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ABSTRACT The required time for surgical interventions in operating rooms (OR) may vary significantly
from the predicted values depending on the type of operations being performed, the surgical team, and
the patient. These deviations diminish the efficient utilization of OR resources and result in the disruption
of projected surgery start times. This paper proposes a two-stage chance-constrained model to solve the
OR scheduling problem under uncertainty. The goal is to minimize the costs associated with OR opening
and overtime as well as reduce patient waiting times. The risk of OR overtime is controlled using chance
constraints. Numerical experiments show that the proposed model provides a better trade-off between
minimizing costs and reducing solution variability when compared to two existing models in the literature.
It is also shown that the three models converge as the overtime probability threshold approaches one.
Moreover, it is observed that the individual chance constraints result in the opening of fewer rooms,
lower waiting times, and shorter solution times when compared to that of joint chance constraints. A
decomposition algorithm is applied that solves large test instances of the OR scheduling problem, that of
which is known to be NP-hard. Strong valid inequalities are derived in order to accelerate the convergence
speed. The proposed approach outperformed both a commercial solver and a basic decomposition algorithm
after solving all test instances with up to 89 surgeries and 20 ORs in less than 48 minutes.

INDEX TERMS Chance Constraints, Mixed-Integer Programming, Operating Room Scheduling, Two-
Stage Stochastic Programming, Uncertainty

I. INTRODUCTION

HEALTH care expenditures are expected to constitute
25% of the US gross domestic product (GDP) in 2025,

an increase from 15.9% in 2005 [21]. Surgical expenses
contribute to 30% of health care expenditures and are ex-
pected to grow from $572 billion in 2005 to $912 billion
(2005-valuated dollars) in the year 2025. Surgical proce-
dures are complex tasks requiring a variety of specialized
and expensive resources. In 2011, hospitalizations involving
surgical procedures constituted 29% of total hospital stays
while contributing to 48% of total hospital costs in the US
[33]. In light of these reports, surgeries are recognized as the
most crucial activities performed in hospitals from a social,
medical and economic point of view.

Several survey articles have recognized the surgery dura-
tion uncertainty as a major obstacle to developing practical
and cost-effective OR schedules [18]. This paper proposes
a chance-constrained programming model that: 1) provides

cost-effective OR schedules by considering both determinis-
tic and stochastic costs, 2) maintains a low OR overtime prob-
ability and compares individual and joint chance constraints,
3) results in a better cost-variability trade-off compared to
two existing models in the literature and 4) solves such
problems at a faster rate than the two aforementioned existing
models before applying any solution algorithms. Moreover, a
computationally efficient solution method and strong valid
inequalities are provided to facilitate timely decision-making
in the case of disruptions in the schedule.

The OR scheduling literature has been reviewed in sev-
eral survey articles [2], [18], [28]. The published litera-
ture has been classified using several categories, including
uncertainty. Variable surgery duration is one of the most
commonly studied sources of uncertainty by the Operations
Research community. It is shown that mitigating the impact
of disruptions in the schedule due to uncertainty can lead
to higher capacity utilization and lower costs [19], [20].
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TABLE 1: Research Gaps in the Chance-Constrained OR Scheduling Literature

Authors (Year) Decisions Objective

OR Resource
Allocation

Sequencing &
Scheduling

Deterministic
Costs

Stochastic
Costs

Shylo et al. (2012) X OR Idle Time
Zhang et al. (2015) X OR Overtime
Deng et al. (2019) X X X OR Opening
Noorizadegan &
Seifi (2018) X X X

OR Opening &
Turn-Over

Wang et al. (2017) X X Operational

This Paper X X X OR Opening
OR Overtime &
Patient Waiting

Time

Hence, it is crucial to ensure that the provided schedule
works reliably in the presence of large variability in surgery
durations.

Numerous works have used stochastic programming to
model the uncertain surgery durations in the OR scheduling
problems [1], [7], [25], [32]. The majority of these models
consider optimizing the expectation of costs/revenues during
the planning horizon [10]. For problems with moderate vari-
ability, using the expected value (EV) can result in desirable
outputs. However, the obtained solutions may show poor
performance for problems displaying frequent changes in a
less predictable manner [24]. A number of articles considered
using the Conditional Value-at-Risk (CVaR) [27] to account
for undesirable realizations of the uncertain parameters [15],
[22], [29]. The CVaR function minimizes the expected tail of
costs.

Another array of articles have used the chance-constrained
programming (CCP) models [3] to address the uncertainty.
This approach mitigates the risk of disadvantageous events
(e.g., OR overtime, patient waiting time) exceeding the
specified thresholds, rather than merely minimizing their
expected value [4], [13], [35]. Shylo et al. [30] applied
chance-constraints to control the OR block overtime in the
OR surgery planning problem. Zhang et al. [36] studied a
chance-constrained OR surgery allocation problem. Deng
and Shen [4] developed a two-stage stochastic model for the
multi-server appointment scheduling problem with a joint
chance constraint on server overtime. They applied the pro-
posed model and solution approach to solve OR scheduling
problem test instances. Jebali and Diabat [11] studied the
surgery planning problem under uncertain surgery duration,
length of stay in the intensive care unit (ICU), and emergency
patient arrival. They employed chance constraints to control
the violation of ICU capacity. Wang et al. [31] proposed
a distributionally robust chance-constrained model for the
surgery planning problem with stochastic surgery durations.
Noorizadegan and Seifi [23] proposed a CCP model for the
surgery planning problem with uncertain surgery durations.
Kamran et al. (2018) [12] proposed a two-stage stochas-
tic model with chance constraints on OR overtime for the

advance scheduling problem. Deng et al. [5] developed a
distributionally robust chance-constrained model for the OR
scheduling problem. They control the risk of OR overtime
and surgery waiting using joint chance constraints.

