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Abstract—A parallel automated resilience-based restoration
methodology is presented in the power system to minimize impact
due to emergency power outages. In this power restoration
process, a black start (BS) unit is assigned to a small region
(i.e. a section) on an as-needed basis. A mixed integer nonlinear
programming (MINLP) model is developed in order to optimally
sectionalize the region of interest all the while maximizing
the resiliency in terms of load shedding, restoration time, and
network connectivity. For solving this large scale optimization
model, a bi-level programming (BLP) approach is proposed. This
approach consists of two optimization levels. The sectionalization
problem (upper level) is a mixed integer programming (MIP)
model and finds the optimal section set. The restoration problem
(lower level) is a linear model and determines the DC optimal
power flow (DC-OPF) and restoration time for the optimal section
set identified in the upper level. We use the pre-emptive method of
goal programming to deal with multiple conflicting objectives in
the model. Our proposed solution approach outperformed math-
ematical programming with equilibrium constraints (MPEC) and
found near optimal solutions. Numerical results and sensitivity
analysis from two case studies (6- and 118 bus IEEE test systems)
are further discussed to demonstrate the efficiency of the solution
approach.

Index Terms—bi-level programming, infrastructure, pre-
emptive programming, resilience, robustness, power network
restoration, sectionalization.

NOMENCLATURE

Notation
NB Number of buses
NBS Number of Black Start units
NT Number of periods under study (24 h)
ND Number of loads
NL Number of transmission lines
Set
b / b′ Index for buses, b = {1, ..., NB}
m Index for sections, m = {1, ..., NBS}
t Index for time, t = {1, ..., NT}
g Index for generators, g = {1, ..., NBS}
d Index for demand loads, d = {1, ..., ND}
l Index for transmission lines, l = {1, ..., NL}
k Index for iterations
Parameters
wb, ωd Cost of delay in restoration of bus b/demand load d

($/hr)
V OLL Value of lost load ($/MWh)
cg Cost of generation in unit g ($/MWh)
Ul Availability of line l
Pgt,max, Maximum and minimum limits of generation dis-
Pgt,min patch unit g, at time t
PLl,max Power line capacity of line l
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URg/DRg Ramp up/down rate of unit g
CTt Auxiliary current time equal to t at time t
xl Reactance of line l
D Load demand matrix (ND ×NT )
KG Incident matrix of units (NB ×NBS)
KL Incident matrix of lines (NB ×NL)
KD Incident matrix of demands (NB ×ND)
Variables
smb Bus indicator b at section m; equal to 1 if bus b is

belonged to section m; otherwise 0
LSmt/L̃Sdt Total load shedding at section m/load d at time t
Pgt Generation dispatch of unit g at time t
Tmb The total restoration time of bus b in section m
τmb The upper bound of Tmb
τLoadd Load pick up time of demand d
Td The total restoration time of demand d
PLlt Power flow on line l at time t
θbt Phase angle of bus b at time t
Tdt Restoration indicator; equal to CTt when, load shed-

ding of demand d is zero at time t; otherwise big M
( =25h×LSdt)

T Total restoration time vector
PL Line real power flow matrix
PG Unit real power generation matrix
LS/L̃S Load shedding matrix of sections/Load buses

I. INTRODUCTION

Extreme events can cause multiple faults simultaneously,
which may result in cascading outages in power systems [1].
Disasters such as hurricanes can inflict significant damage to
exposed power transmission lines installed in wide open areas
[2]. Blackouts that have recently occurred across the globe
have inspired new research to not only prevent failures before
they happen, but to take the right precautions to undertake a
power system restoration [3]–[12].

A resilient power system has the ability to mitigate ensuing
negative impacts in the presence of natural disasters. Multiple
definitions for a resilient system have been developed in the
literature. For example, UK Energy Resource Center stated
that “a resilient energy system can speedily recover from
shocks and can provide alternative means of satisfying energy
service needs in the event of changed external circumstances”
[13]. The National Infrastructure Advisory Council (NIAC)
described the inherent features of resiliency as robustness,
resourcefulness, rapid recovery and adaptability. Per NIAC
[14], robustness is the ability of the system to withstand
low probability, high impact events, while resourcefulness is
defined as the system’s capability to effectively manage a
disaster as it happens. Rapid recovery is a criterion to assess
the system recovery to the normal state in a short time, and
adaptability is the competence of the system to mitigate future
losses by learning from past similar events. These are the main
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Fig. 1. Resilience Main Features

features considered in the proposed power grid restoration
method in this paper as highlighted in Fig. 1. Investigating the
resilience of a power system, Fig. 2 shows a typical resilience
curve corresponding to an extreme event. The system’s state
axis in Fig. 2 represents the state of a power grid in different
operating states including normal, alert, and restorative [16].
The system operating state includes event progress [t0, tpe],
post-event degraded state [tpe, tr], restorative state [tr, tpr],
post-restoration or alert state [tpr, tir], and post-restoration
activities [tir, tpir]. This paper focuses on restorative actions
during the time period tpe to tpr following an imposed
disturbance to recover the most critical load with the highest
priority in the power transmission system.

To plan a more resilient system against undesirable events,
one can appeal to the level of resiliency of a power system.
Several publications in the past have proposed qualitative
measures [5], however, very few researchers have resorted to
quantitative approaches [6], [17]. A resilience metric can be
defined based on performance function of the system [18],
[19], or designed through a probabilistic resilience assessment
relied on the Poisson distribution for disaster occurrence [20].
One of the aims of this paper is to propose a quantitative
approach to measure the resiliency of power system networks.
Following the guidelines outlined in NIAC [14], five resilience
indexes are parametrized based on four different resiliency fea-
tures, as explained in Fig. 1, along with possible applications
in power system restoration. These indexes are explained in
detail in Section II. The restoration process is influenced by
network topology and energy resources. From the network
topology perspective, the line switching capability enables the
network to restore connectivity, which can be measured ac-
cording to graph theory. Hereby, the connectivity is quantified
by algebraic connectivity and betweenness centrality. These
metrics guarantee the robustness of the resilient network [21]–
[23]. In the energy resources front, the system restoration must
begin with pre-assigned generation units with the self-starting
capability. These units are often referred to as black-starts (BS)
and are able to provide a rapid recovery. The primary purpose

Fig. 2. Power System States Under Disruption Risk [15]

Fig. 3. Aggregated Black-Start Generation Unit

of BS units is to generate initial power for non-black start
(NBS) units that are responsible for generating the necessary
power in the network.

