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Abstract This paper addresses the design of a par-

cel delivery system using drones, which includes the

strategic planning of the system and operational plan-

ning for a given region. The amount of payload affects

the battery consumption rate (BCR), which can cause a

disruption in delivery of goods if the BCR was under-

estimated in the planning stage or cause unnecessar-

ily higher expenses if it was over-estimated. Hence, a

reliable parcel delivery schedule using drones is pro-

posed to consider the BCR as a function of payload in

the operational planning optimization. A minimum set

covering approach is used to model the strategic plan-

ning and a mixed integer linear programming problem

(MILP) is used for operational planning. A variable

preprocessing algorithm and primal and dual bound

generation methods are developed to improve the com-

putational time for solving the operational planning

model. The optimal solution provides the least number
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of drones and their flight paths to deliver parcels while

ensuring the safe return of the drones with respect to

the battery charge level. Experimental data show that

the BCR is a linear function of the payload amount.

The results indicate the impact of including the BCR

in drone scheduling, 3 out of 5 (60%) flight paths are

not feasible if the BCR is not considered. The numeri-

cal results show that the sequence of visiting customers

impacts the remaining charge.

Keywords: Battery Consumption Rate, Payload

Amount, Path Planning, Drone Scheduling, Delivery

Network

1 Introduction

Ground vehicles such as trucks are typically used to

deliver parcels across the logistic networks. More re-

cently, large companies such as Amazon, Mercedes-

Benz, United Parcel Service, and DHL have plans to

utilize drones for delivery purposes [1–5]. The gen-

eral idea is to deliver packages from a base location

to pre-selected destinations by a given fleet of vehi-

cles. UAVs, also known as drones, can deliver pack-

ages alone [6–10] or in collaboration with other ground
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transportation vehicles [11–13]. The scheduling model

for the drone delivery problem is similar to the travel-

ing salesman problem [14] when each destination lo-

cation is served by only one vehicle, and vehicles start

and finish their path at the same location [8–10, 15].

Although drones are gaining more attraction for

delivery purposes in recent years, limited battery en-

durance and limited payload amount remain to be

drawbacks for practical use [16–20]. An accurate es-

timate of battery endurance during the planning stage

is crucial in optimizing drone delivery schedule. For

example, a delivery plan based on under-estimated bat-

tery endurance may lead to the loss of opportunities to

serve more customers. As a result, more drones may be

required to satisfy the required delivery demand. The

opposite can be much worse because some drones may

not be able to return to the base due to lack of battery

before completing the planned delivery. The impact of

drone failure on the whole network in a delivery appli-

cation of drones is studied in a few researches [15]. The

amount of payload is one of the key factors affecting

the flight duration. Therefore, it should be considered

in drone scheduling as it impacts the battery endurance.

Some existing studies have considered the limita-

tion on the total flight time or the payload amount in

drone scheduling [9, 15, 21–24] and others consid-

ered the impact of carried payload on the total flight

time calculation [25–27]. However, these approaches

did not address the issue of potential failure of drones

to return due to lower than expected battery charge.

There are studies focusing on characterizing the energy

consumption of drones [28–30], but not in the context

of drone scheduling. In order to avoid running out of

charge and utilize drones efficiently, the battery con-

sumption rate is included in drone routing in this paper.

A Phantom 4 Pro+ [31] is tested to collect flight time

and remaining battery charge data. We experimentally

show that the BCR is a linear function of carried pay-

load, and it is modeled using linear regression.

A group of drones is considered in this paper to

deliver small packages to customers to study the im-

pact of BCR on the fleet scheduling. Two optimiza-

tion planning models are proposed to design drone-

based parcel delivery: strategic planning (SP) and op-

erational planning (OP). The number of delivery bases

and their locations are determined by solving the strate-

gic planning model. A set covering problem approach

is used to model SP by taking into account the dis-

tance between customers and base locations to ensure

feasible flights. The OP model aims to minimize the

number of drones while considering specifications of

drones in drone routing optimization. A mixed integer

linear programming (MILP) model for drone routing

and scheduling is proposed to determine optimal drone

delivery assignments and their paths. The optimal so-

lution provides the least number of drones required

to serve all the customers. The variable preprocessing

technique, primal and dual bound generation schemes

are developed to reduce the computational time. Over-

all, the contributions of this paper include: 1) propos-

ing the BCR concept in drone delivery application to

capture the effect of payload amount on battery en-

durance and estimate parameters based on case study

collected data, 2) proposing two optimization planning

models: strategic planning to figure out the optimal lo-

cations to open depots, and operational planning to de-

termine drone paths by including limitations of pay-

load amount and battery endurance, 3) providing the
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solution methodology consisting of a variable prepro-

cessing technique, primal and dual bound generation

methods to reduce the computational time.

The rest of this paper is organized as follows: Sec-

tion 2 explains the collected data from testing a drone

and the corresponding linear regression to estimate

the battery consumption rate as a function of payload

amount. The SP and OP mathematical models are pre-

sented in Section 3, and the solution methodology for

OP model is provided in Section 4. The numerical re-

sults and conclusion are discussed in Section 5 and

Section 6, respectively.

2 Drone Battery Consumption Rate

The BCR can be defined as the amount of charge con-

sumption per unit of time (per minute); it is the rate at

which battery charge decreases during the flight. The

BCR is estimated as a function of payload based on

data collected using a Phantom 4 Pro+ drone [31] with

specifications stated in Table A in Appendix A. The

data include flight time and the state of battery charge

over time. Although the power consumption can vary

depending on the flight mode (e.g., hovering, forward

flight, landing), the difference among different flight

modes is negligible [28]. Furthermore, the power con-

sumption in hovering mode is greater than the other

flight modes due to effective translational lift [32].

Therefore, the data collected in the hovering mode was

used in this paper.

Table B in Appendix B shows the flight time du-

ration in minutes for various combinations of battery

charge (from 15% to 95%) and payload amount (from

0 lb. to 0.882 lb.). The data are also plotted in Fig-

ure 1, which shows the State Of Charge (SOC) dur-

ing the flight for different payload amounts. The pay-

load amount is the amount of weights that a drone car-

ries excluding the weight of the drone and its battery.

A drone can consume up to 5% of the fully charged

battery until it reaches the hovering mode. Therefore,

the initial battery charge was set at 95% to be consis-

tent in all experiments conducted in this paper. Another

parameter is the minimum remaining battery charge

to ensure a safe landing, which is 15% for the drone

we used in our experiments. Therefore, the flight time

was recorded in the hovering position with the bat-

tery charge between 15% and 95% at 5% interval. The

experiment was repeated for different amount of pay-

loads: 0, 0.220, 0.441, 0.661, and 0.882 lb.