Table 1 summarizes the selected published literature and
identifies the research gaps that are addressed in this paper.
First, it can be observed that very few articles proposed a
CCP model for the OR scheduling problem under uncertainty
[4], [5]. Surgery scheduling problems often have a more
complex structure resulting from a variety of decisions, such
as OR opening, patient-to-OR assignment, surgery sequenc-
ing, and projected and actual start times before and after the
realization of random surgery durations, respectively. CCP-
based models have the potential to effectively handle such
large variabilities in daily surgery scheduling problems [18].

Second, a majority of the models have neglected the im-
portance of minimizing the stochastic second-stage costs.
Their primary focus has been on providing schedules within
the specified risk tolerances while also aiming to minimize
deterministic performance measures, such as fixed OR open-
ing costs [5], [23]. Unlike existing approaches, this paper
proposes a chance-constrained model that aims to minimize
both deterministic and stochastic costs for the OR scheduling
problem. The significance of considering both classes of
costs is highlighted using numerical experiments.

Third, we provide insightful observations about the per-
formance of three different models (CCP, CVaR and EV) in
solving the stochastic OR scheduling problem under various
risk thresholds. The proposed model is compared alongside
EV and CVaR models using several metrics such as total
costs, OR utilization and solution time. Moreover, the per-
formances of both individual and joint chance constraints are
compared in terms of OR opening decisions, minimizing the
second-stage costs and computational efficiency.

Finally a computationally efficient decomposition algo-
rithm is applied to provide high-quality solutions for the
large-scale test instances within reasonable time frames. We
proposed an algorithm to derive feasibility cuts using the
first-stage solutions that accelerate finding feasible solutions
and the convergence speed.
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II. MATHEMATICAL FORMULATION

A. PROBLEM DESCRIPTION

Let I be the set of elective surgeries and R be the set of
operating rooms. The problem is to schedule surgeries over
a daily planning horizon. We assume that operating rooms
use the block booking policy [6]. Each OR is allocated to a
surgical specialty according to the master surgery schedule.
The incidence matrix E = {eir} for all i ∈ I, r ∈ R allows
specific surgery-to-OR assignments. The surgery duration is
random, denoted by a random vector δ = (δ1, ..., δ|I|)

T ∈
R|I|+ where δi shows the random duration for surgery i ∈ I .
We assume that the random surgery duration has finite and
discrete support S for δ. The probability density of each
scenario s is denoted by ps, where

∑
s∈S ps = 1. Each

realization of δ in scenario s is shown by δs = (δs1, ..., δ
s
|I|)

T .
Every surgery on the daily booking list must be operated. No
interruption is allowed once an operation has started. It is
desired to decrease the probability of working OR overtime.
This restriction is enforced using chance constraints. Each
surgery must be assigned an OR and a projected start time.
Our goal is to minimize the sum of fixed OR opening costs
and expected costs corresponding to OR overtime and patient
waiting times.

B. CHANCE-CONSTRAINED OR SCHEDULING
PROBLEM

We propose a two-stage stochastic model for the daily OR
scheduling problem with individual chance constraints en-
forcing overtime restrictions on every OR. Table 2 introduces
the notation used in our model.

The first-stage problem involves deterministic decision
making (i.e., OR opening and surgery case assignment) prior
to the realization of uncertain surgery durations. After the
uncertain parameters are revealed, the second-stage problem
determines recourse actions (e.g., adjusting start times and
adding OR overtime) that incur additional costs to provide
meaningful schedules based on first-stage decisions. The
goal is to minimize total costs as well as satisfy the chance
constraints on OR overtime.

The first-stage problem (M1) can be formulated as follows:

min
∑
r∈R

frur (1)

x ∈ X (2)

where x = (u, y) is the vector of first-stage variables. Set X
is the resulting set from the deterministic constraints (3)-(7)
formulated as follows:

yikr ≤ ur,∀i ∈ I, k ∈ K, r ∈ R (3)∑
k,r

yikr = 1,∀i ∈ I (4)

yikr ≤ eir,∀i ∈ I, k ∈ K, r ∈ R (5)

∑
i

yikr ≥
∑
i

yi(k+1)r,∀k ∈ K \ {|K|}, r ∈ R (6)

ur ∈ BR, yikr ∈ BI×K×R,∀i ∈ I, k ∈ K, r ∈ R (7)

Objective function (1) minimizes the total cost of opening
operating rooms. Constraints (3) and (4) ensure that every
surgery will be assigned to one and only one spot in an open
OR during the day. Constraint (5) enforces eligible surgery-
to-OR assignments. Constraint (6) determines the order of
operating surgical cases in each OR. Constraint (7) enforces
binary values for the first-stage decision variables.

The chance-constrained second-stage problem (M2) is for-
mulated as follows:

tpkr ≤ tp(k+1)r,∀k ∈ K \ {|K|}, r ∈ R (8)
trkrs ≥ tpkr,∀k ∈ K, r ∈ R, s ∈ S (9)
trkrs ≤ tr(k+1)rs,∀k ∈ K, r ∈ R, s ∈ S (10)∑

k

(trkrs − tpkr) ≤ wrs,∀r ∈ R, s ∈ S (11)

Pr{trkrs +
∑
i

δisyikr ≤ capr : ∀k ∈ K, s ∈ S}

≥ 1− αr,∀r ∈ R (12)
tpkr, trkrs, wrs ≥ 0,∀k ∈ K, r ∈ R, s ∈ S (13)

Constraint (8) determines the projected start time for each
surgery according to the sequencing decisions. Constraint (9)
ensures that each surgery starts after its projected start time.
Constraint (10) is similar to (8) in that the actual start times
must follow the sequencing decisions. Constraint (11) calcu-
lates the amount of waiting time in every OR per scenario.
The chance constraints (12) state that the surgeries assigned
to an OR must be finished during the regular hours (i.e., no
overtime) with high probability. Constraint (13) enforces the
non-negativity of the second-stage decision variables. The
objective function of the second-stage problem is formulated
in the remainder of this section.