The principal focus of this paper is on the BS units, which
are imposed as the main resources of power generation in
response to network demands during the restoration process.
Accordingly, aggregated BS (ABS) generating units are con-
sidered as self-supported units to improve the rapid recovery,
and resourcefulness resilience features [24]. Figure 3 shows
the ABS unit including microgrids (MGs) with aggregated
distributed energy resources (DERs) in Medium Voltage (MV)
level and traditional BS unit in High Voltage (HV) level.
The application of DERs in ABS units has two advantages:
1) Larger capacity of BS unit: ABS units have much higher
capacities to energize each island. In the other word, the main
assumption of this paper is to use the capability of DER units
to increase the level of resourcefulness capability of BS units
in the restoration process. 2) Lower load pick up time: The
DERs units including renewable energy resources and energy
storage systems (ESS) have a minimum start up and load pick
up times. The ABS units have faster cranking power process in
comparing to NBS units. Therefore, this capability affects the
rapid recovery feature of resiliency. Nevertheless, the proposed
model in Section III can be easily modified to encompass the
NBS units.

Two common strategies for power system restoration are
“build-up” and “build-down” [25]. Build-up is preferable in
restoring large scale networks due to its faster speed [26].
Hence, the proposed restoration model in this paper focuses
on the build-up approach, where the entire system is set
up from small individual grid sections. The restoration of
sections through a sectionalization approach is called “Parallel
Power System Restoration” (PPSR) [25], [27], [28]. This study
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conducts a power grid restoration through the PPSR (build-up)
approach and will end up with the restored sections.

A power grid sectionalization is one of the restoration’s
challenges as dealing with a large-scale network. Due to
the nature of networks, most of the proposed methods come
from graph theory concepts [27]. Heuristics approaches such
as genetic algorithm and simulated annealing are popular in
restoration planning [29], [30]. Generating a set of the possible
restoration plan and checking the feasibility and optimality
of them is a common approach in this category [31]. The
mathematical modeling is another approach in the literature
to find the optimal restoration plan which is merged with the
objectives of a build-up restoration process [28], [32].

The main purpose of the build-up restoration process is
to restore the majority of transmission lines and loads via
sectionalization. Several optimization-based restoration ap-
proaches have been reported in designing an appropriate grid
sectionalization in the literature. For example, minimizing total
electrical distance is used in the power system sectionalization
[33] while minimizing load shedding is also used to find
the optimal strategy [25], [34]. Minimizing restoration time
was also proposed by Liu et.al [28], in which a “Judgment”
matrix, J = (S ⊕ (S ∧ SA)) · ST , was defined to ensure
that each section was fully connected. A drawback of this
approach, however, is in implementation of the Judgment
matrix J into an optimization model. The resulting mixed
integer nonlinear programming (MINLP) model is not easy to
solve for a realistic size of the problem. To address this issue,
a set of linear constraints are introduced as an alternative to
the judgment matrix J.

Furthermore, a BLP approach is used to improve the com-
putational efficiency. As a result the restoration problem is
divided into two separate optimization problems: sectional-
ization and energizing. In summary, this paper brings the
following three contributions to the literature:

1) Resilience of power system networks is quantified to
facilitate the restoration process. The proposed resilience
indexes measure resourcefulness, robustness, rapid recov-
ery, and adaptability of a power grid.

2) We proposed a linear approach to ensure connectivity of
networks in the sectionalization process. Our approach
significantly reduces computational complexity compared
with the nonlinear approach, and it improves the solution
quality compared to existing heuristic approaches.

3) Two efficient solution methodologies are developed to
solve the proposed bi-level restoration model.

The rest of the paper is organized as follows: Section II
describes the resilience quantification and Section III presents
the proposed resilience-based mathematical model based on
BLP. The case studies are presented and analyzed in Section
V and the conclusion of the paper is given in Section VI.

II. RESILIENCE QUANTIFICATION

To quantify the resilience of a power system network, vector
R is introduced that contains five resilience indexes:

R = [∆CRLS ,∆C
R
T , λAL, ξBTW ,Π

R]. (1)

1) Load shedding cost savings (∆CRLS) is the total cost
savings ($) by a load shedding prevention for all sections over
a planning time horizon (NT ):

∆CRLS = V OLL · (D− LS) (2)
This index reflects the availability of the resources in pro-
viding the demands (resourcefulness). It is determined in the
energizing level of the model that will be explained in Section
III.

2) Restoration cost savings (∆CRT ) is a product of consumer
outage rate w ($/hr) and the difference between NT and the
actual time T = [Td]ND×1 spent to restore the system.

∆CRT = wT · (NT · 1−T), (3)
Hence, a faster restoration time corresponds to a higher ∆CRT
(rapid recovery).

3) Weighted algebraic connectivity (λAL) is a spectral graph
index that indicates the robustness of the network topology
[22]. The algebraic connectivity is the second smallest eigen-
value of a network’s Laplacian matrix [21]. Here, a grid bus
can be viewed as a node and a transmission line as an edge in
a graph [6]. The algebraic connectivity λm is calculated for
each section m={1, ..., NBS}, and the algebraic connectivity
of the whole network is calculated as follows:

λAL=
1

NB

NB∑
b=1

NBS∑
m=1

sbm · λm (4)

4) Weighted betweenness centrality (ξBTW ) is defined as

ξBTW =
1∑ND

d=1 wd

(
ND∑
d=1

wd

NB∑
b=1

KDbd · ξb

)
(5)

where, betweenness centrality ξb is evaluated for each bus b=
{1, ..., NB}; ξb is the fraction of the total lengths of all shortest
paths passing through a specific node and the total lengths of
all shortest paths between all node-pairs in a graph [6], [35].

5) Adaptability index (ΠR) is a function of ∆CRLS and ∆CRT
and it is defined as follows:

ΠR = α
(

∆CR,∗LS −∆CR,oLS

)
/∆CR,oLS

+(1− α)
(

∆CR,∗T −∆CR,oT

)
/∆CR,oT

(6)

Here, ∆CR,∗LS , ∆CR,oLS , ∆CR,∗T , and ∆CR,oT are respectively the
optimal and initial values of ∆CRLS and ∆CRT . Parameter α ∈
[0, 1] is given by a decision maker based on his/her preference.