Table 1 lists the linear regression lines for the data

shown in Figure 1 and the corresponding R-squared

values. Since the R-squared values are all higher than

99.9% for all regression lines, we claim that there is

approximately a linear relationship between flight time

and battery SOC. For each payload amount, the BCR

corresponds to the slope of the regression line. For ex-

ample, the BCR value of 4.39 (%/min) means 4.39% of

battery charge decreases in every minute of flight. The

regression lines clearly show that the BCR increases

as the payload increases. When we increased the pay-

load from 0 to 0.22lb, the BCR was increased by 14.5%

(i.e., moved from -3.834 to -4.390). A similar trend was

observed for other regression lines as plotted in Fig-

ure 2.

In Figure 2, the red dots are the calculated BCR val-

ues corresponding to different payload amounts, and

the dashed line is the regression model used in the op-

timization model in OP (see Section 3.2). We further
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Fig. 1: The remaining battery level (%) along the flight for different amount of payload (lb.).

Table 1: The BCR values for different amount of payloads

Payload amount (lb.) Linear regression line R2 BCR (% /min)

0 SOC = -3.834 t + 95.67 0.9997 3.834
0.220 SOC = -4.390 t + 95.88 0.9996 4.390
0.441 SOC = -4.977 t + 95.71 0.9996 4.977
0.661 SOC = -5.388 t + 95.91 0.9996 5.389
0.882 SOC = -5.867 t + 95.32 0.9994 5.867

analyze the resulting linear regression model:

BCR = α · payload +β , (1)

where α is the slope and β is intercept. According to

Table 2, the estimated value of α is 2.297 ( %
min·lb ) and β

is 3.879 ( %
min ). The corresponding p-values of the pay-

load and intercept are below 0.000115, which implies

that both parameters are statistically significant. The

adjusted R-squared value of the model is greater than

99%. Therefore, we claim that a linear relationship ex-

ists between the BCR and the payload amount.
Fig. 2: The relationship between the BCR and the pay-
load amount
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Table 2: Linear regression analysis: BCR vs. payload

Coefficients Estimate Std. Error t-value Pr(> |t|)
Intercept 3.87886 0.04645 83.5 3.79e-06
payload 2.29705 0.08603 26.7 0.000115
∗Residual standard error: 0.05999 on 3 degrees of freedom
∗Multiple R-squared: 0.9958
∗Adjusted R-squared: 0.9944

3 Problem Description and Formulations

The problem description and the mathematical models

are presented in this section. This study focuses on the

lightweight parcels so that drones can carry them to

customers within the weight capacity of drone. Each

day, a fleet of drones pick up parcels from the base

depots, deliver them to customers, and then return to

the same base.

One may explore similar strategy for satisfying a

demand in shareable products [33]. If the demand of a

customer is greater than the weight capacity, then the

demand can be divided into multiple sub-orders for de-

livery.

In a drone-induced parcel delivery system, a strate-

gic planning should be made in the facility design

phase and operational planning decisions are made for

parcel delivery schedule. The SP includes the facility

planning and decides about the number and location of

depots based on customers’ location and drones’ spec-

ifications. The OP includes drone utilization planning

and flight path planning, and decides about the number

of drones to use for the day, the assignment of cus-

tomers to drones and order of visiting them. The effect

of payload amount on the total flight duration and the

remaining battery charge can be considered in the OP.

3.1 Strategic Planning (SP)

A drone starts its flight from a base depot, delivers

products to customers, and returns to the depot. In the

depot, the batteries are replaced or charged, and the

payloads are loaded for future flights. Among a set of

potential locations, a few of them are chosen to estab-

lish base depots and serve all the customers. A cus-

tomer can be covered by a candidate location if the

customer is located within the flight range of a drone.

In order to calculate the SOC at each flight stop, the

following notation is used:

SOCi state of charge at node i,
RCk drone k remaining charge on returning

to the depot,
di customer i’s demand,
ti j flight time between node i and j

(is assumed to be symmetric, ti j = t ji),
αk , βk slope and intercept parameters of the

linear function to calculate BCR
according to Formula (1),

MinChk minimum required battery charge for
safe landing of drone k, (k=1,2, ...),

MaxPk maximum payload capacity of drone k,
(k=1,2, ...).

Figure 3 shows a flight path consisting of one depot

and one customer. The battery’s SOC at each stop (de-

pot, customer’s location, and again depot) is calculated

through equations (2a)-(2c) by using Formula (1):

SOC j = 100, (2a)
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Fig. 3: Covering customer i by candidate location j

SOCi = SOC j− t ji(αkdi +βk)

→ SOCi = 100− t ji(αkdi +βk), (2b)

RCk = SOCi− ti j(αk ·0+βk)

→ RCk = 100− t ji(αkdi +βk)− ti jβk. (2c)

The drone battery is assumed to be fully charged

at the beginning of the flight as stated in equation (2a).

Equation (2b) calculates the remaining battery level at

location i considering the amount of payload in the

flight segment from depot j to customer i to be the cus-

tomer demand. There is no load on the way back to the

depot and the remaining battery level at the end of the

path is computed by (2c).

To avoid running out of charge on landing on the

depot and have a feasible flight path, the remaining

charge at the end of the flight should be greater than

the minimum charge requirement, which leads to the

following inequality:

RCk > MinChk and ti j = t ji,

→ ti j(αkdi +2βk)< 100−MinChk,

→ ti j <
100−MinChk

αkdi +2βk
. (3)

The demand of customers changes daily. Finally, in-

equality (4) is obtained by replacement of di with the

drone weight capacity. If inequality (4) holds, then in-

equality (3) holds for different amounts of load.

ti j <
100−MinChk

αkMaxPk +2βk
. (4)

The right-hand side of inequality (4) depends on the

drone specifications and it can be used to calculate the

maximum flight range of a drone. A depot can cover

multiple customers as long as they are located within

this drone maximum flight range. We propose the mini-

mum set covering problem to determine the least num-

ber of candidate locations to cover all the customers.

The notation used in the SP model is:

Sets:
C Set of customers,
S Set of candidate locations for depots.
Parameters:
f j Fixed cost of opening depot at candidate

location j ( j ∈ S),
θi j 1, if candidate location j can cover customer

i, 0 otherwise (i ∈C, j ∈ S).
Variable:
u j 1, if location j is chosen to open depot, 0

otherwise ( j ∈ S).

The SP model is a binary linear problem (BLP)

aiming at minimizing the cost of opening depots and

then the mathematical model can be written as the fol-

lowing minimum set covering problem:

Min ∑
j∈S

f ju j (5)

Subject to: ∑
j∈S

θi ju j ≥ 1, ∀i ∈C (6)

u j ∈ {0,1}. ∀ j ∈ S

The objective function (5) minimizes the initial

cost of opening a depot, while all the customers are

covered by at least one open depot (Constraint (6)).

The parameter θi j is calculated based on drone max-

imum coverage range.



