Dj −M(1− yi,j) ≤
∑

(j,ii)∈Ad

xj,ii −
∑

(ii,j)∈Ad

xii,j ,∀((i, j) 6= C) ∈ At (18)

Di −Dj +M(1− yi,j) ≥
∑

(j,ii)∈Ad

xj,ii −
∑

(ii,j)∈Ad

xii,j ,∀((i, j) 6= C) ∈ At (19)

Di +
∑

(ii,C)∈Ad

xii,C ≤ n+M(1− yi,C), ∀(i, C) ∈ At (20)

Di +
∑

(ii,C)∈Ad

xii,C ≥ n−M(1− yi,C), ∀(i, C) ∈ At (21)

DC +
∑

(C,jj)∈Ad

xC,jj ≥ n−M(1− yC,j), ∀(C, j) ∈ At (22)

DC +
∑

(C,jj)∈Ad

xC,jj ≤ n+M(1− yC,j), ∀(C, j) ∈ At (23)

∑
(i,k)∈Ad

xi,k ≤ n
∑

(i,j)∈At

yi,j , ∀i ∈ I (24)

∑
(k,j)∈Ad

xk,j ≤ n
∑

(i,j)∈At

yi,j , ∀j ∈ I (25)

δ

m

∑
(i,j)∈Ad

xi,j +
θ

m

∑
(j,i)∈Ad

xj,i ≤ wj , ∀j ∈ I (26)

The objective of model (1) consists of two parts to minimize the total truck operation time and the

drone flight time. The first part is to minimize both the operation time and the wait time of the

truck at all stop points. The second part is to minimize the total time of drone operation including

the flight time, service time, and idle hovering to synchronize with the truck schedule. The truck

starts and ends its journey from and to the depot (2), while maintaining the flow conservation

(3). Constraints (4) and (11) are to eliminate sub-tours for the truck and drone path. Constraints

(5) and (6) are used to keep track of the order of visits that the truck makes to form a path.

Similarly, constraints (14) and (15) are used to keep track of the order of visits to nodes by drones.

To synchronize the movements between the truck and drones, the truck must be present at the

launch and return locations of a drone: constraints (16) and (17). A drone will hover at a patient’s

location during the delivery service, and the hovering time must not exceed the allowed maximum

time (8). Similarly, the truck’s waiting time at any stopping point must be less than the maximum

waiting time (7). Adding the hovering time for drones and waiting time for the truck also adds

flexibility in the schedule so that the truck and drones can rejoin at return locations. Each patient

needs to be served once. Therefore, only one drone must be assigned to serve the patient (9).

Constraints (12) and (13) limit drones to fly within the allowed maximum flight range (Rmax). The

next set of constraints (18)-(23) are for the flight assignment based on the availability of drones;

the constraints conserve the flow of the drones in the Gt (#drones in-going = #drones out-going

in each intermediate node). Constraints (24) and (25) are to synchronize the launch and retrieval

location by the truck and drones. Constraint (26) assures that the setup time for departure flights

and the retrieval time for arrivals do not exceed the allotted waiting time in any intermediate node.

Note that, based on the number of operators (m) and waiting time (w), the available man-hour

will be m× w.

4 Solution Technique

The MDRP is an NP -hard problem because a simpler version of the problem, a modified Location

Routing Problem, is known to be NP -hard [21]. Therefore, most exiting methods for solving an

MDRP model often resort to developing computationally efficient algorithms to find good feasible

solutions. In this paper, we propose a decomposition method coupled with fast heuristic algorithms

to expedite the solution process. In the decomposition scheme, the original problem is decomposed
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into a truck scheduling problem and a flight scheduling problem so that each problem can be solved

much faster than solving the complex model altogether.

4.1 Decomposition scheme

The MDRP constraints can be categorized into three groups: “Truck related”, “Drone related”, and

“Mutual”. “Truck related” refers to constraints (2) to (7) and they are associated with designing

the truck schedule only. Constraints (8) to (15) belong to “Drone related”, which apply to the

drone flight scheduling alone. Note that these two groups of constraints are mutually exclusive.

“Mutual” is the group of constraints (16–26) that enable the collaboration between the truck and

drones. Based on these categories, we can transform the model into a bi-level model structure:

TS: The upper-level problem is to optimize the truck schedule (TS). Based on the sequence of

serving patients, which is determined at the lower level, the goal is to find an optimal schedule

for the truck and assign launch-return locations for drones. Thus, the optimization model

(see Section 4.1.1) contains ”Truck related” constraints as well as ”Mutual” constraints of

MDRP. Note that the ”Drone related” constraints are already satisfied at this stage.

FS: For a given truck schedule, the lower-level problem is optimized the drone flight schedule

(FS). The model (see Section 4.1.2) contains ”Drone related” and ”Mutual” constraints

only.