All these indexes are defined in such a way that a higher
value reflects better performance. Hence, we optimize the
proposed resilience vector R in the following order. First,
two indexes (∆CRLS ,∆C

R
T ) are optimized in a resilience-based

model (7) described in Section III. Next, λAL, and ξBTW
are evaluated at the restoration calculation process. Since the
last index (ΠR) is considered in the first two indexes, it is
maximized as a result of optimizing the first two indexes
(∆CRLS ,∆C

R
T ). These considerations have been elaborated in

the proposed optimization model in the following section.

III. MODEL DESCRIPTION

The goal of the proposed resilience-based model is to
optimize the first two resilience indexes (∆CRLS ,∆C

R
T ). This

can be achieved by minimizing the load shedding cost and the
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Fig. 4. Bi-level programming

cost of restoration time in the objective function. Additionally,
the power generation cost term is added to the objective
function to minimize cost of the entire system. Note that all
units (w ($/hr), V OLL ($/MWh), and c ($/MWh)) are based
on dollars.

where, ei is a vector of ones for i = 1, 2, 3: e1 =
[1]NBS×1, e2 = [1]NT×1, and e3 = [1]NL×1. The model is
constrained by the physical operation constraints of generation
units (7b) and (7c), transmission line flow limitations (7d)-(7f),
power flow equations (7g), and a set of novel restoration and
sectionalization constraints (7h) and (7i) that show the rela-
tionship among the restoration time, sectionalization variables
and state variables of the power system. These constraints are
presented in detail in the Subsections IV-A1 and IV-A2.

min
T,LS,P,PL,S,U

ωTT + V OLL · eT1 · LS · e2 + cTP · e2

(7a)
s.t. PG,min ≤ PG ≤ PG,max (7b)
−DR ≤ PG,t −PG,(t−1) ≤ UR, ∀t (7c)∣∣PL− diag−1(x) ·∆θ

∣∣ ≤M · (e3 −U) · eT2 (7d)
|PL| ≤ PLmax · diag(U) (7e)
θref = 0 (7f)
KG ·PG + KL ·PL + KD · LS = KD ·D (7g)
fs(LS,S,T) ≤ 0 (7h)
fu(S,U) ≤ 0 (7i)

The objective function (7a) and the above-mentioned con-
straints can be split into two different technical parts: section
formation and optimal load restoration. Section formation
sectionalizes the grid by assigning the load buses to black start
generation units based on the topology of the grid. Optimal
load restoration finds the DC-OPF solution for each section
which gives the optimal restoration time of each load. In order
to implement the decomposition and solve the model, two
approaches are proposed: BLP [36] and MPEC methods.

IV. SOLUTION METHODOLOGY

A. Bi-level programming

The BLP approach consists of an upper and lower level of
the optimization model. The upper level problem is for grid
sectionalization, while the lower level problem is for optimal
load restoration, which is termed energizing. Figure 4 shows a
basic BLP structure in which T is the restoration time and S
is the sectionalization set. Hereby, T is a controlled variable

from lower level and S is a controlled variable from the upper
level model.

The upper level starts with an initial T0 and sends optimal
S (i.e., S∗) to the lower level, the lower level optimization
model then finds and returns optimal T (i.e., T∗) to the upper
level. This process repeats until both of the following stopping
criteria are satisfied:∥∥∥Sk − Sk−1

∥∥∥
2

= 0 and
∥∥∥Tk −Tk−1

∥∥∥
2

= 0, (8)
where, k is the iteration counter.

1) Upper level-sectionalization: This sectionalization level
aims to identify the optimal network’s sections for restoration
process. The model might be complicated to solve in large
scale network application because of non-linear mixed integer
constraints (7i) for determining the states of transmission lines
U. Therefore, to solve it at lower complexity, all transmission
line flow constraints in this level are moved to lower level and
the load balance equation (7g) is replaced with a set of single
load balance constraints at each section.

The sectionalization model minimizes the total cost of
restoration time, load shedding, and power generation. The
power generation limits and load balance constraints of each
section are presented at (9b)-(9c), where S = [smb]NBS×NB
is the sectionalization set and smb is equal to one, if bus b
assigned to section m; otherwise smb is equal to zero.

min
S,P,LS,τ

∑NBS
m=1

∑NB
b=1 wb · τmb

+
∑NT
t=1

∑NBS
m=1 VOLL · LSmt

+
∑NT
t=1

∑NBS
g=1 Cg · Pgt

(9a)

s.t. Pg,min ≤ Pgt ≤ Pg,max,∀g,∀t (9b)
S ·KG ·PG + LS = S ·KD ·D (9c)
τmb ≥ smb · Tmb+M ·(1−smb),∀m,∀b (9d)

smb ≤
∑NB
b′=1 smb′ · ab′b (9e)

ST · e1 = e4 (9f)
S · e4 ≥ e1 (9g)

The first term of (9c) is a product of S as a binary matrix and
PG as a real matrix variable. This constraint is reformulated
to be linear with given Lemma in [37]. In this order, the non-
linear term is replaced with matrix Q = [qmt]NBS×NT and
following constraints are added to the model:

S ·KG ·PG,min ≤ Q ≤ S ·KG ·PG,max (10)
(1− S ·KG) ·PG,min ≤ PG −Q ≤ (1− S ·KG) ·PG,max

(11)
In constraint (9d), τmb is an upper bound of restoration time

of bus b in section m, and Tmb is the restoration time of bus
b in section m. In this model, Tmb a controlled variable from
the lower level comprising of:

Tmb = TLoadmb + T̄Switchmb + T̄Relaymb + T̄Delaymb (12)
The first term TLoadmb is dependent on the generators loading

time and the order of load recovery in sections that is updated
at each iteration. Other terms include the switching opera-
tion duration T̄Switchmb , the relay reconfiguration time duration
T̄Relaymb , and the expected value of uncertain delay T̄Delaymb

caused by operational uncertainties. With the exception of
TLoadmb , the time elements in (12) are constant and estimated
with Dijkstras algorithm in [28]. In this order, the length of the
lines are assumed to represent the restoration time Tmb rather
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than the geographical distance. Considering an initial value for
TLoadmb , Dijkstras algorithm gives us the shortest path between
each bus and each BS unit. The TLoadmb is ideally initiated with
zero and it is updated iteratively by the optimal solution of
the energizing level model.