Drone Delivery Scheduling Optimization Considering Payload-induced Battery Consumption Rates 7

3.2 Operational Planning (OP)

This section explains assumptions made regarding the

types of drones and parcels to deliver, and provides a

route planning model. Based on the set of drone center

locations given by the SP model in Section 3.1, the OP

model finds the optimal assignment of drones to cus-

tomers and their corresponding flight paths. The limita-

tions on payload amount, battery endurance, BCR and

the remaining charge requirement at the end of each

flight path are included in the OP model. It is assumed

that the batteries are fully charged before departure and

battery level will decrease along the path according to

BCR calculation provided in Section 2. The following

mathematical notation is defined to formulate the opti-

mization model and obtain the routing planning math-

ematical model:

Sets:
C Set of customers,
D Set of open depots,
K Set of drones.
Parameters:
M A large number,
MaxPk Payload capacity of drone k(k ∈ K),
MinChk Minimum remaining battery level

requirement for drone k (k ∈ K),
ti jk Flight time from node i to node j by

drone k,(i, j ∈ {C∪D},k ∈ K),
αk,βk Slope and intercept parameters of the

BCR linear regression function for
drone k (k ∈ K).

Variables:
xi jk 1 if drone k goes from node i to node j,

0 otherwise (i, j ∈ {C∪D},k ∈ K),
hk 1 if drone k is utilized in the network, 0

otherwise (k ∈ K),
li j Payload from node i to node j,

(i, j ∈ {C∪D}),
SOCi State of charge (remaining battery level)

at customer i location (i ∈C),
RCk Remaining charge of drone k at return

to depot (k ∈ K),
yc The order of sequence of visiting

customer c in the path (c ∈C).

Min ∑
k∈K

hk (7)

s.t.: ∑
j∈{C∪D}

∑
k∈K

xi jk = 1, ∀i ∈C (8)

∑
i∈{C∪D}

∑
k∈K

xi jk = 1, ∀ j ∈C (9)

∑
i∈C∪D

xi jk = ∑
i∈{C∪D}

x jik, ∀ j ∈C,∀k ∈ K (10)

∑
i∈C

xi jk = ∑
i∈C

x jik, ∀ j ∈ D,∀k ∈ K (11)

∑
i∈D

∑
j∈C

xi jk = hk, ∀k ∈ K (12)

∑
i∈C

∑
j∈D

xi jk = hk, ∀k ∈ K (13)

∑
i∈{C∪D}

li j− ∑
i∈{C∪D}

l ji = d j, ∀ j ∈C (14)

∑
i∈C

∑
j∈{C∪D}

di xi jk ≤MaxPk hk, ∀k ∈ K (15)

SOC j ≤ SOCi− ti jk(αkli j +βk)+M(1− xi jk), ∀i ∈ {C∪D},∀ j ∈C, i 6= j,∀k ∈ K (16)



8 Maryam Torabbeigi et al.

RCk ≤ SOCi− ti jk(βk)+M(1− xi jk), ∀i ∈C,∀ j ∈ D,∀k ∈ K (17)

RCk ≥MinChk, ∀k ∈ K (18)

yi− y j +n ∑
k∈K

xi jk ≤ n−1, ∀i, j ∈C (19)

xi jk ∈ {0,1}, li j, SOCi, RCk ≥ 0, lim = 0, ∀i, j ∈ {C∪D},∀k ∈ K, (20)

SOCm = 100%. ∀m ∈ D.

The objective function (7) is to minimize the num-

ber of drones used in the network. Constraints (8) and

(9) ensure that each customer is served only once by

exactly one drone. Flow conservation is guaranteed via

constraints (10) and (11) by which when a drone en-

ters a node, it must leave the node and visit another

one until it completes its delivery tour. Constraints (12)

and (13) show the utilization of drones. Constraint (14)

is to satisfy customer demand. Constraint (15) limits

the total payload assigned to a drone up to its capac-

ity. The state of charge of a drone during the flight and

at the end of the path is calculated by constraints (16)

and (17). At the beginning of the path, drone battery is

completely charged (100%) and during the path, it will

decrease based on travel time and the payload weight

carried between each pair of nodes (Constraint (16)).

The remaining battery level at returning to the depot

is also stated in Constraint (17). Parameter M is a suf-

ficiently large positive number that user specifies. On

one hand, if the value of M is too large, it can increase

the solution time. On the other hand, if the value is

too small, the model can lose its optimality. Therefore,

finding an appropriate value of M is important. In this

paper, the value of M is determined by Formula (21)

(explained in Appendix C).

M =100−min
k∈K
{MinChk}

+max
k∈K

(αkMaxPk +βk) · max
i, j∈{C∪D}

ti jk. (21)

A threshold value for the battery level is considered

in Constraint (18) to ensure a safe return to the depot

from a flight without running out of battery. Constraint

(19) is to eliminate any sub-tours in the network [34].

4 Solution Approach

The OP model in Section 3.2 is an extended version of

Vehicle Routing Problem (VRP), which is known to be

hard to solve [35]. Therefore, this section introduces

methods to solve the OP model faster. By preprocess-

ing in Section 4.1 we can fix some of the variables to

0 before solving the model so that the solution search

space will be reduced, and it reduces the computational

time. Section 4.2 introduces a primal bound generation

method and Section 4.3 presents multiple dual bound

generation methods for the OP model. Whenever the

primal and dual bounds are equal, the optimal solution

is obtained, otherwise, when the gap between them is

less than a threshold value ε > 0, the objective function

value is close to the optimal value within an accuracy

of ε .
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4.1 Variable Preprocessing Algorithm

The variable preprocessing procedure is implemented

on variable xi jk. Variable xi jk has three indexes; i

and j are for nodes in the network, and k rep-

resents a drone. The dimension of variable xi jk is

(|C|+ |D|)(|C|+ |D|)(|K|). However, our experiments

showed that many of them are zeros at the optimal

solution. Consequently, the total number of non-zero

variables can be less than 2|C| in the case each cus-

tomer is served by one drone. The preprocessing pro-

cedure is introduced through statements (22), (23), and

(25).

1) The model is an extension of VRP and Con-

straint (19) prevents sub-tours in the solution. A self-

loop is an edge between a node and itself. Therefore, it

is clear there is no self-loop in the solution.

Rule 1:∀i, j ∈ {C∪D},∀k ∈ K :

if i = j, then xi jk = 0. (22)

2) The total payload capacity is limited to MaxPk

for drone k. Thus, if the total demand of two customers

exceeds the capacity, then they should be assigned to

different drones.

Rule 2:∀i, j ∈C, ∀k ∈ K :

if di +d j > MaxPk, then xi jk = 0. (23)

Note that if the path “Depot→ Customer i→ Cus-

tomer j→ Depot” is infeasible due to weight capac-

ity, then path “Depot→ Customer j→ Customer i→

Depot” is also infeasible because the summation of de-

mand in both paths is di + d j, which is greater than

drone weight capacity.