The set P(s) of the first-stage solutions that are made
to satisfy the chance-constrained second-stage problem is
derived as follows:

P(r, s) =

{
x ∈ X | ∃tp, tr : trkrs +

∑
i

δisyikr ≤ capr

}
(14)

P(s) =
⋂
r∈R

P(r, s) (15)

Proposition 1. Let αr|S| be an integer for every r. Then,
chance constraints (12) are equivalent to:

trskr +
∑
i

δisyikr ≤ capr +Mzrs,∀k ∈ K, r ∈ R, s ∈ S (16)∑
s∈S

zrs ≤ αr|S|,∀r ∈ R, s ∈ S (17)

where binary variable zrs = 1 when the time capacity of
room r is violated.

Proof. See Appendix A-A.
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TABLE 2: Sets, parameters and variables used in the model

Symbol Definition

Sets
I elective surgery, i ∈ {1, ..., |I|}
R operating room, r =∈ {1, ..., |R|}
K order of surgery appointment in OR, k ∈ {1, ..., |K|}
S scenario, s ∈ {1, ..., |S|}

Parameters

eir =1 if surgery i can be assigned to OR r; 0 otherwise
δis duration of surgery i in scenario s
fr fixed cost of opening OR r
capr operating time limit for OR r
cor unit overtime cost of OR r
cwr unit waiting cost for surgery i
ps probability density of scenario s
αr overtime probability threshold for OR r (confidence level), αr ∈ (0, 1)
M a sufficiently large number

Variables

ur =1 if OR r is open; 0 otherwise
yikr =1 if surgery i scheduled as kth surgery in OR r; 0 otherwise
tpkr projected start time for surgery i
trkrs actual start time for surgery i in scenario s
ors OR r overtime in scenario s
wrs total patient waiting times in OR r and scenario s
zrs =1 if chance constraint on OR r is violated in scenario s; 0 otherwise

For each scenario s ∈ S, an operation may be completed
during regular hours (zrs = 0) or may run into overtime
(zrs = 1). Therefore, the second-stage cost, g(x, s), will be
calculated differently in each case:{

g1
r(x, s) = cwrwrs zrs = 0 (18)
g2
r(x, s) = cwrwrs + corors zrs = 1 (19)

where ors is a non-negative variable representing overtime.
Therefore, the objective function of the second-stage problem
can be formulated as follows:

Es [g(x, s)] = Es

(∑
r

(1− zrs)g1
r(x, s) + zrsg

2
r(x, s)

)
(20)

Objective function (20) minimizes the expected costs corre-
sponding to OR overtime and patient waiting times. The de-
terministic equivalent formulation for the two-stage chance-
constrained OR scheduling model (MDEF ) can be modeled
as follows:

min obj =
∑
r∈R

frur +
1

|S|
∑
r,s

(cwrwrs + corors) (21)

s.t . (8)− (11), (13)

trskr +
∑
i

δisyikr ≤ capr

+Mzrs,∀k ∈ K, r ∈ R, s ∈ S (22)

trskr +
∑
i

δisyikr ≤ capr

+M(1− zrs) + ors,∀k ∈ K, r ∈ R, s ∈ S (23)∑
s∈S

zsr ≤ αr|S|,∀r ∈ R, s ∈ S (24)

x ∈ X, zrs ∈ BR×S,∀k ∈ K, r ∈ R, s ∈ S (25)

Using a big M value can lead to weak LP relaxations. Assign-
ing a smaller value forM can help tighten the feasible region
for the LP relaxation of MDEF . Therefore, instead of setting
a single large value for M , constraint-specific formulae used
to calculate the big M values are developed for constraints
(22) and (23) as shown below:

Mrs =
∑
i

eirδis,∀r ∈ R, s ∈ S (26)

The values in (26) are valid because the total operation time
in each OR does not exceed the duration of all surgical cases
that can be allocated to the specific operating room.

III. SOLUTION APPROACH
This section describes a decomposition algorithm that solves
the proposed model in Section II. The proposed algorithm
can solve the model to optimality if the following assump-
tions are satisfied [16], [17]:

1) The random vector S has discrete and finite support.
Specifically, ps = 1

|S| for s ∈ S.
We have stated this assumption in the problem descrip-
tion in Section 2.1.

2) Set X and P(s), s ∈ S are non-empty compact sets.
Without loss of generality, we can assume that for
every s ∈ S, there exists a feasible first-stage solution
that satisfies the chance constraints. Therefore, sets X
and P(s) are finite sets of points that qualifies them as
compact sets.

3) Set conv (P(s)), s ∈ S have the same reces-
sion cone, i.e., there exists C ⊆ RN such that
C =

{
θ ∈ RN |x+ λθ ∈ P(s);∀x ∈ P(s), λ ≥ 0

}
for

all s ∈ S, where N := R+ I ×K ×R .
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Proof. See Appendix A-B.

4) There does not exist an extreme ray θ̃ of conv(X) with
fT θ̃ < 0, i.e., the two-stage problem has a bounded
optimal solution.

Proof. See Appendix A-C.