Constraints (9e)-(9g) are the sectionalization constraints
such that constraint (9e) prevents locating any single bus
without connectivity in the sections, where A = [abb′ ]NB×NB
is the electrical connectivity matrix that is a symmetric binary-
matrix with unit off-diagonal elements abb′ =1 (b 6=b′), where
there is a link between buses b and b′; otherwise abb′ is equal
to zero. Constraint (9f) ensures the assignment of each bus to
exactly one section, and (9g) eliminates empty sections where
e1 = [1]NBS×1 and e4 = [1]NB×1.

2) Lower level-energizing: The energizing level model at-
tempts to find the optimal restoration time based on the given
sectionalization set from the upper level model. To model the
power grid, the DC-OPF with DC power flow under system
steady state operation is conducted in (13). The DC power flow
equation is a linearization of the AC power flow and merges
computational simplicity and straightforwardness through a set
of linear equations with an acceptable level of accuracy and
convergence speed.

There are two sets of generation resources at each section:
single ABS generation unit and multiple load shedding (neg-
ative load). These resources come with their costs include
marginal generation and load shedding costs. Therefore, a
scheduling model is required to find the optimal value of
power generation and a minimum level of load shedding in
each section as considered in first and second terms of (13a),
respectively.

Power generation limits and ramping up and down con-
straints are presented in (13b) and (13c). Transmission line
flow equation and its upper and lower limits are given in
constraints (13d)-(13e). The angle of reference bus is assumed
to be zero (13f). Constraint (13g) is the load balance constraint.
During the energizing process, the exact time of getting zero
load shedding in a load bus is identified as its load pick up time
(TLoadd ). The constraint (13h) shows the relationship between
restoration time and load shedding value.

min
P,PL,LS,τLoad

∑NT
t=1

∑ND
d=1 V OLL · L̃Sdt

+
∑NT
t=1

∑NBS
g=1 Cg · Pgt

−
∑ND
d=1 ωd · τ

Load
d

(13a)

s.t. Pgt,min ≤ Pgt ≤ Pgt,max,∀g,∀t (13b)
−DRg ≤ Pgt − Pg(t−1) ≤ URg, ∀g,∀t (13c)
|PLlt −∆θlt/xl| ≤M · (1− Ul), ∀l,∀t (13d)
|PLlt| ≤ PLl,max · Ul,∀l,∀t (13e)
θref = 0 (13f)

KG ·PG + KL ·PL + KD · L̃S = KD ·D (13g)

τLoadd ≤ CT t +M · L̃Sdt, ∀d,∀t (13h)
The restoration time in the energizing level is limited by

delay which comes from the start-up characteristics function
of an aggregated BS unit includes the start-up time of the
traditional BS unit, DER units, and microgrids. This delay is
dependent on the maximum available generation capacity of
the BS units Pgt,max which is modeled as a piece-wise linear

Fig. 5. Bi-level programming flowchart

function of time t:

Pgt,max = 0, t < Tgα
RUg · (t− Tgα), Tgα ≤ t < Tgβ

Pg,max, t ≥ Tgβ

(14)

The ABS units with fast response capability of the DERs
do not have the same cranking power process of NBS units. In
(14), the available capacity (Pgt,max) of an ABS unit cannot
be negative as it was negative for the NBS units at warming
up time. The ABS generation unit in our model switches at
time zero, Tgα = 0, when it begins to generate power. Then,
depending on its ramp-up rate RUg , it generates more power
until its nominal maximum generation capacity at time Tgβ .

The BLP flowchart is demonstrated at Fig. 5. Also, its
algorithm has been elaborated, in Algorithm 1, in which
demonstrates that after solving the sectionalization problem,
the line availability U and two indexes from resilience vec-
tor (1) λAL and ξBTW are determined in step 4 and 5.

Algorithm 1 The proposed bi-level programming algorithm
1: Initialize k, T
2: while not meeting the stopping critera (8) do
3: Solve the sectionalization problem via PEP for Sk

4: Update Uk based on Ŝk: Ukl =
∑NBS
m=1|l∼(b,b́) ŝ

∗
mb · ŝ∗mb́

5: Calculate λAL and ξBTW
6: Solve the restoration problem via PEP for τ k,Load

7: CalculateT̃k = KD · τ k,Load
8: for b = 1, 2, · · · , NB do
9: for m = 1, 2, · · · , NBS do

10: if T k−1
mb ≥ T̃ kb or T k−1

mb = T 0
mb then

11: T kmb = T omb + smb · T̃b,∀smb = 1
12: end if
13: end for
14: end for
15: Calculate ∆CRLS ,∆C

R
T , and ΠR

16: k = k + 1
17: end while
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B. MPEC approach
There is also a close association between BLP and math-

ematical programming with equilibrium constraints (MPEC)
approach. Both approaches are composed of two-level opti-
mization models where the upper level’s constraints region
is embedded from the optimal solution of lower level [33].
The MPEC model of the power system restoration in this
paper minimizes the objective function (15a) with respect
to constraints (15b)-(15p), (9b)-(9g), (13g), and (13f), where
e5 = [1]ND×1, E = [1]ND×NT , and µi : i ∈ {1, · · · , 9}
and υj : j = 1, 2 are the dual variables. Hereby, the
constraints (15b)-(15p), (13g), and (13f) are from the Karush-
Kuhn-Tucker (KKT) conditions of the lower level model and
(9b)-(9g) are the upper level original constraints.

min
S,P,LS,τ

wT · τ · e1 + V OLL · eT1 · LS · e2

+CT ·PG · e2
(15a)

s.t.
C · eT2 + KGT · υ1 + µ1 − µ2

+∆µ3 −∆µ4 = 0
(15b)

KLT · υ1 + µ5 − µ6 + µ7 − µ8 = 0 (15c)

V OLL ·E + KDT · υ1 −M · µ9 = 0 (15d)

ω · eT2 + µ9 = 0 (15e)

KG · υ2 − diag−1(x) ·KL(µ5 − µ6) = 0 (15f)

µT1 · (PG −PG,max) = 0 (15g)

µT2 · (PG,min −PG) = 0 (15h)

µT3 · (∆PG −UR) = 0 (15i)

µT4 · (DR−∆PG) = 0 (15j)

µT5 · (PL− diag−1x ·∆θ −M(e3 −U) · eT2 ) = 0 (15k)

µT6 · (−M(e3 −U) · eT2 −PL + diag−1x ·∆θ) = 0
(15l)