3) A feasible path should satisfy Constraint (18).

The remaining battery level at the end of the path de-

pends on time to travel and payload in each segment

of the flight. Two customers can be assigned to drone

k if the battery level is at least equal to MinChk. In

an optimistic case, these two customers are the only

customers to be served by drone k. Figure 4 shows a

path consisting of two customers. The battery level in

each step of the path can be determined by (24a)-(24e).

According to Equation (24d), the remaining charge de-

pends on time to travel between locations, payload, and

drone specifications.

Fig. 4: Example of a path consisting of two customers

SOCo = 100, (24a)

SOCi = SOCo− toik[αk(di +d j)+βk]

= 100− toik[αk(di +d j)+βk], (24b)

SOC j = SOCi− ti jk(αkd j +βk)

= 100− toik[αk(di +d j)+βk]− ti jk(αkd j +βk),

(24c)

RCk = SOC j− t jokβk

= 100− toik[αk(di +d j)+βk]
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− ti jk(αkd j +βk)− t jokβk, (24d)

RCk ≥MinChk

→ 100− toik[αk(di +d j)+βk)]

− ti jk(αkd j +βk)− t jokβk ≥MinChk. (24e)

The SP model may choose multiple locations to estab-

lish depots. Therefore, the travel time between a de-

pot and a customer should be checked for all the open

depots. The feasibility of assigning each pair of cus-

tomers to open depots regarding the remaining battery

level is tested by (25). The rule 3 states if there is no

drone to serve a pair of customers, the corresponding

variable xi jk should be fixed to zero.

Rule 3:∀i, j ∈C, ∀k ∈ K :

if @o ∈ D : toik[αk(di +d j)+βk]

+ ti jk(αkd j +βk)+ to jkβk ≤ 100−MinChk,

then xi jk = 0. (25)

Drones have to return to the launch depot at the end

of the flight path. Note that even if the path “Depot→

Customer i→ Customer j→ Depot” is infeasible as a

result of insufficient remaining battery level, then path

“Depot→ Customer j→ Customer i→ Depot” can be

feasible or infeasible as the battery consumption rates

in these two paths are not necessarily the same, and

depend on travel time between path segments and the

payload.

4.2 Primal (Upper) Bound Generation

The objective function of the OP model is the min-

imization of number of drones so every feasible so-

lution provides a primal bound. The location of base

centers is determined by solving the SP model. Then,

Algorithm 1 is proposed here to find a feasible solution

(a primal bound) for OP model.

Algorithm 1 Primal bound on the number of drones (a
feasible solution)
1: Inputs:
2: The number and location of base depots (result of SP

model with objective function= ω)
3: Parameters in OP problem
4: Step 1:
5: Assign each customer to the nearest depot.
6: Step 2:
7: Solve OP problem for each depot.

Step 1 assigns customers to the nearest open de-

pot. As we solved a minimum set covering problem in

Section 3.1 to find the location of centers; at least one

customer is assigned to each depot. In Step 2, the OP

problem is solved for each depot to find the number

of required drones and their flight paths. The primal

bound of the objective function for the OP problem is

∑
ω
r=1 zr, where zr is the optimal number of drones for

depot r, r = {1,2, ...,ω}.

4.3 Dual Bounds Generation

The OP model is to minimize the objective function.

Hence, a lower bound is referred to as dual bound. The

dual bounds for a minimization problem are usually

found by a relaxation of the original model to a simpler

one. We can either optimize over a larger feasible set or

substitute the objective function by a term with a lower

value everywhere. In the following, we introduce three

dual bound generation methods: Lagrangian relaxation

(Section 4.3.1), network configuration (Section 4.3.2)

based bound, and weight capacity based bound (Sec-

tion 4.3.3). Each of the methods has its own strengths
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and weakness in terms of finding a tight dual bound

and/or being able to solve the model much faster.

4.3.1 Lagrangian Relaxation

Some constraints of an optimization model are harder

to satisfy than others. The general idea of a Lagrangian

relaxation [36] is to remove the constraints that make

the problem hard to solve and move them to the objec-

tive function with a penalty cost associated with them.

The hard constraints are the most time-consuming con-

straints and depend on the model structure. Hence,

it discourages constraint violation, while the resulting

model is much easier to solve. Constraint (14) is a hard

constraint in the OP model and we move this to the ob-

jective function. Accordingly, we relax the correspond-

ing constraints with associated Lagrangian multipliers

µ ∈ {µ1, ...,µ|C|} ≥ 0. The resulting model is stated as:

L(µ) = Min ∑
k∈K

hk + ∑
j∈C

µ j(d j− ∑
i∈C∪D

li j + ∑
i∈C∪D

l ji),

(26)

Subject to: (8)− (13),(15)− (20).

The Lagrangian relaxation model is solved itera-

tively by updating µ in each iteration. As L(µ) is not

differentiable at all points, a subgradient algorithm de-

scribed in Algorithm 2, is used.

The objective function states the number of drones

to use, and the value cannot be fractional. Hence, the

dual bound obtained by Lagrangian relaxation should

be rounded up to the nearest integer that is larger than

the resulting optimal objective value if it is fractional.

Algorithm 2 Subgradient algorithm
Inputs:

The number and location of open depots (result of SP
problem), Parameters in OP problem, Primal bound
obtained from Algorithm 1, µ0, θ , max iteration,
threshold-value.

While(k < max iteration or ∆ µ > threshold-value)
Do {

Step 1: solve the Lagrangian dual problem (26) with Con-
straints (8)-(13), (15)-(20) to obtain the optimal solution;

Step 2: direction=d j−∑i∈C∪D li j +∑i∈C∪D l ji (gradient of
L(µk));
Step 3: step size =θ · upper bound−L(µk)

||direction|| ;
Step 4: update µ:

µk+1 = max{0, µk +direction · step size};
Step 5: converged or not? ∆ µ = |µk−µk+1| ;
Step 6: k = k +1;
} End While

4.3.2 Network Configuration

Two customers are considered to be incompatible if

they cannot be assigned to one drone due to any limi-

tations. This situation happens if either Rule 2 or Rule

3 in Section 4 is true for a pair of customers i and j,

and it is denoted as i|| j. The incompatibility graph rep-

resented by Ginc = (C,EC), where C is the set of cus-

tomers and EC = (i, j) ∈C ·C : i|| j is constructed by

rules 2 and 3. In graph Ginc, an arc represents a pair

of incompatible customers, in which different drones

are needed to serve them. Therefore, a complete sub-

graph with m number of vertices in graph Ginc shows m

incompatible customers, who need different drones to

be served. In such a subgraph, m drones are needed to

serve the customers in the subgraph because each pair

of these customers are incompatible with each other.

Therefore, the largest complete subgraph in Ginc rep-

resents the largest subset of customers that all of them

are incompatible with each other.