Our proposed solution approach recursively solves TS and FS, in which a solution from one helps

improve the solution for the other. This iterative process continues until the solution can no longer

be improved.

4.1.1 Optimize truck schedule for a given sequence of flight sequence

Sets, parameters, and variables are presented in Table 3. For a given sequence of customers to

visit, the objective of TS is to find the shortest truck path with complete drone flights along the

path. A complete drone flight schedule includes the sequence of customers and the launch (l ∈ I)

and return (r ∈ I) locations to join the truck along the truck path. For all given sequences of

customers, we need to build the flight. For example, SP i constitutes of b customers and its launch

and return nodes are not determined.

SP i = ci1 → ci2 → ...→ cib (27a)

By adding l, r ∈ I to the SP i, it turns into a complete flight F i
l,r;

F i
l,r = l→ ci1 → ci2 → ...→ cib → r (27b)

And a new binary decision variable (f il,r) will be introduced whether to choose the F i
l,r. The flight

duration of F i
l,r, (til,r) is calculated as follows:

til,r = wdl,ci1
+

b−1∑
j=1

wdcij,cij+1 + wdcib,r
+
∑

j∈SP i

(sj + hj) (27c)

This reformulation helps reduce a considerable number of variables and constraints in MDRP and,

therefore, TS is much easier to solve than the original MDRP model.

min
y, f, w, T,D

TS =
∑

i,j∈At

wti,jyi,j +
∑

(l,i,r)∈LFR

til,rf
i
l,r +

∑
i∈I

wi (28)

s.t.

(2)-(8) (29)
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Table 3: Sets, parameters, and variables that are used in truck schedule optimization based on
given patients sequences.

Sets:

Notation Description

SP Set of visiting sequences for the patients.

SP = {SP i|SP i ⊂ N, ∀i, j SP i ∩ SP j = φ,
⋃|SP |

i=1 SP
i = N i = 1, ..., |SP |}

LFR Set of possible flights within the maximum flight range.
LFR = {(l, i, r)|F i

l,r = {l} ∪ SP i ∪ {r}, l, r ∈ I, til,r ≤ Rmax}

Parameters

Notation Description

til,r(min) The flight duration of F i
l,r ∈ LFR including service,

flight, and hovering time.

Variables

Notation Description

f il,r ∈ {0, 1}
If a drone assigned to serve SP i,
chooses node l,r ∈ I as its launch and return nodes,
then it gets 1 otherwise 0.

Tr − Tl − wl ≤ til,r +M(1− f il,r) ∀(l, i, r 6= C) ∈ FLR (30)

til,r −M(1− f il,r) ≤ Tr + wr − Tl ∀(l, i, r 6= C) ∈ FLR (31)∑
(l,ii,r)∈FLR,

ii=i

f il,r = 1, i = 1, ..., |SP | (32)

Dl −Dr ≤
∑

(r,i,j)∈LFR

f ir,j −
∑

(k,i,r)∈LFR

f ik,r +M(1− yl,r) ,∀(l, r) 6= C ∈ At (33)

Dl −Dr ≥
∑

(r,i,j)∈LFR

f ir,j −
∑

(k,i,r)∈LFR

f ik,r −M(1− yl,r) ,∀(l, r) 6= C ∈ At (34)

Dl +
∑

(l,i,C)∈FLR

f il,C ≤ n+M(1− yl,C), ∀(l, C) ∈ At (35)

Dl +
∑

(l,i,C)∈FLR

f il,C ≥ n−M(1− yl,C), ∀(l, C) ∈ At (36)

DC +
∑

(C,i,r)∈FLR

f iC,r = n (37)

∑
(l,i,r)∈FLR

f il,r ≤ n
∑

(l,j)∈At

yl,j ∀l ∈ I (38)

∑
(l,i,r)∈FLR

f il,r ≤ n
∑

(k,r)∈At

yk,r ∀r ∈ I (39)

δ

m

∑
(l,i,j)∈FLR

f il,j +
θ

m

∑
(j,i,r)∈FLR

f ij,r ≤ wj ∀j ∈ I (40)

The goal of TS is to build the truck path and drone flight schedule to minimize the total flight

time for drones and travel time for trucks (28). Constraints (29) are adopted from Section 3 to

create feasible flight paths. The constraints (30) and (31) are to synchronize the drone departure

and return to join the truck based on the truck schedule. If the return location is the depot, the

delivery mission is complete, and there is no need to coordinate with the truck schedule anymore.

Constraint (32) to ensure that there will be one launch node (location) and one return node for the

sequence. (33)-(40) are the updated version of (18)-(26) due to variable f .
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Table 4: New or modified sets, parameters, and variables that are used in Flight schedule opti-
mization based on a given truck path.