µT7 · (PL−PLmax) = 0 (15m)

µT8 · (−PLmax −PL) = 0 (15n)

µT9 · (T
Load · eT2 − e5 ·CTT −M · ˜LS) = 0 (15o)

µi ≤ 0, ∀i ∈ {1, · · · , 9} (15p)

C. Pre-emptive goal programming
The proposed bi-level model has multiple terms in its ob-

jective function: restoration time, load shedding, and operation
cost in both levels. We assume that the priority of these
goals are known in advance. Hence, pre-emptive programming
(PEP) is used to solve these models. PEP automatically takes
care of the issue of different scales among these objective
terms [38]. For example, given the order of priority in order
as (1) to minimize load shedding, (2) to minimize restoration
time, and (3) to minimize operation cost, one can follow the
steps described below:

Step 1 (a): Solve optimization model (7) with a single
objective function of minimizing load shedding, i.e.

minV OLL · eT1 · LS · e2

The optimal solution LS∗ gives a theoretical lower bound on
load shedding cost, i.e.,

V OLL · eT1 · LS · e2 ≥ V OLL · eT1 · LS∗ · e2.

Step 1 (b): Based on the result of Step 1(a), a new constraint
(16) is constructed and added to optimization model (7):

V OLL ·eT1 · LS ·e2 ≤ V OLL ·eT1 · LS∗ ·e2 + εls, εls ≥ 0,
(16)

where, εls is an auxiliary variable to ensure feasibility of
this newly added constraint in the next step. Similarly, these
two steps are repeated for the second objective in sequence.

Step 2 (a):
minωTT + κls · εls

Step 2 (b):
ωTT ≤ ωTT∗ + εt, εt ≥ 0 (17)

Step 3: The last objective is defined to be the objective of
the model (7) with newly added constraints (16) and (17):

min cTP · e2 + κls · εls + κt · εt
Step 4: The final optimal value for the original objective

function in the PEP algorithm is:

V OLL · eT1 · LS∗ ·e2 + ωTT∗ + cTP∗ ·e2 + ε∗ls + ε∗t

V. CASE STUDIES

Three case studies are designed to study model perfor-
mance based on two factors: programming model and size
of the network. Two programming models, including BLP
and MPEC models, are presented in Section III, and two
modified IEEE test systems consisting of 6-bus as a small
scale and 118-bus as a large scale networks described in [40]
are considered to illustrate the performance of the proposed
restoration algorithm. In order to discuss the efficiency of the
proposed approach in detail, this paper considers the following
three cases:

Case I: The BLP model in small scale network.
Case II: The BLP model in large scale network.
Case III: The MPEC model in small and large scale grids.
These cases have been solved by using CPLEX 12.3.0.0 [41]

under GAMS 24.4.5 [42] on a PC with Intel Xeon 2.53GHz,
12-core, and 128GB of RAM, to demonstrate the performance
of the proposed resilience-based restoration; both models are
solved over a daily time horizon.

Three BS generation units are utilized for the modified IEEE
6-bus test system located at buses 1, 2, and 6, and eight BS
generation units are placed at buses 12, 25, 49, 59, 69, 80,
89, and 100 [10] in modified IEEE 118-bus test system. It is
assumed that the proposed restoration and energizing strategy
is applied after the cascading failure of an entire system, in a
sense that all generation units and transmission lines are out
of service or damaged after extreme event.

Generation units, demands, and branch input data are given
in [40]. Table II prioritizes the power outage cost rate, wb,
of individual consumers at different sectors. For example,
hospitals and data centers as critical consumers are defined in
the “large users” sector with wb equal to 1000 which shows the
highest priority. To exhibit the performance of the model with
respect to demand priority, all consumers are aggregated into
three main categories of loads with the high, average, and low
weights. In the next subsection, the corresponding numerical
results are specified for each case study. It should be noted that
the zero injection buses in the network (without generation
units and loads) have the lowest priority with minimum value
of outage cost rate, wb.
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Fig. 6. Optimal sectionalized 6-bus IEEE test system

Fig. 7. 118-bus’s sectionalized grid

A. Case I: The BLP model in small scale network

The BLP model (9) and (13) are implemented on a modified
IEEE 6-bus test system. Figure 6 shows the optimal section-
alized power grid. Table I presents the optimal load shedding,
restoration time, and the elements of resilience vector R.

Although the selected sectionalization is optimal for case I,
there is 12% overall load shedding. In the first section, BS unit
1 has enough capacity to supply the load on bus 4, but line 1-4
limits the power flow to 100MW and causes 5% load shedding.
In the second section, BS unit 2 and line 2-3 have enough
capacity to provide the load on bus 3. In the last section, BS
unit 3 and line 5-6 have lower capacity than the demanded
load on bus 5 which leads to 26% unserved demand.

From a connectivity perspective, there are just two buses
in each section. The obtained grid has the best value of 2 for
algebraic connectivity (λAL) because each load bus is supplied
by one BS unit at each section, and there is no islanded load
bus in the optimal solution. Betweenness centrality (ξBTW ) is
equal to zero; upon its definition, no bus is located between
any pair of buses within the sections. Since it is a small scale
case, it is solved in one iteration, and the last resilience index
ΠR is not applicable.

TABLE I
CASE I AND II RESULTS VS. CASE III

Case CPU
time(s)

LS∗

(%)
T ∗

(h)
Resilience vector (R)

∆CRLS
($M)

∆CRT
($K)

λAL ξBTW

I 3.01 12.00 9.4 4.90 17.5 2 0
III-6bus 2.29 12.18 9.4 4.89 17.5 2 0
II 60.64 11.86 11.07 75.26 589 0.089 18.56
III-118bus 801.91 8.98 9.27 77.7 536 0.124 31.02

TABLE II
CONSUMER OUTAGE COST RATE ($/HR).

Category Consumer Sector w
High Large users /Residential /Industrial 600-1000

Average Commercial /Govt. & inst. 100-300
Low Agricultural /Office & building 20-100

Fig. 8. Resilience indexes: Load shedding & restoration cost saving

B. Case II: the BLP in large scale network

The optimal sectionalized grid topology for case II is
depicted at Fig. 7. The original grid is decomposed to eight
sections. Figures 8, 9, 10, and 11 present the final restoration
results for one run of the BLP algorithms on a large scale
instance. To evaluate the sensitivity of the BLP algorithm in
finding the optimal sections, the electrical loads are catego-
rized to different levels within outage cost rate.