In an undirected graph, a complete subgraph is

called a clique and a maximum clique is a clique with

the largest possible number of vertices [36]. Therefore,
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the maximum clique in graph Ginc shows the largest

subset of incompatible customers, that each customer

needs a separate drone to be served. The size of the

maximum clique in graph Ginc is a dual bound for the

number of required drones. This problem is a well-

known problem and there are some algorithms to solve

it fast. Here, we use Bron-Kerbosch maximal clique

finding algorithm [37].

4.3.3 Drone Weight Capacity

The assignment of customers to drones has to meet

drone weight capacity. Constraint (15) is related to

drone capacity limitation in the OP model. This section

introduces a dual bound generation based on the drone

weight capacity limitation. A new variable is defined

and the OP model is relaxed as follow: We define the

variable ρik = ∑ j∈{C∪D} xi jk as a binary variable that

gets value 1 if drone k serves customer i, and 0 oth-

erwise. Constraint (8) and Constraint (15) in the OP

model are simplified and rewritten by variable ρik:

Constriant (8) : ∑
j∈{C∪D}

∑
k∈K

xi jk = ∑
k∈K

( ∑
j∈{C∪D}

xi jk)

= ∑
k∈K

ρik = 1. (27)

Constriant (15) : ∑
i∈C

∑
j∈{C∪D}

di xi jk ≤MaxPk hk

→∑
i∈C

di ( ∑
j∈{C∪D}

xi jk)≤MaxPk hk,

→∑
i∈C

di ρik ≤MaxPk hk. (28)

Here, customers have different amounts of demand,

and their demand should be prepared and load to

drones considering the weight capacity to minimize the

number of drones. This problem can be cast as a Bin

Packing Problem (BPP) [38] that consists of drones as

bins with a capacity of MaxPk, and a customer demand

as an object with a size of di, and it is stated as follows:

BPP-weight: Min ∑
k∈K

hk (29)

Subject to: ∑
k∈K

ρik = 1 ∀i ∈C (30)

∑
i∈C

di ρik ≤MaxPk hk ∀k ∈ K (31)

ρik, hk ∈ {0,1} ∀i ∈C,∀k ∈ K

The objective function (29) minimizes the number of

drones used for delivery. Constraint (30) guarantees

each customer is served by one drone while the weight

capacity of a drone is satisfied through Constraint (31).

Feasible region of the OP is a subset of the feasible

region of the BPP-weight because the BPP-weight is

a relaxed form of the OP model. Hence, the optimal

objective function value of the OP model is at least

as large as the optimal objective function value of the

BPP-weight.

5 Numerical Results

This section begins with a case study to demonstrate

how the proposed methods work (Section 5.1). Fur-

ther experiments are conducted to understand the im-

pact of considering BCR with respect to the payload

amount in drone scheduling (Section 5.2), and investi-

gate the computational efficiency of the proposed solu-

tion approach (Section 5.3). The Bron-Kerbosch Max-

imal clique finding algorithm [37] is implemented in

MATLAB [39]. The other algorithms and the proposed

SP and OP models are implemented in GAMS [40] and

solved by CPLEX 12.6.3. [41]. All computational ex-
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periments were conducted using a Linux server with

24 cores and 384GB RAM.

5.1 A Case Study

A random test network having 20 customers and 5 de-

pot candidate locations is shown in Figure 5, where

square nodes are candidate depots and circle nodes rep-

resent the customers. A homogeneous fleet of drones

similar to the drone used in Section 2 is used to serve

the customers. According to the results of Section 2,

the linear relationship between BCR and the payload

amount is BCR = (2.297)payload +3.879.

Fig. 5: A random test network with 20 customers and
5 candidate locations

First, the covering range of each depot candidate

location is identified as shown in Figure 6 and Table D

in Appendix D. This is determined by the drone bat-

tery specifications, the minimum required battery level

of 15% and the maximum payload capacity of 1 lb.

Second, a subset of candidate locations is determined

by the proposed SP model in Section 3.1. As can be

seen from Figure 6, some customers can be covered by

just one candidate location (e.g., Customer 2), some

others (e.g., Customer 1) can be covered by multiple

locations (D1, D2, and D3), and yet others can be cov-

ered by all depot candidates such as Customer 9. Ac-

cording to the result of the SP model in Section 3.1,

two (D1 and D3) out of five candidate locations are se-

lected to establish depots there. Third, the optimal as-

Fig. 6: Covering customers by depot candidate loca-
tions

signment of customers and drone paths are determined

by the OP problem as discussed in Section 3.2. We ap-

ply both the primal bound and dual bound generation

methods on the objective function (Section 4). This

step is important in reducing the computational time;

our initial test run of more than 24 hours returned an

objective function value of 10 for the problem instance

with 18% relative optimality gap, i.e., relative gap =

PrimalBound−DualBound
PrimalBound ·100.

– Primal Bound Generation

Step 1: Assign customers to the nearest depot using Al-

gorithm 1. Hence, customers 1, 2, 3, 7, 8, and

12 are assigned to D1 and the rest of them are

assigned to D3.
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Step 2: Solve OP problem for each depot to get the op-

timal paths.

The experiments took 20.82 minutes with 0% rel-

ative optimality gap to solve the OP problem for

both depots. The results are presented in Table 3,

in which four drones are assigned to Depot 1 and

six drones are needed in D3.

Table 3: Primal bound calculation (a feasible solution)
for the case study

Depot Path

Depot 1

D1→ 1→ 3→ D1
D1→ 2→ D1
D1→ 7→ 12→ D1
D1→ 8→ D1

Depot 3

D3→ 4→ 5→ 10→ D3
D3→ 6→ 14→ D3
D3→ 9→ 19→ 13→ D3
D3→ 11→ 17→ 16→ D3
D3→ 15→ 20→ D3
D3→ 18→ D3

Primal Bound 10

– Dual Bound Generation

Different dual bounds are calculated according to

Section 4.3 and the final dual bound on the ob-

jective function of OP is the maximum value of

them. Table 4 shows the values of the proposed

dual bounds. The dual bound based on Lagrangian

relaxation is 8.54, which is rounded up because the

objective function (number of drones) should be an

integer value. The solution of the maximum clique

problem has a size of 7, consisting of customers

2, 3, 5, 8, 14, 19, and 20. The final dual bound is

max{9, 7, 8}= 9.

– Discussions on the Results from the OP Model

The optimal assignment of customers and drone

paths is determined as shown in Figure 7, in which

3 drones are needed in D1 and 6 drones in D3. The

drone flight paths start and finish in the same depot

and along the flight, they serve 2 or 3 customers.