Proposition 2. Model MDEF has an optimal solution
(x∗, z∗) in which

∑
s z
∗
rs = αr|S| for all s ∈ S [17].

Proof. See Appendix A-D.

We begin the decomposition algorithm by defining feasibility
(F) and optimality (O) sets as follows:

F =

{
x ∈ X, z ∈ BR×S :

∑
s

zrs = αr|S|,

r ∈ R, zrs = 0⇒ x ∈ P(r, s), s ∈ S

}
(27)

O =

{
(x, z, ρ) ∈ F× R+ :

ρ ≥ 1

|S|
∑
r,s

(1− zrs)g1
r(x, s) + zrsg

2
r(x, s)

}
(28)

These sets will be approximated using feasibility and opti-
mality cuts in the following master problem (MP):

min
x,z,ρ

fTu+ ρ∑
s

zrs = αr|S|,∀r ∈ R

x ∈ X, z ∈ BR×S, ρ ≥ 0

(x, z) ∈ F̃
(x, z, ρ) ∈ Õ

(29)

The sets F̃ and Õ are the outer approximations of the feasibil-
ity (F) and optimality (O) sets, respectively. In the remainder
of this section, we will derive strong valid inequalities to
define F̃ and Õ.

A. FEASIBILITY CUTS
Two sets of subproblems are required to formulate the strong
feasibility cuts: single-scenario optimization and single-
scenario separation [16]. The optimization subproblem for
the OR scheduling problem is formulated as follows:

hrs(γ) = min
x

{
γx | x ∈ P(r, s) ∩ X̄

}
(30)

Where γ ∈ RN and X̄ ⊇ X , chosen such that P(r, s)∩ X̄ 6=
Φ.

Proposition 3. Problem (30) is feasible and has a finite
optimal value if γ ∈ RN .

Proof. See Appendix A-E.

The separation subproblem can be formulated as follows:

%rs(x̂) = max
π

∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
(31)(

π1
(k−1)rs − π

1
krs

)
+ π5

rs ≤ 0,∀k ∈ K (32)(
π2

(k−1)rs − π
2
krs

)
+ π3

krs − π4
krs − π5

rs ≤ 0,∀k ∈ K (33)

π4
krs ≤ cor,∀k ∈ K (34)
π5
rs ≤ cwr (35)∑
k

(
π1
krs + π2

krs + π3
krs + π4

krs

)
+ π5

rs = 1 (36)

π1
krs, π

2
krs, π

3
krs, π

4
krs, π

5
rs ≥ 0,∀k ∈ K (37)

Solving this subproblem to optimality returns a separating
hyperplane of the form γx ≥ β for all x ∈ P (r, s). Let x̂
be a solution to the master problem (MP). If %rs(x̂) > 0
and π̂ is the optimal solution, the separating hyperplane
−
∑
k π̂

4
k

∑
i d̃iyikr ≥ −

∑
k π̂

4
kcapr cuts off x̂ from F̃.

Therefore, we define the valid feasibility cuts as follows:

Theorem 1. The following sets of inequalities are valid for
F:

γx+
l∑
i=1

(
hgi(γ)− hgi+1

(γ)
)
zgi ≥ hg1(γ) (38)

where hσ1
≥ hσ2

≥ ... ≥ hσ|S| , G = {g1, g2, ..., gl} ⊆
{σ1, σ2, ..., σp} and hgl+1

= hσp+1
.

The remainder of this section presents another class of
feasibility cuts derived from the solutions to the first-stage
problem (M1) or master problem (MP ) that result in the
violation of chance constraints (12).

Theorem 2. The following set of inequalities are valid for F:

zrs −
∑

k∈K,i∈TB

yikr ≥ 1− |TB|, r ∈ R, s ∈ S (39)

where TB is the subset of surgeries that lead to the violation
of chance constraints when they are assigned to the same OR.

Let ˆyikr be the set of surgery-to-OR assignments obtained
from solving (M1) or (MP ). Algorithm 1 generates inequal-
ities of type (39).

Algorithm 1 Feasibility Cut Generation

1: input: Sets and parameters in Table 2, ˆyikr.
2: initialize: vrs ← 0, Cntr ← 0, TB ← Φ.
3: Calculate vrs =

∑
k,i δis ˆyikr − capr,∀r ∈ R, s ∈ S.

4: if vrs > 0, ∀r ∈ R, s ∈ S then
5: Cntr ← Cntr + 1.
6: if Cntr > αr|S|,∀r ∈ R then
7: TB ← {i| ˆyikr = 1}.
8: Add feasibility cut (39) to F̃ in (MP ).
9: end if

10: end if
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B. OPTIMALITY CUTS

In this section, we derive optimality cuts to add to Õ. First, we
formulate the dual problems for regular and overtime modes
of the second-stage problem. For every r ∈ R and s ∈ S
where zrs = 0, the regular mode dual problem is formulated
as follows:

ν1
rs(x̂) = max

π

∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
(40)(

π1
(k−1)rs − π

1
krs

)
+ π5

rs ≤ 0,∀k ∈ K (41)(
π2

(k−1)rs − π
2
krs

)
+ π3

krs − π4
krs − π5

rs ≤ 0,∀k ∈ K (42)

π5
rs ≤ cwr (43)∑
k

(
π1
krs + π2

krs + π3
krs + π4

krs

)
+ π5

rs = 1 (44)

π1
krs, π

2
krs, π

3
krs, π

4
krs, π

5
rs ≥ 0,∀k ∈ K (45)

Since the only difference between the regular and overtime
mode is the introduction of overtime variables (when zrs =
1), the overtime mode dual problem can be derived by replac-
ing π with π̄ and adding the dual constraints corresponding
to overtime variables:

ν2
rs(x̂) = max

π̄

∑
k

π̄4
krs

(∑
i

d̃isŷikr − capr

)
(46)

s.t . (41)− (45)
π̄4
krs ≤ cor,∀k ∈ K (47)

The set of dual optimal solutions for the regular and overtime
modes are shown by Πrs and Π̄rs, respectively. Then, we
formulate optimality subproblems for each mode. For a given
τ ∈ RN , r ∈ R and s ∈ S, we formulate the optimality
subproblem for the regular mode as follows:

ψ1
rs(τ) = min

{
g1
r(x, s) + τTx : x ∈ P(r, s)

}
(48)

Similarly, we formulate the optimality subproblem for the
overtime mode as follows:

ψ2
rs(τ) = min

{
g2
r(x, s) + τTx : x ∈ X

}
(49)

Proposition 4. Let domψrs(τ) =
{
τ ∈ RN : ψrs(τ) > −∞

}
.

There exists D ⊆ RN where dom ψ1
rs(τ) = dom ψ2

rs(τ) =
D.

Proof. See Appendix A-F.

Proposition 5. Let Q ⊆ S, πrs ∈ Πrs and τrs =∑
i,k π

4
krsd̃is for s ∈ Q, and π̄rs ∈ Π̄rs and τrs =∑

i,k π̄
4
krsd̃is for s ∈ S \Q. The following inequality is valid

for O:

ρ+
1

|S|
∑
r,s∈Q

(
−
∑
k

π4
krscapr − ψ2

rs(τrs)

)
zrs

+
1

|S|
∑

r,s∈S\Q

(
−
∑
k

π̄4
krscapr − ψ1

rs(τrs)

)
(1− zrs)

≥ 1

|S|
∑
r,s∈Q

(
−
∑
k

π4
krscapr

)

+
1

|S|
∑

r,s∈S\Q

(
−
∑
k

π̄4
krscapr

)
+

1

|S|
∑
i,r,s

(τrsŷikr) (50)

C. DECOMPOSITION ALGORITHM
A decomposition algorithm is proposed to solve the two-
stage chance-constrained OR scheduling problem. This al-
gorithm has a similar structure to the Benders decomposition
algorithm [26]. Rather than traditional Benders cuts, we use
strong valid inequalities derived in Section III-A and Section
III-B. Parameter ε in Algorithm 2 represents the upper bound
on the relative optimality gap, calculated as UB−LB

UB .

Algorithm 2 Decomposition Algorithm

1: input: sets and parameters in Table 2, model MDEF .
2: initialize: LB := −∞, UB := +∞, ε ∈

[
10−3, 10−6

]
3: while UB−LB

LB > ε do
4: Solve master problem (29).
5: if (29) is infeasible then
6: Stop. Original problem is infeasible.
7: else
8: Let (x̂, ẑ, ρ̂) be an optimal solution to (29).
9: • LB ← fT û+ ρ̂.

10: • Check feasibility of the second-stage problem by
calling Algorithm 1 and evaluating the inequalities
(38).

11: if there exists violated inequalities then
12: • Add feasibility cuts (38) and (39) to F̃.
13: else
14: • UB←∑

r∈R frûr+ 1
|S|

∑
r,s[g

1
r(x̂,s)+g2r(x̂,s)]

15: • Add optimality cuts (50) to Õ.
16: end if
17: end if
18: end while
19: output: optimal cost obj∗ and decision variables

(x∗, z∗, tp∗, tr∗, o∗, w∗).

Theorem 3. Algorithm 2 converges to an optimal solution in
finite iterations.

Proof. See Appendix A-G.

IV. NUMERICAL EXPERIMENTS
Test problem instances are obtained from Leeftink and Hans
[14]. The instances consist of different surgical specialties
such as orthopedic, otorhinolaryngology, and oncology. The
surgery durations follow a three-parameter lognormal distri-
bution [9]. We used the Monte Carlo sampling method to
generate a finite set of scenarios for random surgery dura-
tions. The overhead and variable costs for operating rooms
are determined using the cost settings in [7]. The OR opening
cost is calculated by multiplying the overhead cost by the
OR available time. Each OR operates an 8-hour workday
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TABLE 3: Computational efficiency of CCP, CVaR and EV

Instance |I| |R| Model Time (s) Gap (%)

1 6 5
CCP 1.6 0.0
CVaR 3.5 0.0

EV 6.8 0.0

2 7 5
CCP 2.2 0.0
CVaR 7.5 0.0

EV 32.1 0.0

3 9 5
CCP 11.3 0.0
CVaR 132 0.0

EV 87.1 0.0

4 12 5
CCP 140 0.0
CVaR 550 0.0

EV 1258.8 0.0

5 16 5
CCP 1169.5 0.0
CVaR 2623.8 0.0

EV 3600 1.38

6 20 5
CCP 1230 0.0
CVaR 3600 4.2

EV 3600 5.02

7 23 10
CCP 2204.3 0.0
CVaR 3600 11.7

EV 3600 21.0

8 29 10
CCP 2889.5 0.0
CVaR 3600 39.5

EV 3600 41.0

and has one block that is assigned to a surgical specialty.
Optimization models are implemented in Python using IBM
CPLEX on a workstation with 24 cores, 3 Ghz processors,
and 384 GB of memory. A time limit of one hour is imposed
for all instances. The valid cuts are implemented using the
CPLEX lazy constraint callback function.