Figure 8 shows the trend of first and second resilience
indexes at each iteration of BLP solution. These two indexes
are raised dramatically due to restoration of most load buses,
particularly all critical loads in high category. The load shed-
ding cost saving (∆CRLS) is settled down to $505K from the
initial iteration $482K. The restoration cost saving (∆CRT ) is
also increased by $1700K.

Figure 9 presents the weighted algebraic connectivity (λAL)
and betweenness centrality (ξBTW ), third and forth elements
of resilience vector R. The transient behaviour at the begin-
ning few iterations implies that the pattern of de-energized
buses is changed among the sections. Hence, the grid has not
been established yet and its connectivity is very low. After
a while, the BLP finds the optimal place of the buses at
each section where they are converged to the higher value
at iteration 11. The minimum level of λAL = 0 occurred at
iteration 3 and 4, when 43% of lines got disconnected. Also, a
pick value is observed for ξBTW = 42.21 at iteration 2 while
the values of ∆CRLS and ∆CRT , as presented in Fig. 8, are not
high enough, and the cost of restoration time in Fig. 10 is on
the maximum level $419K, hence, this temporal peak value
could not be an optimal value. Finally, ξBTW converged to 19
at iteration 11.

The last resilience index, adaptability (ΠR) is also dis-
cussed. Adaptability with α = 0.5 is 36% which shows
36% improvement comparing initial iteration’s results to the
optimal result. Figure 10 shows some enhancement in cost of
restoration after peak value in the cost of restoration curve at
iteration 2 which is a smooth decline of the cost of restoration,
from it maximum $419K to $368K at the final iteration 11.
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Fig. 9. Resilience indexes: Weighted algebraic connectivity & betweenness
centrality

Fig. 10. Cost of restoration time and average restoration time

The average restoration time in Fig. 10 depicts a descending
trend to the optimal restoration settling time of 11.05 hour.
Figure 11 presents the optimal restoration time of high to

low consumer categories over iterations. At the first iteration,
although all buses from high category restored within 11 hours,
results show 15688MW and 28569MW load shedding in av-
erage and low category, respectively. As presented at iteration
2, these two categories energized faster than the first iteration
while 1306MW load shedding happened in high category.
Thereupon, the restoration times decreased until iteration 9 in
which the optimal restoration time for all categories is obtained
and no load shedding remained in high category loads. The
sequences of optimal values of the load shedding and power
generation cost in the energizing level are illustrated at Fig.
12. A 60% raise in generation cost is presented by Fig. 12
while load shedding cost is reduced by 60%; in view of the
fact that, first, both are minimized in the objective function
of the energizing model and, second, as the power generation
marginal cost (C) is cheaper than the loss of load cost rate

Fig. 11. Restoration time of high-average-low categories

Fig. 12. Load shedding vs. power generation cost

value (V OLL), the cost of power generation is less than the
load shedding cost curve.

C. Case III: The MPEC model in small and large scale grids

Solving the developed MPEC model (15) for the small and
large scale networks, gives the optimal solution for the prob-
lem. As presented in Table I, the MPEC solution methodology
solved case I in 2.291 seconds which is almost the same as
the BLP solved in 3.012 seconds. In case II, MPEC found the
optimal solution in 13 minutes and 21.907 seconds while the
BLP method solved the model in 1 minute and 2.518 seconds.
Hence, the solutions of BLP are very close to MPEC and can
be achieved faster in a large scale network.

From the results presented in the case studies, following
observations can be made regarding these solution methods:
• BLP provides load shedding of 11.86% which is just

2.88% above MPEC that caused almost the same value of
∆CRLS for both approaches. The restoration time achieved
by BLP is 1.8 hours more than MPEC while ∆CRT shows
better value for BLP than MPEC. In view of this fact,
BLP restored some loads in high category faster than
MPEC. From connectivity perspective, MPEC gives a
much more robust solution corresponding to a higher
value in λAL and ξBTW .

• The BLP results were close enough to MPEC’s results
while it could solve the model faster than MPEC. There-
fore, one can use the BLP if finding a sub-optimal
solution fast is more important than the solution quality.

D. Model effectiveness analysis

As explained in Section I, the power system restoration
has been done through multiple approaches in the literature.
Among these approaches two of the most relevant has been
chosen: the first is [39] with ordered binary decision diagram
(OBDD)-based system sectionalizing method and the second is
[31] which has taken a minimum-tree-based approach. Their
results for IEEE 118-bus test case have compared with the
proposed resilience-based restoration’s results in this paper in
terms of two criteria, load shedding and restoration time. Note
that, the assumptions about available BS units are different
in these studies in comparison with the current paper. It is
considered that the robustness metrics which are describing
the connectivity of network’s sections in restoration process
have not been calculated in any of these two literature studies.
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TABLE III
COMPARISON ON THE RESTORATION METHODS FOR IEEE 118-BUS CASE

OBDD Minimum tree BLP model
Total load shedding 54% 39.44% 11.86%

Average restoration time N/A 14.18 h 11.07 h

Table III presents the OBDD method results in 54% load
shedding which is much worse than the results of our proposed
model and the restoration time was not provided in [39].
The second research work in [31] presents the restoration
time of each section with the average of 14.18 hours, while
by our proposed study, the restoration has been done within
11.07 hours. The load shedding amount by the minimum tree
approach is also about 27% more than what is got in our
BLP model by 11.86%. Therefore, in conclusion, the proposed
methodology achieved better value in both load shedding and
restoration time.

E. Sensitivity analysis on resilience indexes

The proposed resilience vector encompasses five indexes.
Two of these indexes, algebraic connectivity (λAL) and be-
tweenness centrality (ξBTW ) describes the robustness of the
network while it is de-energized. In this section, a sensitivity
analysis is performed to show how the power system perfor-
mance could be influenced by these indexes. The other three
indexes are direct functions of system’s performance in terms
of the load shedding and the restoration time.

The sensitivity of these robustness indexes is evaluated with
respect to the amount of load shedding per iteration to capture
the dependency of the robustness indexes and total served load
at each section and each bus. These changes are described by
two sensitivity indexes of SλLS and SξLS .