Although a customer might be covered by more

than one depot, just one of them can serve the cus-

tomer in the optimal solution and it is not the clos-

est depot necessarily. For example, in the optimal

solution of our case study, customer 6 and 7 are as-

signed to D1 and D3, respectively; however, they

are closer to the D3 and D1, respectively. The pri-

mal bound generation assigns each customer to the

nearest depot and 10 drones are needed to serve all

customers. Using this bound, the optimal solution

lowered the drone count to 9, which is 10% im-

provement from the original bound. Table 5 shows

the details of optimal flight paths, which includes

the total demand, total travel time, and the remain-

ing battery level at the end of each flight path.

Table 4: Dual bound calculation for the case study

Dual bound
generation method

Dual bound
value

Lagrangian relaxation d8.54e= 9
Network configuration 7
BPP-weight 8
Dual Bound max{9, 7, 8} = 9

Fig. 7: Optimal flight paths- result of OP model for the
case study network
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5.2 Impact of BCR on the Drone Flight Scheduling

We investigated the impact of considering the BCR on

drone flight paths using a reverse path concept and dif-

ferent philosophies of estimating the BCR.

– Reverse of a Path

The reverse of a path has an opposite direction of

the primary flight path and moves backward. For

example, the flight path of drone 1 in Table 5, is

D1→ 8→ 1→D1 and the reverse path is D1→ 1→

8→ D1. Although a flight path and its reverse path

have the same total flight time and total assigned de-

mand, they are not the same in terms of the BCR

calculations. It is due to the fact that the flight dis-

tance between location i and j is the same as flight

distance between location j and i, but the carrying

payload and therefore the BCR on the flight seg-

ment can be different by the flight direction. Table E

in Appendix E shows the optimal flight paths in the

case study (Figure 7) and the reverse of them. By

taking into account the threshold value of 15% for

the final remaining charge, the reverse of a feasible

path might be infeasible as it is for drones 2, 4, 6,

7, and 8, which means more than half of the opti-

mal flight paths (55.6%) are infeasible if the reverse

paths are used.

Table 5: Optimal drone flight path for the case study

Drone Path Total demand (lb.)
Total travel
time (min)

Remaining
battery level (%)

1 D1→ 8→ 1→ D1 1 (0.3+0.7) 11.92 42.03
2 D1→ 2→ 12→ D1 0.9 (0.5+0.4) 16.88 19.93
3 D1→ 3→ 6→ D1 1 (0.6+0.4) 12.23 42.21
4 D3→ 4→ 5→ 10→ D3 0.7 (0.3+0.3+0.1) 18.07 17.25
5 D3→ 7→ 14→ D3 1 (0.6+0.4) 12.53 39.05
6 D3→ 9→ 11→ 17→ D3 1 (0.3+0.4+0.3) 15.81 26.84
7 D3→ 13→ 18→ D3 0.6 (0.2+0.4) 18.35 19.38
8 D3→ 15→ 20→ D3 1 (0.7+0.3) 17.28 18.93
9 D3→ 16→ 19→ D3 0.8 (0.3+0.5) 14.11 33.34

– Fixed Total Flight Time Regardless of the Payload

Amount

Drones can fly for a limited time before needing to

land to recharge. BCR is the rate at which battery

charge decreases during the flight (see Section 2)

so the higher amount of BCR means the battery

level decreases faster and the total flight time will

be lower. Therefore, the total flight time has a re-

verse relationship with the BCR. As mentioned in

Section 1, most of the studies in the literature do not

consider BCR in scheduling and a fixed value for the

limitation of total flight time is included. In this sec-

tion, the solutions provided by a fixed value for the

total flight time are evaluated. Two extreme cases for

the total flight time are considered here: flight time

based on maximum and minimum carried payload.

On one hand, for a specific drone, the BCR has the

lowest value and it can fly longer when it has no pay-

load. On the other hand, the BCR has the highest

value if it is fully loaded. For the drone used in Sec-

tion 2, the total flight time is 13.76 minutes with a

payload amount of 1 lb. (maximum payload amount)
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and it is 21.92 minutes when it does not carry any

payload. A subset of nodes in Figure 7 are taken as

a test case (D3 and customers 4, 5, 6, 9, 10, 11, 13,

14, 15, 16, 17, 18, 19, and 20) to expedite the com-

putational experiments for this section. The optimal

objective function value of the OP model is 6 for this

test case.

This problem is infeasible with the total flight time

of 13.76 minutes because the drone is not able to

complete the path “D3→ customer→D3” for some

of the customers (e.g., customer 18 and 20) within

the total flight time. In this case, although drones can

return to the depot before running out of battery, the

energy consumption is considered to be pessimistic

and prevents us from serving all the customers. In

the other case, the objective function value is 5 with

the total flight time of 21.92 minutes and the opti-

mal flight paths are presented in Table 6. These paths

can meet the limitation of the total flight time but re-

garding the remaining charge, most of them (60%)

are infeasible and 6 drones will run out of battery

before landing at the depot.

Table 6: Optimal paths with the minimum BCR

Drone Path Total demand (lb.)
Total travel
time (min)

Remaining
battery level (%)

1 D3→ 15→ 20→ D3 1 17.28 18.93
2 D3→ 19→ 18→ D3 0.9 19.36 8.12 ∗

3 D3→ 4→ 9→ 11→ D3 1 14.54 23.21
4 D3→ 16→ 17→ 14→ D3 1 20.12 -0.6 ∗

5 D3→ 13→ 6→ 5→ 10→ D3 1 21.40 -2.18 ∗
∗ Infeasible flight path

5.3 Computational Efficiency of Proposed Solution

Method

– Dual Bound Generation Methods

In this section, the performance of the proposed

dual bounds (Section 4.3) is tested on six different

problems that have two depots and 11 customers

and a homogeneous fleet of drones stated in Ta-

ble 7. The difference between the test case 1 and

the 5 other test cases is the travel time and demand

parameters which are a ratio of the test case 1 pa-

rameters. The ratio of each test case parameters to

the test case 1 are presented in the first section of

Table 7. The second section of the table shows the

number of variable xi jk reductions by using prepro-

cessing rules (Section 4.1). Rule 2 and Rule 3 show

the incompatibility among customers regarding the

drone weight capacity and the remaining charge,

respectively. Some of the variable xi jk are fixed by

more than one rule in the preprocessing so the total

number of variables fixed by preprocessing algo-

rithm is not necessarily the summation of reduc-

tions by three rules.

The obtained dual bounds by using three differ-

ent dual bound generation methods are presented

in Table 8. The larger value for the dual bound is

better because it provides a smaller gap between

primal and dual bounds. The bold numbers in the

table show the largest dual bound value for each
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Table 7: Test cases used in comparing the dual bound methods

Test case characteristics
Test case

1 2 3 4 5 6
Ratio to the test case 1 for:

Customer demand 1 1.5 2 1 1.5 2
Travel time 1 1 1 0.74 0.74 0.74

Number of variables fixed by:
Rule 1 (self-loop) 11 11 11 11 11 11
Rule 2 (weight) 0 30 66 0 30 66
Rule 3 (battery) 84 95 101 16 28 47
Total 95 112 117 27 60 95

test case. As it can be seen, Lagrangian relaxation

algorithm has a good performance and can provide

the largest dual bound in all the cases except test

case number 5. The network configuration and the

BPP-weight method give the largest dual bound in

66.7% and 50% of these cases, respectively.