A. COMPARING CCP WITH OTHER STOCHASTIC
MODELS
We compare the performance of the proposed chance-
constrained model with the two models proposed in [22]:
SDORS-EV and SDORS-CVaR. SDORS-EV is a stochastic
programming model that attempts to optimize the expected
value of OR overtime and patient waiting costs. SDORS-
CVaR is a risk-based model that minimizes the expected tail
of overtime and waiting costs by using the CVaR function
[22]. For simplicity, the following terminology is used in
our experiments: CCP (chance-constrained), CVaR (SDORS-
CVaR) and EV (SDORS-EV). The performance of these
models are evaluated using several criteria.

Table 3 compares the performance of the three models af-
ter solving eight OR scheduling instances within the specified
time limit. A finite set of 100 scenarios is generated for each
surgery, and the parameter αr is set to 0.10. The second and
third columns show the number of surgical cases and avail-
able ORs for surgery operation. The column Time shows the
computational time in seconds. Finally, the optimality gap re-

ported in the last column is calculated as
(
UB−LB
UB

)
× 100%.

It can be observed that the CCP model outperforms CVaR
and EV in convergence speed. The chance-constrained model
can solve all instances to optimality within the specified time
limit while EV and CVaR only solve instances with up to 12
and 16 patients, respectively.

In Figure 1, the trade-off between minimizing costs and
controlling the variability of costs is compared for each
model. Several values are used for the confidence level pa-
rameter α in order to mimic the behavior of these models
under different risk attitudes. A high α resembles an aggres-
sive approach to minimize expected costs while accepting a
substantial risk of OR overtime. On the contrary, a low α
depicts conservative decision making (i.e., accepting higher
costs given that the chance of OR overtime is low). As
observed in Figure 1, CVaR places emphasis on minimizing
variability while EV focuses on providing the minimum aver-
age costs. However, CCP provides a more moderate trade-off
between minimizing average costs and reducing variability.
Assuming a given tolerance for the OR schedule variability,
CCP outperforms CVaR by providing more cost-effective
solutions. Similarly, CCP outperforms EV by providing OR
schedules with lower variability, assuming a fixed budget.

FIGURE 1: Trade-off between average total cost and vari-
ability of total cost

In Figure 2, we use several metrics to compare the perfor-
mance of CCP, EV and CVaR under different values for α.
The metrics are [A,B,C,D,E] = [total cost, total waiting
time & overtime, utilization, overtime scenarios, open ORs].

For small α values, CCP and CVaR suggest opening more
ORs to reduce the risk of overtime and reduce the expected
tail costs, respectively. Therefore, they incur higher average
total costs and lower OR utilization than EV. EV displays
better OR utilization at the risk of experiencing increased
overtime. CPP is the superior method in terms of reducing
overtime and patient waiting times. Moreover, CCP performs
best in reducing the number of scenarios where overtime
occurs. Overall, using CCP results in fewer occurrences of
overtime and better OR utilization than CVaR when α is not
very restrictive (i.e., α > 0.1 in our numerical experiments).
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TABLE 4: Performance of different feasibility cuts

Instance Surgeries ORs Cuts (38) Cuts (39) Cuts (38) & (39)
Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 6 5 2.5 0.0 1.9 0.0 3 0.0
2 7 5 2.6 0.0 2 0.0 5.1 0.0
3 9 5 8.2 0.0 7.5 0.0 9.8 0.0
4 12 5 69.1 0.0 75 0.0 49.6 0.0
5 16 5 205.6 0.0 243.7 0.0 131.3 0.0
6 20 5 216.2 0.0 285.2 0.0 150.5 0.0
7 23 10 357.9 0.0 405.1 0.0 231.7 0.0
8 29 10 653.4 0.0 732.9 0.0 405.4 0.0

TABLE 5: Performance of different solvers/algorithms on large-scale problems

Instance Surgeries ORs Scenarios CPLEX Basic Decomposition This Paper
Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

9 40 10 100 3600 2.3 3600 1.5 713.8 0.0
40 10 500 3600 5.6 3600 4.0 1400.3 0.0

10 63 20 100 3600 11.2 3600 9.8 1333.2 0.0
63 20 500 3600 16.8 3600 13.4 2246.6 0.0

11 74 20 100 3600 19.4 3600 15.9 2270.8 0.0
74 20 500 3600 28.7 3600 21.7 2631.6 0.0

12 89 20 100 3600 45 3600 32.3 2819.5 0.0
89 20 500 - - 3600 51.5 2851.2 0.0

It is also observed that the three models converge in all
metrics as α increases.

Proposition 6. CCP, CVaR and EV provide the same optimal
solution when α = 1.

Proof. See Appendix A-H.

B. SOLVING LARGE-SCALE TEST INSTANCES
It is observed in Table 3 that the solution times increase
exponentially as the problem size grows. Therefore, we apply
the valid inequalities and the decomposition algorithm pre-
sented in Section III to solve larger test instances in shorter
time periods. We used the Monte Carlo sampling method to
generate a set of 100 scenarios, and the parameter αr was
set to 0.10 Table 4 compares the performance of feasibility
cuts (38) and (39) when used separately and combined to
solve the test problem instances shown in Table 3. It can be
observed that both valid inequalities are effective in reducing
the solution time when compared to the cuts generated by
the CPLEX solver. It is also observed that using both types
of cuts leads to longer solution times for small test instances
due to the time spent for generating inequalities. However,
as problem size grows, adding both types of feasibility cuts
to F̃ leads to significantly faster convergence than applying
them separately. Therefore, we use valid inequalities (38) and
(39) to generate feasibility cuts in the following numerical
experiments.