SλLS =
∂λm

∂LSm.
(18)

SξLS =
∂ξd

∂L̃Sd.
(19)

Where, LSm. and L̃Sd. are the summation of load shedding over
the time, averaged per section and demand buses respectively as
shown in (20) and (21). Since the results is available per iteration,
the introduced sensitivity indexes are provided by discrete values of
iterations (k) as follows:

LSd. =
1

ND

NT∑
t

ND∑
d

LSdt (20)

LSm. =
1

NBS

NT∑
t

NBS∑
d

LSmt (21)

Sλ,kLS =

(
∆λm

∆LSm.

)k
=

λm
k+1 − λm

k

LSm.
k+1 − LSm.

k
(22)

Sξ,kLS =

(
∆ξd

∆L̃Sd.

)k
=

ξd
k+1 − ξd

k

L̃Sd.
k+1

− L̃Sd.
k

(23)

Where, λm
k

is the average of algebraic connectivity of the
sections at iteration k. The average of Betweenness centrality
of buses with demand on them at iteration k is presented by
ξd
k
. The average of sections’ load shedding and demands’ load

shedding are also shown by LSm.
k

and L̃Sd.
k

respectively
per section. The proposed indexes are detemined following
Algorithm 2.

Fig. 13. Algebraic connectivity and betweenness centrality vs. load shedding

Figure 13 shows the changes of sensitivity indexes over
iterations for the large-scale case of IEEE 118-bus test system.
As demonstrated in most of the iterations, it gets a negative
value which indicates that effect of algebraic connectivity
and betweenness centrality on load shedding is decreasing.
In optimal iteration, minimum value of load shedding implies
the maximum level of algebraic connectivity and betweenness
centrality.

Algorithm 2 The sensitivity indexes calculation
1: Initialize k, T
2: Solve the BLP model at the first iteration and update T
3: while not meeting the stopping critera (8) do
4: Solve the BLP model and update T
5: Detemine Sλ,kLS and Sξ,kLS
6: k = k + 1
7: end while

VI. CONCLUSION

In this work, the problem on power system restoration was
considered after complete blackout, targeting the maximum
resilience. The problem was solved by sectionalizing the
network and penetrating one BS unit per section. A BLP
model with linear sectionalization constraints caused lower
complexity and faster convergence than a single-level model.
Such a problem was solved with the pre-emptive programming
approach. Through two case-studies based on the 6-bus and
118-bus IEEE, the sequence of optimality shows 15% and
200% elevation on load shedding and restoration cost savings.
Further comparison with the MPEC equivalence of the prob-
lem, was presented near the global optimality of the solution
by the numerical results. Additionally, in the sensitivity anal-
ysis, the performance of robustness indexes were discovered
by varying the load shedding at each iteration for buses and
sections. Future research can be completed on this topic,
from different perspectives such as considering uncertainties
on loads, or vulnerability of the grid under imposed shocks.
The proposed model can provide an emergency restoration
to any de-energized transmission network with a few simple
modifications.

REFERENCES

[1] Y. Liu and C. Singh, “A methodology for evaluation of hurricane impact
on composite power system reliability.” IEEE Transactions on Power
Systems, vol. 26, no. 1, pp 145-152, 2011.



10

[2] Y. Liu and C. Singh, “Evaluation of Hurricane Impact on Failure Rate
of Transmission Lines Using Fuzzy Expert System.” Intelligent System
Applications to Power Systems, ISAP’09. 15th International Conference
on. IEEE, 2009.

[3] R. Berg, “Hurricane Ike (AL092008) 114 September 2008.” National
Hurricane Center Tropical Cyclone Rep, 2009.

[4] G. Li, P. Zhang, P .B. Luh, W. Li, Z. Bie, C. Serna and Z. Zhao, “Risk
analysis for distribution systems in the northeast US under wind storms.”
IEEE Transactions on Power Systems, vol 29, no 2, pp 889-898, 2014.

[5] M. Panteli, P. Mancarella, S. Wilkinson, R. Dawson, and C. Pickering,
“Assessment of the resilience of transmission networks to extreme wind
events.” In PowerTech, 2015 IEEE Eindhoven, pp. 1-6. IEEE, June 2015.

[6] S. Chanda, and A.K. Srivastava, “Quantifying resiliency of smart power
distribution systems with distributed energy resources.” in Industrial
Electronics (ISIE), 2015 IEEE 24th International Symposium, 2015.

[7] C. Middlebrook, V. Ranganathan, and N. N. Schulz, “A case study
on blackout restoration as an educational tool”. IEEE Transactions on
Power Systems, 15(2), 467-471, 2000.

[8] M. M. Adibi, and L. H. Fink. “Power system restoration planning.” IEEE
Transactions on Power Systems 9.1: 22-28. 1994.

[9] T. Nagata, and H. Sasaki,“A multi-agent approach to power system
restoration.” IEEE Transactions on power systems, 17(2), 457-462, 2002.

[10] S. A. N. Sarmadi, A. S. Dobakhshari, S. Azizi, and A. M. Ranjbar, “A
sectionalizing method in power system restoration based on WAMS.”
IEEE Transactions on Smart Grid, 2(1), 190-197, 2011.

[11] J. N. Jiang, Z. Zhang, M. Fan, G. Harrison, C. Lin, M. Tamayo, and V.
Perumalla, “Power system restoration planning and some key issues.”
In 2012 IEEE Power and Energy Society General Meeting (pp. 1-8).
IEEE. July 2012.

[12] J. Q. Torts, and V. Terzija, “A smart power system restoration based on
the merger of two different strategies.” In 2012 3rd IEEE PES Innovative
Smart Grid Technologies Europe (ISGT Europe) (pp. 1-8). IEEE, Oct
2012.

[13] M. Chaudry, P. Ekins, K. Ramachandran, A. Shakoor, J. Skea, G. Strbac,
X. Wang, and J. Whitaker, “Building a resilient UK energy system.”
2011.

[14] A.R. Berkeley III, M. Wallace, and C. COO, “A framework for
establishing critical infrastructure resilience goals.” Final Report and
Recommendations by the Council, National Infrastructure Advisory
Council, 2010.

[15] M. Panteli and P. Mancarella, “The grid: Stronger, bigger, smarter?:
Presenting a conceptual framework of power system resilience.” IEEE
Power and Energy Magazine, 13(3): 58-66, 2015.

[16] L. H. Fink and K. Carlsen, “Operating under Stress and Strain.” IEEE
Spectrum, March 1978, pp. 48-53.