Table 8: The bounds obtained by dual bound methods for different test cases

Dual bound generation method
Test case

1 2 3 4 5 6
Lagrangian relaxation 5 8 9 4 5 7
Network configuration 5 8 9 2 5 7
BPP-weight 4 6 7 4 6 7
Dual bound 5 8 9 4 6 7
Primal bound 7 8 9 4 7 8

Table 9 presents the total computational time in

seconds to get the dual bound by each dual bound

generation method and solve the test case by using

that bound. The bold numbers in the table show the

lowest total computational time for each test case.

Note that for these problems the preprocessing al-

gorithm is not used in running each test case to be

able to capture the effect of bound generation meth-

ods.

Table 9: Computational time (second) with different dual bound generation methods
Dual bound

generation methods
Solved problem

Test case
1 2 3 4 5 6

Lagrangian relaxation
Dual bound 6,901.44 36.17 0.45 25,210.70 15,906.14 30.60

Test case 880.87 0.33 0.24 18.01 12,722.80 0.22
Total 7,782.31 36.50 0.69 25,228.71 28,628.94 30.82

Network configuration
Dual bound 0.023 0.019 0.023 0.018 0.018 0.018

Test case 880.87 0.33 0.24 5.41 12,722.80 0.22
Total 880.89 0.33 0.26 5.42 12,722.81 0.23

BPP-weight
Dual bound 0.28 0.16 0.15 0.34 0.21 0.11

Test case 1280.94 0.30 0.30 18.01 0.88 0.22
Total 1281.22 0.46 0.45 18.35 1.09 0.33
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Although Lagrangian relaxation method provides

good dual bounds, its computational time is higher

than the two other methods for all the test cases and

make it ineffective in practice. As it can be seen, the

computational time by Lagrangian relaxation in-

creased if the total incompatibility among the cus-

tomers decreases. For example test cases 4, 5, and

1 that have the highest computational time by La-

grangian relaxation algorithm in Table 9, have the

lowest number of variables fixed by the prepro-

cessing algorithm in Table 8 too. In total, the La-

grangian relaxation algorithm is not suggested to

be used due to the high computational time espe-

cially for the data parameters with low incompati-

bility.

The dual bound generation methods based on net-

work configuration and the BBP-weight provide

better dual bounds in a reasonable time. The com-

putational time for the network configuration prob-

lem to find the dual bound has a low variability and

depends less on the parameters. Regarding the total

computational time, it has the lowest runtime in all

the cases except for test case 5 (83.3% of the cases).

The computational time of BPP-weight problem is

related to the incompatibility among customers re-

garding the weight capacity of drones. In test case 1

and 4, no variable is fixed by Rule 2 in Table 9 and

these cases have the highest computational time by

the BPP-weight problem in Table 8. As the number

of reduced variables by Rule 2 increases the BPP-

weight computational time decreases.

Overall, the computational time of the bound gen-

eration methods decreases if the incompatibility

among customers increases. The required time to

solve each test case based on the obtained dual

bound depends on the quality of the dual bound.

The higher dual bound is better and results in less

computational time to solve the test case. The net-

work configuration dual bound generation method

outperforms the two other methods because it

provides good dual bounds (the highest bound

for 66.7% of the cases), has low computational

time (the lowest time in 83.3% of the cases),

and depends less on the demand and travel time

parameters.

– Computational Efficiency of Preprocessing and

Bound Generation Methods

This section examines the computational efficiency

of preprocessing and bound generation methods

proposed in Section 4. Three randomly generated

problems with different sizes are tested here: 1

depot- 6 customers, 2 depots-10 customers, and 1

depot-14 customers. The results are presented in

Table 10, with the optimality relative gap of 5% and

the CPU run time of 3600 seconds (i.e., 1 hour).

The name of each test problem shows the num-

ber of depots and number of customers, respec-

tively. The second and third columns show whether

bounds on the objective function and variable pre-

processing algorithm is used for the problem or not.

The CPLEX solver could not find an optimal so-

lution within 1 hour of running time for the last

two test problems. However, both the variable pre-

processing and bound generation helped reduce the

computational time significantly for all three test

problems (70.1% for the case problem with one de-

pot and 6 customers). The first test problem is small
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Table 10: Effect of preprocessing and bound generation methods on the computational time

Problem Bounds Preprocessing
Computational

time (s)
MIP objective
function value

Relative
optimality gap

1-6

N N 3.11 4 ∗∗ 0 %
Y N 3.10 4 ∗∗ 0 %
N Y 1.30 4 ∗∗ 0 %
Y Y 0.93 4 ∗∗ 0 %

2-10

N N 3600.00 7 ∗ 14.28 %
Y N 2783.74 7 ∗∗ 0 %
N Y 42.12 7 ∗∗ 0 %
Y Y 30.85 7 ∗∗ 0 %

1-14

N N 3600.00 7 ∗ 14.28 %
Y N 3600.00 6 ∗ 14.28 %
N Y 1568.43 6 ∗∗ 0 %
Y Y 12.96 6 ∗∗ 0 %

∗ Objective function value for an integer feasible solution
∗∗ Objective function value for the integer optimal solution

size, in which all four problems are able to reach an

optimal solution with 0% optimality relative gap.

Note that problem “1-6-Y-Y” returned the lowest

computational time. For the second case, all four

problems gave the objective function of 7; however,

problem “2-10-N-N” cannot recognize the optimal-

ity and there is still an optimality gap (14.28%). In

the third test case, problem “1-14-N-N” and “1-14-

Y-N” are not able to meet the stopping criteria (rel-

ative gap ≤ 5%) within 1 hour of running.

According to the results of Table 10, as the size of

the problem increases, it is more important to use

the proposed solution algorithm to reduce the com-

putational time and obtain the optimal solution. For

the smallest test case (problem “1-6”) even without

the bound and the preprocessing algorithms, the

optimal solution can be obtained in a few seconds

(3.11 seconds). But when the size of problem in-

creases (problems “2-10” and “1-14”), we are not

able to get the optimal solution within 1 hour of

running without the proposed solution algorithm.

Furthermore, it can be seen that the impact of pre-

processing on the computational time reduction is

more than the impact of primal and dual bound

generation methods. For all three test problems,

the computational time for “N-Y” cases (just us-

ing the preprocessing algorithm) is lower than the

“Y-N” cases (just using the bound generation algo-

rithm). Using variable preprocessing in comparison

to using the bound generation algorithm reduces

the computational time 58.06% for the test prob-

lem “1-6” and 98.48% for the “2-10” test problem.

