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Abstract 

 

We consider the evacuation planning problem where the number of actual evacuees (demand) is 
unknown at the planning phase. In the context of mass evacuation, we assume that only partial 
information of the demand distribution (i.e., moment, support, or symmetry) is known as opposed 
to the exact distribution in a stochastic environment. To address this issue, robust approximations 
of chance-constrained problems are explored to model traffic demand uncertainty in evacuation 
networks. Specifically, a distributionally robust chance-constrained model is proposed to ensure 
a reliable evacuation plan (start time, path selection, and flow assignment) in which the vehicle 
demand constraints are satisfied for any probability distribution consistent with the known 
properties of the underlying unknown evacuation demand. Using a path based model, the 
minimum clearance time is found for the evacuation problem under partial information of the 
random demand. Numerical experiments show that the proposed approach works well in terms 
of solution feasibility and robustness as compared to the solution provided by a chance 
constrained programming model under the assumption that the demand distribution follows a 
known probability distribution.  

Keywords: Short notice evacuation, dynamic network flow problem, partial information, 
distributionally robust chance-constraint. 

1 Introduction 

Disaster events such as hurricanes and flooding can result in loss of lives as well as massive property 
damage, which can be minimized by efficient distribution of resources for both the inbound and 
outbound logistics (Abdelgawad et al. 2009; Renne et al. 2011). Outbound evacuation logistics is 
highly uncertain and the traffic demand is not known in advance. The rate of participation of would-
be evacuees during an emergency evacuation depends on a number of factors including the nature of 
the disaster (e.g., natural/man-made), the type of dwellings involved (e.g., permanent versus mobile 
homes), the region of impact, the time of impact, and the evacuees’ perception of their risk. In order 
to mitigate the undue consequences arising from uncertain demand, we study the problem of 
generating evacuation transportation plans that are robust to random outgoing demand, i.e., 
unknown number of evacuees at each source node such as a ZIP code.  

Large-scale evacuations are rare events and because of their uniqueness, limited data regarding 
them is available. Demand estimates are usually based on expert judgment, which can lead to 
difficulties in forming a reliable estimate of the associated demand distribution, creating 
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inconsistencies in estimation. In some contexts, limited historical data may suffice to roughly 
estimate the mean demand, which allows us to formulate and solve the so-called expected-value 
problem (Ahmadian et al. 2016; Veismoradi et al. 2016; Gao et al. 2018), in which the uncertain 
parameters take their mean values. However, in the context of evacuation planning when some 
unplanned event occurs, an expected-value plan may seriously impair the effectiveness of such an 
evacuation plan. This suggests that we should address uncertain input parameters by explicitly 
accounting for the uncertainty, aiming for a robust plan that limits the negative impact of requisite 
real-time recourse actions. In the optimization context, a “worst-case” demand scenario is typically 
assumed (Wolshon, 2009) and, again, a single-scenario evacuation problem is solved, leading to a 
long optimum clearance time (the soonest time at which all evacuees have been evacuated). In our 
view, we should carefully balance the operational failure probability due to high evacuation demand 
and optimum clearance time by allocating available capacity. 

One way to account for demand uncertainty is to formulate the problem using a chance-
constrained program of the following form: 

min  𝑓𝑓(𝑥𝑥)   (1a) 

s.t.  ℙ�𝐹𝐹�𝑥𝑥. 𝜉𝜉� ≤ 0� ≥ 1 − 𝜖𝜖, (1b) 

Where 𝜉𝜉 is a random vector with an associated probability measure ℙ, F is a function describing 
a performance measure in a particular system, and 𝑓𝑓 is the objective function. In an evacuation 
planning problem, 𝜉𝜉 describes the random vector of demand for evacuees from multiple source 
nodes, function 𝐹𝐹 is the difference between the outgoing traffic flow and the random demand from a 
source node, and f is the number of evacuees left behind. We fix a probability level ϵ ∈ [0,1] that 
requires the constraints of the system to be satisfied with a confidence level of at least (1 − ϵ). 

The way we tackled the problem from an algorithmic perspective strongly depends on what we 
know about the probability distribution of the uncertain parameters and the form of 𝐹𝐹. An 
assumption made in the chance-constrained model above is that the probability distribution of the 
underlying random parameter is known. However, in many cases, it may be impossible to accurately 
estimate this distribution. Due to insufficient data and differences in the nature of disasters, accurate 
estimation is particularly difficult when considering an evacuation problem. One may replace the 
unknown distribution ℙ in (1b) by a crude estimate, like ℙ�. However, such an approach may lead to 
an overly optimistic solution, which fails to satisfy the chance constraint under the “true” distribution, 
ℙ. If we want to evaluate, bound, or approximate the probability in the chance constraint, we have to 
make some assumptions about the probability distribution. A more realistic assumption may be that 
we have limited information regarding ℙ; e.g., information about its moments or support. These 
assumptions consequently affect the optimal choice of evacuation routes and traffic flow in an 
evacuation plan.  