Sets

Notation Description

P Itinerary of truck.
P : C → p2 → ... → p|P |−1 → C

A′d {(i, j)| i 6= j ∈ P ∪N, i&j /∈ P}

Parameters:

Notation Description

G′d({P ∪N}, A′d)
The new network graph of flying drones
based on new truck path (P ).
G′d is a subgraph of Gd.

wpi(min) The allotted waiting for truck in node pi ∈ P .

Tpi(min)

Entrance time of truck at node pi ∈ P .
This value includes all the travel
and wait times till the node pi.
Tpi−1 + wpi−1 + wtpi−1,pi = Tpi , i = 2, ..., |P | − 1

4.1.2 Optimize Flight Schedule based on a given truck schedule

For a given truck schedule, the lower level problem is to find a drone flight schedule to visit customers

following the tuck path. Using sets, parameters, and variables of this level defined in Table 4, the

optimization model is formulated as follows:

min
x, h, t, v,D, b

FS =
∑

i,j∈A′d

(wdi,j + si)xi,j +
∑
i∈N

hi (41)

s.t.

(8)− (15), (26) (42)

Tpi −M(1− xpi,j) ≤ tpi ≤ Tpi + wpi +M(1− xpi,j) ∀pi ∈ P,∀(pi, j) ∈ A′d (43)

Tpj −M(1− xi,pj ) ≤ tpj ≤ Tpj + wpj +M(1− xi,pj ) ∀pj ∈ P,∀(i, pj 6= C) ∈ A′d (44)

Dpi−1 −Dpi =
∑

(j,pi)∈Ad

xj,pi −
∑

(pi,j)∈A′d

xpi,j , i = 2, ..., |P | (45)

DC +
∑

(C,i)∈A′d

xC,i = Dp|P |−1
+

∑
(j,C)∈A′d

xj,C = n (46)

The objective is to minimize the total flight time of drones to complete all visits along the truck

path. The first term of FS is to minimize the total flight time and the second term is to minimize

the total hovering time of drones. Constraints (43) and (44) synchronize the truck schedule and

the drone flight schedule to coordinate the efforts on launching and retrieving drones. Constraints

(45) and (46) are based on available drones (idle ones in the truck + returned ones) to determine

the number of drones to be launched for the next flight. They are equivalent to (18) and (23) when

the truck path is already determined.

4.2 The proposed solution approach

The general procedure to solve MDRP using the bi-level framework discussed in Section 4.1 is

shown in Algorithm 1. The algorithm consists of three stages: Initialization, Heuristic Loop, and
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Final Loop. Our goal is to solve the two optimization models (TS and FS) corresponding to the

truck schedule and the drone flight schedule, respectively. However, there are two challenges. First,

finding an initial feasible solution is not easy. To address this, a heuristic algorithm TSPBFS is

developed. Second, solving those models solely based on the initial solution still can take a very

long time. Hence, a heuristic algorithm (“Heuristic Loop”) has been developed to find a good

feasible solution so that the optimization models can converge fast using the heuristic solution as

a warm-up solution.

Initialization: The main purpose of this stage is to provide good and fast warm-up solutions for

both TS and FS to solve the problem faster. As an initial solution, a set of single flights to visit each

of the patients is constructed. For instance, the flight that serves the ith patient is (C → i → C).

Some of the flights may be infeasible due to the violation of flight range and availability of drones.

The TSPBFS (see Section 4.2.1) is to design a truck path (P0) that guarantees the feasibility of

single-visit flights by choosing an appropriate location for launching and retrieving the drones. The

next step in “Exchange” is to search for a better solution by allowing multiple visits by a drone

with the aim to reduce the total flight time to serve all patients for a given truck path (P0). The

stopping criterion for solving the TS and FS is initialized here including solver run-time (tm).

Heuristic Loop: Given the initial solution from the previous step (i.e., Pi−1 and Fi−1), the purpose

of this stage is to find a near optimal solution for both TS and FS in a fast manner. This loop

consists of solving TSand the Exchange heuristic algorithm. The TS will be solved until one of

the termination criteria is met. In the case that TS fails to improve the truck path, its heuristic

equivalent (TSPBFS) is executed to improve the current truck path if possible. If a new improved

truck path (Pi) is found, its corresponding drone flight schedule is optimized using Exchange.