In problem “1-14”, we are not able to get the op-

timal solution within 1 hour if we do not use the

variable preprocessing technique.

6 Conclusion

A delivery application of drones was studied in this pa-

per, in which a group of drones was considered to de-

liver parcels to customers. A primary focus was given

to understand the impact of the drone battery consump-

tion on the design of a drone-based parcel delivery sys-
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tem. Among factors affecting the drone battery con-

sumption, the payload amount and flight time were two

factors studied in this paper. Based on actual experi-

ments using a drone, we showed that there is a linear

relationship between the BCR and the payload amount.

Based on the linear regression model, two planning

optimization models were proposed to find the depot

locations and drone flight paths for delivery. The SP

model was to find the depot locations by optimizing a

set covering problem and the OP model was proposed

to determine the assignment of customers to depots and

flight paths by including the drone battery endurance

as constraints in the routing optimization problem. The

preprocessing algorithm and several bound generation

methods were proposed to improve the computational

time. The proposed models and the solution method

were implemented in a case study. The numerical re-

sults showed that (1) up to 60% of the flight paths gen-

erated without considering the BCR ended up fail to

complete the delivery trips due to insufficient battery

duration, (2) reversing the flight paths for visiting the

same subset of customers could result in insufficient

battery duration to complete the deliveries.

Our initial test runs revealed that solving the OP

model can be computationally challenging as there are

more customers to cover. Hence, a primal bound gen-

eration algorithm, as well as three different dual bound

methods, are developed and their performance was

compared. The efficiency of the proposed solution al-

gorithm in reducing the computational time was shown

through several randomly generated network. The to-

tal computational times of Lagrangian relaxation and

the BPP-weight method depend on the incompatibility

among the customers. The dual bound by network con-

figuration method computationally outperformed the

other two methods. Furthermore, for all test problems,

the impact of preprocessing algorithm coupled with the

bound generation methods enabled us to solve all test

problems, which was not possible without these meth-

ods. One can extend this work by including other fac-

tors affecting the BCR such as flight speed and envi-

ronmental conditions.
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Appendices

Appendix A

Table A: Phantom 4 Pro+ specifications used in data
collection

Specification Value
Drone type Phantom 4 Pro+
Battery type LiPo 4S
Net weight of drone 3.06 pounds
(including one battery
and 4 propellers)

Appendix B

The data was collected when the battery’s SOC was be-

tween 95% and 15%. For example, it took 2.35 minutes

for the battery charge to drop from 95% to 85% when

the payload was 0.22 lb.

Table B: Flight time data (in minutes) collected with Phantom 4 Pro+

Battery’s SOC (%)
Payload amount

0 lb. 0.220 lb. 0.441 lb. 0.661 lb. 0.882 lb.
95 0.00 0.00 0.00 0.00 0.00
90 1.45 1.28 1.10 1.01 0.74
85 2.65 2.35 2.03 1.90 1.61
80 4.06 3.61 3.11 2.96 2.60
75 5.48 4.85 4.23 4.02 3.54
70 6.84 6.05 5.23 4.97 4.42
65 8.01 7.08 6.16 5.80 5.20
60 9.39 8.26 7.30 6.80 6.11
55 10.77 9.46 8.35 7.69 7.04
50 12.07 10.62 9.33 8.59 7.84
45 13.19 11.58 10.22 9.41 8.61
40 14.54 12.75 11.30 10.35 9.50
35 15.90 13.90 12.19 11.30 10.33
30 17.15 15.03 13.16 12.18 11.15
25 18.32 16.02 14.07 13.07 11.88
20 19.62 17.18 15.12 14.03 12.69
15 20.93 18.32 16.12 15.00 13.57

Appendix C

The parameter M should be large enough that does not

eliminate any feasible solution. This parameter appears

in Constraints (16) and (17).

Constraints(16) : ∀i ∈ {C∪D},∀ j ∈C, i 6= j,∀k ∈ K :

SOC j ≤ SOCi− ti jk(αkli j +βk)+M(1− xi jk),

http://www.gams.com/
http://www. ilog. com
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→M ≥
SOC j−SOCi + ti jk(αkli j +βk)

1− xi jk

i f xi jk = 1, then M ≥ 0

i f xi jk = 0, then

M ≥max
i, j,k
{SOC j−SOCi + ti jk(αkli j +βk)}.

→M ≥max
j
{SOC j}−min

i
{SOCi}+

max
i, j,k
{ti jk} ·max

i, j,k
{αkli j +βk}

→M ≥ 100−min
k
{MinChk}+

max
i, j,k
{ti jk} ·max

k
{αkMaxPk +βk}

The same for the Constraint (17).

Appendix D

In the test case problem, there are 5 candidate locations

to open depots. Table Table D shows whether a cus-

tomer is within the covering range of each candidate

location (value of 1) or not (value of 0).

Table D: Coverage area by each candidate location in
the test case problem

Customer
Candidate locations
1 2 3 4 5

1 1 1 1 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 1 1 1 0 0
5 0 1 1 0 0
6 1 1 1 1 1
7 1 1 1 1 1
8 1 0 1 1 0
9 1 1 1 1 1

10 0 1 1 0 1
11 0 1 1 0 1
12 1 0 1 1 0
13 1 1 1 1 1
14 1 1 1 1 1
15 0 1 1 0 1
16 0 0 1 1 1
17 0 0 1 1 1
18 0 0 1 1 0
19 0 0 1 1 1
20 0 0 1 0 1

Appendix E

Table E: Path reverse of optimal solution for the case
study

Path
Remaining

charge (%)

Drone 1: D1→ 8→ 1→ D1 42.03

Reverse: D1→ 1→ 8→ D1 38.14

Drone 2: D1→ 2→ 12→ D1 19.93

Reverse: D1→ 12→ 2→ D1 14.22 ∗

Drone 3: D1→ 3→ 6→ D1 42.21

Reverse: D1→ 6→ 3→ D1 35.03

Drone 4: D3→ 4→ 5→ 10→ D3 17.25

Reverse: D3→ 10→ 5→ 4→ D3 13.52 ∗

Drone 5: D3→ 7→ 14→ D3 39.05

Reverse: D3→ 14→ 7→ D3 34.92

Drone 6: D3→ 9→ 11→ 17→ D3 26.84

Reverse: D3→ 17→ 11→ 9→ D3 14.2 ∗

Drone 7: D3→ 13→ 18→ D3 19.38

Reverse: D3→ 18→ 13→ D3 12.93 ∗

Drone 8: D3→ 15→ 20→ D3 18.93

Reverse: D3→ 20→ 15→ D3 7.32 ∗

Drone 9: D3→ 16→ 19→ D3 33.34

Reverse: D3→ 19→ 16→ D3 31.29

∗ Infeasible flight path
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