[17] Y. Lu, C.Y. Chang, W. Zhang, L.D. Marinovici, and A.J. Conejo, “On
Resilience Analysis and Quantification for Wide-Area Control of Power
Systems.” arXiv preprint arXiv:1604.05369 , 2016.

[18] M. Ouyang, and Z. Wang, “Resilience assessment of interdependent
infrastructure systems: With a focus on joint restoration modeling and
analysis.” Reliability Engineering & System Safety, 141, pp.74-82, 2015.

[19] M. Panteli, P. Mancarella, D. Trakas, E. Kyriakides, and N. Hatziar-
gyriou, “Metrics and Quantification of Operational and Infrastructure
Resilience in Power Systems.” IEEE Transactions on Power Systems,
2017.

[20] M. Ouyang, and L. Dueas-Osorio, “Multi-dimensional hurricane re-
silience assessment of electric power systems.” Structural Safety, 48,
pp.15-24, 2014.

[21] M. Fiedler, “Algebraic connectivity of graphs.” Czechoslovak mathemat-
ical journal, 23(2): p. 298-305, 1973, 2014.

[22] L.C. Freeman, “A set of measures of centrality based on betweenness.”
Sociometry: p. 35-41. 1977.

[23] A. Bigdeli, A. Tizghadam, and A. Leon-Garcia. “Comparison of network
criticality, algebraic connectivity, and other graph metrics.” in Proceed-
ings of the 1st Annual Workshop on Simplifying Complex Network for
Practitioners. ACM, 2009.

[24] L.J.A. Peas, C.L.F. Moreira, and O. Resende, “Control strategies for
microgrids black start and islanded operation.” Int. J. Distr. Energy
Resources, 2, pp.211-231, 2006.

[25] L. H. Fink, K. L. Liou, and C. C. Liu, “From generic restoration actions
to specific restoration strategies.” IEEE Transactions on power systems,
10(2), 745-752, 1995.

[26] F.F. Wu, and A. Monticelli, “Analytical tools for power system
restoration-conceptual design.” IEEE Transactions on Power Systems,
3(1), 10-26, 1988.

[27] J. Quirs-Torts, M. Panteli, P. Wall, and V. Terzija, “Sectionalising
methodology for parallel system restoration based on graph theory.” IET
Generation, Transmission and Distribution, 9(11), 1216-1225, 2015.

[28] W. Liu, Z. Lin, F. Wen, C. Y. Chung, Y. Xue, G. Ledwich, “Sectionaliz-
ing strategies for minimizing outage durations of critical loads in parallel
power system restoration with bi-level programming.” International
Journal of Electrical Power & Energy Systems, 71, 327-334, 2015.

[29] W.P. Luan, M.R. Irving, and J.S. Daniel, “Genetic algorithm for supply
restoration and optimal load shedding in power system distribution
networks.” IEE Proceedings-Generation, Transmission and Distribution,
149(2), pp.145-151, 2002.

[30] S. Toune, H. Fudo, T. Genji, Y. Fukuyama, and Y. Nakanishi, “
Comparative study of modern heuristic algorithms to service restoration
in distribution systems.” IEEE Transactions on Power Delivery, 17(1),
pp.173-181, 2002.

[31] C. Li, J. He, P. Zhang, and Y. Xu, “A Novel Sectionalizing Method for
Power System Parallel Restoration Based on Minimum Spanning Tree.”
Energies, 10(7), p.948, 2017.

[32] L. Sun, C. Zhang, Z. Lin, F. Wen, Y. Xue, M.A. Salam, and S.P. Ang,
“Network partitioning strategy for parallel power system restoration.”
IET Generation, Transmission & Distribution, 10(8), pp.1883-1892,
2016.

[33] E. Cotilla-Sanchez, P. D. Hines, C. Barrows, S. Blumsack, and M.
Patel, “Multi-attribute partitioning of power networks based on electrical
distance.” IEEE Transactions on Power Systems, 28(4), 4979-4987,
2013.

[34] W. Liu, Z. Lin, F. Wen, and G. Ledwich, “A wide area monitoring system
based load restoration method.” IEEE Transactions on Power Systems,
28(2), 2025-2034, 2013.

[35] A. Sydney, C. Scoglio, and D. Gruenbacher, “Optimizing algebraic
connectivity by edge rewiring.” Applied Mathematics and computation,
219(10): p. 5465-5479, 2013.

[36] A. N. Sadigh, M. Mozafari, and B. Karimi, “Manufacturerretailer supply
chain coordination: A bi-level programming approach.” Advances in
Engineering Software, 45(1), 144-152, 2012.

[37] F. Glover, “Improved linear integer programming formulations of non-
linear integer problems.” Management Science, 22(4), 455-460, 1975.

[38] J. P. Ignizio, “Goal programming and extensions.” Lexington Books,
1976.

[39] C. Wang, V. Vittal, and K. Sun, “OBDD-based sectionalizing strategies
for parallel power system restoration.” IEEE Transactions on Power
Systems, 26(3), pp.1426-1433, 2011.

[40] ”A Parallel Sectionalized Restoration Scheme for Resilient
Smart Grid Systems - Data Set” [Online], Available:
http://e2map.egr.uh.edu/publications.

[41] The ILOG CPLEX, 2008. [Online]. Available: http://www.ilog.com/
products/cplex/.

[42] R. E. Rosenthal, GAMS: A Users Guide, GAMS Development Corpo-
ration, Washington, Sep. 2016.

Saeedeh Abbasi is a Ph.D. candidate in the In-
dustrial Engineering Department at the University
of Houston. Her research interests include mathe-
matical modeling, robust optimization, smart grid
system, and network resiliency.

Masoud Barati received a Ph.D. degree in Electrical
Engineering from Illinois Institute of Technology,
Chicago. Presently, he is an assistant professor in the
Electrical and Computer Engineering Department at
Louisiana State University, Baton Rouge, LA. His
research interests include microgrid operation and
planning, microeconomics, mathematical modeling
and multiple infrastructure assessment.
Gino J. Lim is a professor and chair of industrial en-
gineering, and Hari and Anjali Faculty Fellow at the
University of Houston. He holds a Ph.D. in Industrial
Engineering from University of Wisconsin-Madison.
His research interest lies in developing optimization
techniques for solving large scale decision making
problems in areas such as network resiliency, supply
chain under disruption and transportation networks.
His current research includes robust optimization in
transportation problems, smart ports, and scheduling.