Final Loop: Based on the warm-start from the previous step, this is the final attempt to reach

optimality, the TS and FS are solved recursively until no further improvement is made. First,

TS is solved to improve the truck schedule, followed by solving FS for the corresponding drone

schedule.
Data: Gt(I, At), Gd(I ∪N,Ad), wd,wt, s,N, I, n,M

Result: Optimal Truck path (P ∗), and Flight paths (F ∗)

# Initialization;

F−1 = {(C → i→ C)|i ∈ N};
P0 = TSPBFS(F−1);

F0 = Exchange(P0, F−1);

tm = tmmax;

# Heuristic Loop;

while TS or Exchange finds better solution do

Pi = TS(Pi−1, Fi−1, tm);

if TS does not improve the truck path in tm unit of time then
Pi = TSPBFS(Fi−1)

end

Fi = Exchange(Pi, Fi−1);

i+ = 1;

end

#Final Loop;

while TS or FS provides new solution do

Pi = TS(Pi−1, Fi−1, tm);

Fi = FS(Pi, Fi−1, tm);

i+ = 1;

end
Algorithm 1: The procedure of solving the MDRP

4.2.1 Heuristic Algorithms

Algorithm 1 contains two heuristic algorithms: TSPBFS and Exchange. This section describes

details on the algorithms.
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(a) A sample truck network, Gt, with 9 nodes

(b) The BFS tree and the ranking of the nodes
based on their closeness to the root. The rank of
each node is added to its node label.

Figure 2: The node rankings based on closeness of the nodes to depot by the BFS

TSP with Breadth First approach (TSPBFS): This is an iterative algorithm that solves a

modified travelling salesman problem (mTSP) at each iteration. For a given sequence of patients

(SP ), the objective of mTSP is to find a feasible and short distance truck path (P ) to cover those

patients. Unlike TSP that requires visiting all locations, mTSP constructs a tour covering a subset

(MV ) of the intermediate nodes, MV ⊆ I. With the aim to find a short distance truck path, we

use the search tree structure (Gt) consisting of a root node, which is the drone launch location

including the depot (C). The BFS ranks the nodes based on their closeness 1 to the root node. For

example, consider a sample network, Figure 2a, with 9 nodes. By running the BFS on the graph

having C as the root node, Figure 3c shows the ranked order of the nodes sorted by two principles:

(1) the proximity to the depot and (2) the left-node first. Hence, node B has the highest ranked

order (B-1) because it is one unit away from the root node, and it is located far left among other

nodes (D-2 and A-3) having the same unit distance from C. The rest of the rankings follow the

same principle to construct the spanning tree shown in Figure 3c. The result is Ranking List (R)

containing the nodes in ascending order, i.e., R = [C,B,D,A,G,H, F,E, J ].

The next step is to construct MV following Algorithm 2. This algorithm contains a loop to

search for a feasible truck path (δ = 1). As the first step, MV is initialized as an empty set (i.e.,

MV0 = MV ) and R0 = R; hence, no truck path is available and the feasibility indicator δ is zero.

At the ith iteration, we select and remove the first element in Ri−1 and add it to MVi−1 to build

MVi. Then, mTSP (MVi) is solved to obtain a new truck path (Pi). The next step is to solve a

MIP model Launch-Return Optimizer (LRO) (see Appendix A). The goal of LRO is to find

the best launch and return locations on Pi for each sequence of patients in SP so as to minimize

the total flight time. The procedure for building a flight path for a sequence of patients in LRO is

similar to TS (see Equation (27)). If the LRO returns a feasible set of flights (F ), then the Pi and

SP are considered compatible and it will output δ = 1; otherwise, it will output δ = 0 and loop

repeats.

1The closeness is measured by the number of nodes between the current node to the root node. A lower number
represents a closer distance.
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Data: Gt(I, At), SP,wd,wt, s,N, I, n,M

Result: feasible truck path (P ), and feasible flight paths (F )

# initialization;

R0 = BFS(Gt, C)# Run BFS and R will the sorted set of nodes based on their closeness

to depot(node C);

MV0 = [ ];

δ= 0;

i = 1;

# Main Loop ;

while δ = 0 do

MVi = MVi−1.append(Ri−1[0]);

Ri = Ri−1.remove(Ri−1[0]);

Pi = mTSP (MVi);

[F, δ] = LRO(Pi, SP );

i+ = 1;

end
Algorithm 2: The procedure of TSPBFS to build feasible truck path with a given set of

sequences of patients (SP ).

Figure 3 shows the steps of the TSPBFS to achieve the feasible truck path for Gt with 9 nodes

and 3 patients.

Exchange: This iterative algorithm is designed to improve the solution resulting from the pre-

vious step to minimize the total flight time. For a given set of flights (F ) and truck path (P ) at

each iteration, a pair of flights (e.g. F k
old, F

o
old ∈ F ) is selected as input to a modified version of

FS (mFS) to find a better solution (e.g., F k
new and F o

new). The selection of a pair of two flights

is based on a metric representing the Euclidean distance between two centroids. Suppose a flight

path begins from a drone launching location followed by a sequence of locations to visit until it is

retrieved by the truck at the collection location. We can view this in a graph where each location

is associated with two-dimensional (2D) coordinates. Hence, a centroid for each flight can be cal-

culated based on the set of x and y coordinates of the locations. Once the centroid calculations

are completed for all flights, a distance matrix between any two flight paths is constructed as the

Euclidean distance between two centroids corresponding to two flight paths. We then select a pair

of two flights whose distance is the smallest. If a tie occurs in selecting two paths, a pair is selected

randomly among the candidates. The loop continues until no further improvement can be made.