Larger test problem instances are solved and reported
in Table 5 to evaluate the performance of the proposed
decomposition algorithm. We compare the performance of

our algorithm with that of the IBM CPLEX MIP Solver
12.9 [38] and a decomposition algorithm that uses the big-
M optimality cuts introduced in [17]. The solution time
and the optimality gap are reported for each algorithm. The
column Basic Decomposition illustrates the results from the
decomposition algorithm using feasibility cuts (38) and big-
M optimality cuts. The last column highlights the results
of the proposed decomposition algorithm in this paper. As
shown in Table 5, we observe that the CPLEX solver is the
least desirable option for solvingMDEF , as expected. For the
largest problem instance, the CPLEX solver does not find any
feasible solutions within the time limit. User-defined feasibil-
ity and optimality cuts can improve solution speed. It can also
be observed that using stronger optimality cuts rather than
the big-M cuts can reduce solution time significantly. Neither
the CPLEX solver nor the basic decomposition algorithm can
solve any of the instances to global optimality within the time
limit. Nevertheless, the proposed decomposition algorithm
outperforms other methods by solving all test instances to
optimality within 48 minutes.

C. IMPORTANCE OF MINIMIZING EXPECTED COSTS
Our numerical experiments show that a significant portion
of total costs comes from the expected overtime and waiting
time costs. Neglecting these measures in OR scheduling
models can result in surpassing the predicted overtime bud-
get by 200%, disheartening staff from longer-than-expected
shifts, and causing dissatisfaction to patients [8]. We solved
10 replications of all test instances in Table 3 using two
different objective functions: objective (21); and objective
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(21) minus the expected second-stage costs. Then, we cal-
culated the sum of costs pertaining to OR opening, OR
overtime, and patient waiting time for each optimal solution
of each case. The percentage of savings obtained from opti-
mizing both deterministic and stochastic costs is calculated
as
(
obj∗2−obj

∗
1

obj∗2
× 100%

)
. It is observed from Figure 3 that

minimizing the expected costs leads to greater savings when
larger α values are used. This highlights the importance of
minimizing the expected costs in addition to satisfying the
chance constraints when solving stochastic OR scheduling
problems.

FIGURE 3: Advantage of minimizing expected costs when
solving the chance-constrained OR scheduling model

D. INDIVIDUAL VS. JOINT CHANCE CONSTRAINTS
The chance constraints in Section II-B are enforced on

each OR independently. However, a decision-maker might
be interested in controlling the chance of OR overtime on
an aggregate level. In such cases, the chance constraints (12)
are replaced by:

Pr{trkrs +
∑
i∈I

δisyikr ≤ capr : ∀k, r, s} ≥ 1− α (51)

This section compares the joint chance-constrained OR
scheduling model (MJoint) with the proposed model MDEF

presented in Section II. In the following numerical experi-
ments, the Monte Carlo sampling method is used to generate
a set of 100 scenarios for each test instance. We applied
the decomposition algorithm proposed in Section III and the
same classes of valid inequalities to both models. Figures 4
and 5 compare MDEF and MJoint after solving the larger
test instances shown in Table 5. Figure 4 illustrates that
MJoint tends to open more ORs to satisfy the tighter limit
on OR overtime. The joint chance constraints restrict the
occurrence of overtime to α|S| scenarios while the individual
chance constraints allow up to min{αr|S||R|, |S|} scenarios
with OR overtime. As the probability threshold α loosens,

the gap between the optimal number of open ORs obtained
by the two models shrinks due to the converging feasible
regions. Similar to Proposition 6, it can be shown that the two
models achieve equivalent optimal solutions when α = 1.
Figure 5 compares the performance of MJoint and MDEF

in reducing the OR overtime and patient waiting times. The
vertical axes depict the average overtime and waiting time
per OR per scenario, respectively. It can be observed that
MJoint achieves greater success at controlling OR overtime
by opening more ORs and setting the projected start times
earlier to satisfy the stricter chance constraints. However,
these measures lead to lower OR utilization and higher wait-
ing times when compared to that of MDEF .

FIGURE 4: Optimal number of open ORs

FIGURE 5: Optimal overtime and waiting times

Table 6 compares the run times of the two models after
solving the test instances presented in Table 3 and Table 5.
Column First Feasible shows the run time to find the first
feasible solution. Column 1% Gap details the run time to
reach 1% optimality gap. It is observed that MDEF can
find feasible solutions and attain near-optimal solutions in
shorter time lengths compared to MJoint. For the largest
test instance, MDEF finds a feasible solution within half the
time required byMJoint and solves the problem to optimality
within 48 minutes. On the other hand, MJoint fails to reach
1% optimality gap within the one-hour time limit.
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TABLE 6: Computational performance of MJoint and MDEF

Instance MJoint MDEF

First Feasible (s) 1% Gap (s) First Feasible (s) 1% Gap (s)
1 1.2 4.7 0.8 3.1
2 1.7 7.8 1.3 5.5
3 2.6 13.8 1.8 9.5
4 7 50.1 5 38.8
5 26.6 151 19.7 111.1
6 23.5 163.7 16.6 121.9
7 50.7 244.4 34.8 179.3
8 73.8 448.3 52.7 317.4
9 137.1 988.9 80.2 649.3

10 296.8 2066 172.5 1312.2
11 519.1 3056.2 339.3 2090.7
12 616.4 3609.9 316.8 2594.6