Data: P, Fold, Sq, wd, s,N, I, n,M

Result: Fnew

while (∃F k
old, F

o
old ∈ Fold) and (mFS(F k

old, F
o
old) lowers FS objective value) do

[F k
new, F

o
new] = mFS(F k

old, F
o
old);

update F ;

end
Algorithm 3: The Exchange algorithm to improve flight time

The algorithm includes solving mFS, which is an MIP model shown as (47-49). Compared to

FS, the mFS model has an additional constraint (49) that keeps the itinerary of the rest of the

flights (F ′) fixed, where F ′ = F\{F k, F o}.

min
x, h, t, v,D, b

mFS(fk, fo) =
∑

i,j∈A′d

(wdi,j + si)xi,j +
∑
i∈N

hi (47)

s.t. (42)− (46), (48)

xF q
i ,F

q
i+1

= 1, i = 1, ..., |F q| − 1,∀F q ∈ F ′ (49)

Note that constraint (49) contributes to a huge reduction in solution space of FS and a sub-

stantial reduction can be achieved in computational time for solving mFS.
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(a) The initialization step of TSPBFS . Choosing the depot (C) as
launch and return nodes results of infeasiblity of two flights out of
three due to violation of maximum flight range and therefore δ = 0.

(b) Expand the truck path by adding B as the first element in R1.
The infeasiblity of one of flights has been resolved but there exists one
forbidden flight and therefore δ = 0.

(c) Expand the truck path by adding the D. All the flights are feasible
and therefore δ = 1.

Figure 3: An illustrative example of TSPBFS algorithm of a sample Gt with 9 nodes and 3 patients.
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Figure 4: An illustrative example of Exchange

Table 5: An example of one iteration of Exchange algorithm to improve fights

Old New

Adjustable flight itinerary (F\F ′) A→ 1→ 2→ B
A→ 3→ B

A→ 1→ 3→ 2→ B

Fixed flight itinerary (F ′)
B → 4→ D
B → 5→ D

B → 4→ D
B → 5→ D

4.2.2 An illustrative example of Exchange

Figure 4 shows one iteration of the Exchange algorithm to improve flight paths for a problem

instance with five patients. The set of flight paths are:

F = {F 1 : A→ 1→ 2→ B, F 2 : A→ 3→ B, F 3 : B → 4→ D, F 4 : B → 5→ D} (50)

Among all possible six pairs of flights, flights F 1 and F 2 are the closest two flights and they are

selected as input to mFS. The remaining flights (i.e., F 3 and F 4) remain unchanged.

F ′ = F\{F 1, F 2} = {F 3 : B → 4→ D, F 4 : B → 5→ D} (51)

The following set of constraints (52) in mFS keep those flights in F ′ unchanged while attempting

to find an improved solution:

xi,j = 1, ∀(i, j) ∈ {(B, 4), (4, D), (B, 5), (5, D)} (52)

Because the paths for serving patients 4 and 5 are predetermined, the mFS can focus on covering

patients 1, 2, and 3 only. This reduction in the number of patients to serve reduces the search

space and results in reduced computational time. The output of mFS(F 1, F 2) shows that F 1 and

F 2 must merge into a new flight to be able to lower the total flight time (see Table 5).

5 Numerical Experiments

In this section, we apply the MDRP model to illustrate our solution technique and to demonstrate

the applicability of our model to help reduce the spread of a pandemic. The model and corre-

sponding algorithms were implemented in Python 3.7 [48] and Gurobi 9.1.0 (Python API)[19]. All

experiments were performed on a server running RedHat Linux 64-bit with 24 core Intel Xeon

processors and 384GB RAM.

5.1 Drone and Truck Scheduling

Our application is based on the city of Sioux Falls, South Dakota, U.S. (see Figure 5)[4]. This is a

medium-sized city with a population of 150,000, covering the characteristics of large cities and rural

areas. On average, the city had around 37.5 COVID-19 confirmed cases per day[9]. We selected
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this area for the experiments because the area is a reasonable size in which the patients can be

covered by a single truck and multiple drones. This network segment of Sioux Falls has 40 patients

(i.e., yellow nodes within a 4-mile radius, and they are labeled from 1 to 40 in Figure 5 to be served

by one truck with three drones. The routes that the truck can use are based on the existing road

network (i.e., bidirectional arcs in Figure 5. The truck must stop to release drones with testing kits

or to pick up the drones once their services are completed. The road conditions limit the number of

points that the truck can stop to 24 (i.e., red nodes labeled from ‘A’ to ‘X‘ in Figure 5. Each drone

can fly for a maximum of 26 min at an average flight speed of 20 mph and that the atmospheric

conditions are stable during delivery. The truck can run for 200 min at an average speed of 20 mph.

Note that the speeds of drones and the truck were set conservatively (i.e., slow) taking into account

unforeseen obstacles and traffic congestion during the delivery. Therefore, the results discussed in

this section can be viewed as worst-case scenarios. In practice, the truck can travel faster than 20

mph, which will result in a shorter total delivery time. Furthermore, we assume that the service

time per patient is expected to last 3 min including delivery of the test kit, and the waiting time

for drones landing at each truck stop is expected to be 5 min.

Figure 5: Numerical Example with 40 patients and the road network(Gt)

The optimal routes for the truck and three drones for serving 40 patients are shown in Figure

6, where black arcs indicate the truck path while green arcs indicate the drone paths. The three

drones take off from the truck at an intermediate node and return to the truck at a designated

(intermediate) node. The number of patients being served on a given path varies truck specification

and the drones on-board (i.e., maximum drone flight range and the truck’s stopping points). The

three drones return to the depot (i.e., the red node labeled ‘C’ in Figure 6) rather than the truck

after performing their final delivery mission from intermediate nodes ‘A’ and ‘L’, respectively.

the Gantt chart in Figure 7 illustrates specific sequences of events (i.e., providing service or

waiting to provide service) for the truck and the three drones. The truck stops at 13 locations

following the road network. At these stopping points, the truck either picks up a drone that has

completed delivery or releases a drone for the next service assignment. For our example, it took a

total of 98 minutes to deliver a testing kit to each of the 40 patients.

5.2 Discussion on the Solution Approach

The performance of a heuristic method is measured by the speed for solving the problem and

the quality of the solution that it provides. We demonstrate the performance of the proposed

solution approach as discussed in Section 4.2 using a problem instance with 40 patients and 3

drones. Figure 8 shows the progression of Algorithm 1 to solve the problem. At time zero (t = 0),
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Figure 6: Optimal Flight Schedule and Drone Assignment to Patients

Figure 7: Optimal Schedule for One Truck and Three Drones

the Initialization stage starts and TSPBFS returns an initial solution (a set of flights) based on

visiting one patient at each flight. In the following step (t ∈ [5, 1900]), Exchange takes the initial

solution and attempts to minimize the total flight duration. As a result, the number of flights

required to visit all patients is reduced by 75%.

In the next step, Heuristic Loop started and the loop repeated twice until no further im-

provement was made, t = 2600. As seen in Figure 8, the reduced total flight time achieved in the

previous stage helped reduce TS as well as the value of TS1
UB, and it reached the optimality gap

of 10% in less than 200 seconds. Final Loop started at t = 2600 with an attempt to improve the

lower-bound of the FS model (FS4
LB). Since it could not find any improvement in FSUB after 600

seconds, the algorithm was terminated.

This example demonstrates the advantage of using the decomposition and the recursive opti-

mization proposed in this paper, in which an improvement made in one level directly helps improve

the solution in the next step. As a comparison to the exact method without the decomposition

approach, the MDRP took over 1 hour just to find an initial feasible solution. Then, the Branch-

and-Bound algorithm took over 10 hours to reach 20% optimality gap before it was terminated.

5.3 The effect of vehicle speed on total completion time

Vehicle speed can affect the delivery completion time. The network as shown in Figure 5 with 40

customers is used to investigate the effect of the total completion time (TCT) as we vary the vehicle

speed. For a fixed drone speed of 20 mph, we vary the truck speed at 15, 20, 25, 30, 35, 40 mph and

the results are plotted in Figure 9a. The total completion time (i.e.,
∑

(i,j)∈At
wti,jy

∗
i,j +

∑
i∈I w

∗
i )

appears to decrease as the truck speed was increased until 35 mph. But the trend sharply reversed

after 35 mph. This is because at beyond 35 mph, the waiting time of the truck to collect the drone
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Figure 8: The convergence of TS and FS to optimal solution

increases. Hence, we further investigate the effect of the TCT under 18 different vehicle scenarios:

six different speeds for the truck at 15, 20, 25, 30, 35, 40 mph and three different speeds at 15, 20,

25 mph for the truck. Note that the drone speed was capped at 25 mph because most small drones

fly within this range.