V. CONCLUSIONS
In this paper, a two-stage chance-constrained mixed-integer
programming model was proposed for the OR scheduling
problem with stochastic surgery durations. The individual
chance constraints controlled the risk of OR overtime. The
goal was to minimize the sum of OR opening, OR overtime
and patient waiting costs. Our model was compared with two
other stochastic models in the literature: an expected value
model and a CVaR-based model. We used several criteria
such as computational efficiency, mean-variance trade-off for
the total costs, and OR utilization. We demonstrated that
minimizing the expected costs when solving the chance-
constrained OR scheduling model results in significant sav-
ings compared to the case where only the deterministic costs
are minimized. Moreover, we compared the individual and
joint chance constraints in terms of allocated ORs, second-
stage stochastic costs and solution times. A decomposition
algorithm with strong feasibility and optimality cuts was
applied to effectively solve large-scale test instances. We
proposed an algorithm that generated feasibility cuts using
the first stage solutions, and as a result, significantly re-
duced the time required to find feasible solutions. Numerical
experiments demonstrated that the decomposition algorithm
outperformed both the IBM CPLEX solver and a basic de-
composition algorithm by solving the largest test instances
to optimality within the one-hour time limit. Moreover, it is
shown that the individual chance constraints lead to higher
OR utilization, reduced patient waiting times and shorter
solution times. It is demonstrated that finding strong cuts
can increase the convergence speed significantly. Therefore,
discovering stronger feasibility and optimality cuts in order
to solve larger problems in shorter time frames can be a
promising topic for future research.

.

APPENDIX A PROOFS
A. PROPOSITION 1

Proof. According to constraints (12) and (13), an overtime
occurs if:

trkrs +
∑
i

δisyikr > capr,∀k ∈ K, r ∈ R, s ∈ S (52)

Therefore, the value of zrs in (16) captures scenarios where
an OR runs overtime. Given that the random surgery duration
has a discrete and finite support, constraint (17) limits the
number of scenarios where each OR can run overtime.

B. ASSUMPTION 3

Proof. Since all of the first-stage decision variables are bi-
nary, P(s) is bounded by a hypercube of dimension N .
Therefore, θ = 0 is the only solution that satisfies the
condition in the definition of C. In other words, C = {0}
for all s ∈ S.

C. ASSUMPTION 4

Proof. We need to show that both first-stage and second-
stage problems have bounded optimal solutions. We know
from Assumption 2 that both problems are feasible. The
highest objective function value for the first-stage problem
is when all operating rooms are open, i.e.,

∑
r fr, which is

bounded. Given the first-stage solution, every open operating
room will run overtime in up to αr|S| scenarios. The amount
of overtime is bounded by maxk∈K{trkrs +

∑
i δisyikr −

capr}, which is also a finite value given trkrs ≥ 0 and
the minimization objective function in the second-stage prob-
lem.

D. PROPOSITION 2

Proof. This holds for the individual chance constraints in
our model without loss of generality. Assume that in the
optimal solution to our model, there exists r ∈ R where∑
s z
∗
rs = ε < αr|S|. The optimal solution will allow
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(αr|S| − ε) scenarios to run in overtime mode (zrs = 1) with
the corresponding overtime variables ors set to zero.

E. PROPOSITION 3
Proof. First, we know from Assumption 2 that P(s) ∩ X 6=
Φ. Given that X̄ ⊇ X , we have P(s)∩X̄ 6= Φ that ensures the
feasibility of (30). Second, the single-scenario optimization
subproblem is bounded if γ is chosen to be a vector in the
dual cone of C (recession cone). The dual cone of C is defined
as C∗ =

{
γ ∈ RN | γθ ≥ 0,∀θ ∈ C

}
. From Assumption 3,

we know that C = {0} for model (M1). Therefore, any γ ∈
RN is a vector in C∗.

F. PROPOSITION 4
Proof. From Assumption 4, we know that both (18) and (19)
are non-negative and bounded. We also know that x is binary.
It suffices to have τ ∈ RN+ such that ψ1

rs(τ) > −∞ and
ψ2
rs(τ) > −∞. Therefore, D = RN+ satisfies the condition.

G. THEOREM 2
Proof. The feasibility cuts are added to the master problem
(29) to remove the first-stage decisions that result in infea-
sible M2. It is known from Assumption 2 that the set of
feasible solutions to M1 is finite. Therefore, a finite number
of inequalities of type (38) and (39) can be added to (29).
Moreover, the sets Πrs and Π̄rs of the optimal solutions to
the dual problems in Section III-B are finite since there is no
constraint parallel to the objective function (40). Therefore, a
finite number of optimality cuts (50) will be generated. Given
that there are finite numbers of feasibility and optimality cuts,
Algorithm 2 converges in a finite time following the conver-
gence of the Benders decomposition algorithm [26].

H. PROPOSITION 6
Proof. When α = 1, the chance constraints (12) can be
written as:

Pr{trkrs +
∑
i

δisyikr ≤ capr : ∀k, s} ≥ 0,∀r ∈ R (53)

which holds for all feasible solutions to the first-stage prob-
lem. Therefore, the chance constraints are redundant and we
have CCP ≡ EV when α = 1. Now, it suffices to show that
CV aR ≡ EV . CVaR is defined as the expectation of those
outcomes where total costs exceed a threshold value, called
Value-at-Risk (VaR) [27]. For α = 1, the VaR of second-
stage costs is defined as:

V aR1 = min {g(x, s) : CDF (g(x, s)) ≥ 0} (54)

where CDF represents the cumulative density function.
Given that CDF ≥ 0 for every random variable, we con-
clude:

g(x, s) ≥ V aR1,∀x ∈ X, s ∈ S (55)

Therefore, from Assumption 2 and inequality (55), the CVaR
model minimizes the total costs over all scenarios, thus

indicating equivalence to using the EV model.
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(a) α = 0.1

(b) α = 0.3

(c) α = 0.5 (d) α = 0.6

(e) α = 0.7 (f) α = 0.8

FIGURE 2: Impact of using different risk thresholds on the performance of CCP, EV and CVaR
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