(a) Total completion time .vs. truck speed. (b) Total completion time .vs. vehicle speed

Figure 9: Total completion time .vs. vehicle speed

Figure 9b shows the results of the experiments. We made following observations. First, the

TCT decreased as both vehicle speeds were increased up to a certain point. Second, when the speed

of one vehicle was fixed, increasing the speed of the other vehicle did not result in a monotonic

decrease in the TCT. Third, when the truck traveled much faster than the drone, the truck ended

up waiting longer for the drone, which resulted in an increase in TCT.

5.4 The effect of the number of drones on total completion time

One can expect that adding more drones can potentially reduce the TCT. It is because having

multiple drones allows multiple deliveries to be carried out in parallel. Hence, we investigate the

effect of TCT on the number of drones carried on the truck. Figure 10 shows the results of this

experiment. As we increase the number of drones, the TCT monotonically decreased until 4 drones

and converged at 160. This indicates that adding more drones can help reduce the TCT up to a

certain point. Adding more drones beyond this point does will not improve the performance due

to other factors affecting the TCT, but add unnecessary additional capital cost and computational
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burden for solving the optimization model.

Figure 10: The total completion time behaviour by increment in number of drones.

5.5 Public Health Implications with the MDRP Model

To determine the public health implications with the MDRP, we propose a modified metric (i.e.,

mR0) of the basic reproduction number (R0) to estimate how many secondary cases might arise from

a single infected case [13]. In general, R0 value greater than 1 indicates that the disease is spreading

and the outbreak is continuing, while R0 value below 1 indicates that the disease is waning and the

outbreak is ending. The basic reproduction number is generally determined by a disease’s infection

period (e.g., the longer the infection period, the more contagious an infected individual will be with

the disease) and contact rate (i.e., the number of people an infected individual comes into contact

with). The contact rate can be reduced through well-established public health interventions that

require individuals to socially distance, quarantine, and/or stay at home [22]. Mathematically, the

basic reproduction number is calculated as R0 = βS/γ, where β is the transmission rate of the

disease, S is the number of susceptible individuals in a given population, and γ is the disease’s

infection period. However, the basic reproduction number is limited when used to calculate the

risk of infection in a specific region or at a specific point in time[11][15]. As such, the R0 can be

transformed to accommodate geographic, population, and temporal modifications [45][14]. For the

MDRP model, we modify the disease’s infection period to scale it to the total scheduled time as:

γ̄ =
Infection period (in days)

Total schedule time from MDRP (in days)
(53)

Accordingly, the modified reproduction rate is calculated as:

mR0 = βS/γ̄ (54)

Similar to R0, mR0 is defined so that a smaller value corresponds to a better outcome (i.e., fewer

infections). The R0 is designed to measure the number of people who might be infected during

a complete incubation period (e.g., approximately 14 days for COVID-19 [10]). Therefore, it is

not suitable to predict the number of possible infections during a specific time period Hence,

we revised the metric by introducing γ̄ to predict the number of possible infections over a specific

period. Considering the characteristics of face-to-face diagnosis and testing kit delivery, it is possible

to predict more accurately the number of infections that may occur during a specific period by

assigning an appropriate transmission rate. Table 6 shows an example to show how this new

measure works and a comparison between a face-to-face testing approach and the drone-based

approach. In the case of face-to-face diagnosis, it takes 3.3 hours to diagnose 40 patients, during

which about 0.0153 additional infections could occur. For the same problem, the drone-based testing

kit delivery would take 1.63 hours to diagnose those patients. It is estimated that approximately

0.002 additional infections could occur during this time. Recall that if patients have to travel to a
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β
(Transmission rate)

S
(no of person)

γ̄
(Time period)

mR0

Face-to-face test
(Drive-thru site)

3.1 % 52 101.82 0.0153

Testing kit delivery
using MDRP

1.0 % 42 205.73
0.002

(86.9% reduction)

Table 6: Estimated modified reproduction rate (mR0)

testing site, there is a possibility of virus transmission through an interaction between the patient

and the medical personnel or among the patients themselves. To reduce that likelihood, patients

are generally advised to wear an appropriate face mask and follow the social distancing guidelines.

Therefore, we expect the MDRP to help significantly reduce the spread of a pandemic.

Consider the example provided in Section 5.1; namely 40 patients and two delivery personnel

(i.e., a truck driver and a drone operator). An equivalent drive-through testing site would have

the same number of patients but 10 medical personnel (i.e., five per testing to perform all of the

activities associated with the testing process). To calculate comparable mR0 for these scenarios, we

note the following. According to Chu et al. (2020) if two people wearing masks talk to each other

within 6 feet, the transmission rate, β was 3.1 %, and when both people did not wear masks, the

transmission rate (β) increased to 17.4 % [12]. During the test for COVID-19 with a face-to-face

method, patients need to take off their masks for collecting samples, but the sampling time is very

short. Therefore, we assume that the transmission rate of the face-to-face test is 0.031. If the

surface of a drone or testing kit is contaminated with the virus, it is possible to spread the virus

by contact with it, but we expect it to be extremely low [1]. Hence, we conservatively assume the

transmission rate at 0.01. The number of people at risk of infection (S) is 42 for MDRP and 50 for

the drive-thru testing site. The average recovery period (γ) (in days) is divided by the total testing

(or delivery) time (in days). As in current research [37], we assume that the average recovery period

is 14 days. Then, for a face-to-face test, it takes about 10 minutes to collect a sample per patient.

Having two test booths on site, the total time required for 40 patients would be approximately 3.3

hours (0.137 of a day). Then, dividing this value by 14 days, the average recovery period of COVID-

19 (γ) is 101.82. On the other hand, the minimum required time using the MDRP was 1.63 hours

(0.0681 of a day). Accordingly, γ for this method will be 205.73, and mR0 for the drive-through

testing site is 0.0153 while MDRP’s mR0 is 0.002. This means that during the face-to-face test of

40 patients, about 0.0153 new infection cases could occur (approximately one secondary infection

per 2,614 patients). With MDRP, it would be one secondary infection per 20,000 patients. Thus,

the MDRP has the potential to significantly reduce the transmission of a pandemic.

6 Conclusion

A delivery system consisting of a single truck and multiple drones was studied in this paper, in which

a truck was considered as a mothership of drones and the group of drones deliver testing kits for

potential patients. The ultimate goal of this study was to show that this hybrid delivery model can

be a great alternative to any in-person diagnostic methods for the purpose of infection prevention.

Because the optimization model for solving this complex problem is not scalable, a decomposition

algorithm has been proposed to develop a coordinated schedule of the truck and the drones in a

timely manner. The proposed solution method consists of three stages: Initialization, Heuristic,

and Exact algorithm. In the initialization stage, a heuristic algorithm, TSPBFS , is developed to

find an initial solution (i.e., feasible truck and flight paths). In the Heuristic stage, Exchange

heuristic is developed to improve the MDRP solution starting from the initial solution. Using the

test problem, we showed that the Exchange algorithm works fast in finding an improved solution

by utilizing the modified version of FS model and its embedded heuristic. We have demonstrated

that the proposed method can find good quality solutions in a reasonable amount of time (less than

44 minutes) as compared to the exact method that failed to find an optimal solution in 10 hours for

the test problem instance. Furthermore, a modified reproduction metric (i.e., mR0) was proposed
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as a performance measure to show the effectiveness of the proposed method. It considered the total

time to complete the delivery mission, the number of people involved in the delivery process, and

the transmission rate of the virus. For comparison, we also derived the mR0 of the face-to-face

diagnosis. The results showed that mR0 of the testing kit delivery system (i.e., mR0=0.002) was

significantly lower than that of the face-to-face method (i.e., mR0=0.0153), hence, it achieved a

7.5 reduction compared to a face-to-face diagnosis used in a ‘drive-thru’ testing site.

COVID-19 has greatly increased the awareness of infectious diseases. We believe that the pro-

posed testing kit delivery method using the MDRP model can easily be applied to other applications,

especially, the diagnosis of infectious diseases such as the seasonal flu, MERS, and SARS. As an

extension to this paper, one can develop a scalable optimization model and solution algorithms

for a system of multiple trucks and multiple drones to support larger densely populated cities or

sparsely populated rural areas. Another direction for future work is to investigate the influence of

traffic congestion, speed limit, traffic light and other road driving restrictions in an optimization

model.
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A Launch-Return Location Optimization Model

The LRO chooses an optimal set of launch and return nodes for a current sets of patients to

minimize the MDRP objective function. Unlike MDRP, P and SP are pre-determined in LRO.

The primary purpose of this model is to check the feasibility of an initial solution provided by

TSPBFS .

min
f, w, h

LRO =
∑

(l,i,r)∈LFR

til,rf
i
l,r +

∑
i∈P

wi +
∑
i∈N

hi (55)

s.t.

(7), (8), (32) (56)

Tpr − Tpl +
r−1∑

k=l+1

wpk −M(1− f jpl,pr) ≤ tjpl,pr +
∑
i∈Sj

hi ∀(pl, j, pr) ∈ FLR (57)

tjpl,pr +
∑
i∈Sj

hi −M(1− f jpl,pr) ≤ Tpr − Tpl +

r∑
k=l

wpk ∀(pl, j, pr) ∈ FLR (58)

Dpi−1 −Dpi =
∑

(l,j,pi)∈LFR

f jl,pi −
∑

(pi,j,r)∈LFR

f jpi,r , i = 2, ..., |P | (59)

DC +
∑

(C,j,r)∈LFR

f jC,r = n (60)
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