In this work, we use evacuation planning model of Lim et al. (2012) because it can handle very 
large-size evacuation networks and we incorporate uncertainty of demand in the optimization 
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model. Using the distributionally robust chance-constrained modeling concept, we reformulate the 
model into the following form: 

 

min  𝑓𝑓(𝑥𝑥)   (2a) 

s.t.  ℙ�𝐹𝐹�𝑥𝑥. 𝜉𝜉� ≤ 0� ≥ 1 − 𝜖𝜖,   ∀ℙ ∈ Ƥ. (2b) 

In the distributionally robust setting, the probabilistic constraint is satisfied for the set of all 
possible probability distributions in Ƥ that are consistent with the known properties of ℙ, such as its 
first and second moments or its support. Following assumptions about the probability distribution of 
the underlying demand are made: (i) the cumulative distribution function (CDF) for the demand is 
unknown but partial moment information, such as the first and second moments are known; (ii) the 
demand distribution is symmetric (Groen and Polivka 2008, Yin and Gladwin 2014); (iii) the range of 
the demand is known (Groen and Polivka 2008). From practical point of view, information for 
assumptions (i) and (iii) can be obtained for a mass evacuation as opposed to the exact distribution 
for the number of people who will be evacuating from a given location. Solutions that are robust with 
respect to variations of demand within the specified class of distributions can help evacuation 
managers to assess the quality and reliability of an evacuation plan according to the number of 
evacuees left behind prior to the implementation of the evacuation plan. However, such a plan needs 
to be generated in a timely manner. Hence, one of the main contributions of this paper is to develop 
computationally tractable approximations of distributionally robust chance-constrained programs 
corresponding to demand uncertainty. 

2 Literature review 

In the literature of evacuation planning oftentimes network flow optimization concept is employed 
in the proposed approaches (Lu et al. 2005; Kim et al. 2008; Bretschneider and Kimms 2011). 
Comprehensive survey on evacuation planning can be found in Hamacher and Tjandra (2002), 
Wolshon et al. (2005), Yusoff et al. (2008), Abdelgawad et al. (2009), Renne et al. (2011), Murray-
Tuite and Wolshon (2013), and Bayram et al. (2016). The vast body of the literature has focused on 
deterministic evacuation plans (Church and Cova, 2000; Bish et al. 2014; Gan et al. 2016; Pillac et al. 
2016; Qazi et al. 2017; Hu et al. 2017; Aalami and Kattan 2018; Renne 2018; Bolia 2018; Gai et al. 
2018; Li et al. 2018; etc). However, assuming deterministic demand can lead to poor results due to 
inability of solutions to deal with deviations of demand. As found in (Lindell and Prater 2007), there 
was a large difference between the estimated number of evacuees (686,000) and the actual number 
of evacuees (1,800,000) from the Greater Houston area during Hurricane Rita, which led to dramatic 
traffic congestion and delay. 

A number of demand-loading models have been proposed for use in evacuation planning, which 
is associated with time dependent demand. Sherali et al. (1991) studied the location allocation 
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problem in evacuation networks considering a constant demand dissipation rate over time. Yazici 
and Ozbay (2010, 2008) found that variations in the demand curve over time and variations in the 
level of the demand have a significant effect on the optimum clearance time. The authors further 
propose a probabilistic model for evacuation planning considering demand and capacity uncertainty. 
Mainly demand-loading representation includes the so-called S-curve (Hobeika and Jamei 1985; 
Radwan et al. 2005), Rayleigh distribution (Tweedie et al. 1986), and sequential logit model (Fu and 
Wilmot 2004). There also exists studies that consider time independent demand. Chiu et al. (2007) 
assumed that all demand for each origin destination (O-D) pair of the network is loaded on each 
corresponding source node at once and is independent from time. This paper also assumes that the 
estimated number of evacuees in a specific area (i.e., total projected demand of the source node) will 
be present at the beginning of the planning horizon. Although the actual number of evacuees for an 
upcoming event is not known in advance, partial information about intended evacuees can be 
captured using the census data of the region.  

Research focusing on uncertainty of demand and capacity in evacuation modeling has been ad- 
dressed via chance-constrained programming and robust optimization. Waller and Ziliaskopoulos 
(2006) first used a chance-constrained program for the traffic assignment problem under a uniform 
distribution for traffic demand. Ukkusuri and Waller (2008) propose a two-stage stochastic program 
with recourse to account for demand uncertainty. They show that not accounting for demand 
uncertainty can significantly degrade the quality of the resulting solution. Wang et al. (2016) use 
scenario-based stochastic program to deal with uncertain capacities and travel times. Three criteria 
is considered for evaluating traffic routing plans and crisp linear equivalents of the strategies is used 
in the solution methodology. Yao et al. (2009) apply robust optimization technique to address 
demand uncertainty. Yao et al. (2010) studied provided an affinely Adjustable Robust Counterpart 
(AARC) ) based linear programming model using concept of Cell Transmission Model considering 
demand uncertainty sets as box or polyhedral sets. Chung et al. (2011) use box uncertainty sets to 
provide a linear tractable robust model for a system optimal dynamic traffic assignment model (SO 
DTA) under demand uncertainty. Goergik, et al. (2016) consider solution ranking as well as objective 
ranking robustness for the problem of evacuation planning. In their approach, degree of robustness 
of a solution is defined by using solution ranking procedures which include both quantitative and 
qualitative aspects. Bish and Sherali (2013) examine the effectiveness of aggregate-level and staged 
evacuation process as a demand-based strategy in an evacuation network under demand uncertainty. 
The CTM based model is used to compare effects of free-flow strategies with strategies under 
congestion in relation to tractability, normative optimality, and robustness of the solution. 
Pourrahmani et al. (2015) assumed demand on source nodes of an evacuation network to be as a 
fuzzy number, and provided a genetic algorithm based on fuzzy credibility theory to solve the 
optimization model. Goerigk et al. (2015) proposed a two-stage bi-criteria robust formulation for 
evacuation using buses considering vulnerability of the schedule to varying evacuation 
circumstances. Swamy et al. (2016) have used a simulation tool to depict stochastic arrival of 
demand, evacuees dispatch, and queueing effects at the pickup locations. 
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Tarhini and Bish (2016) used a cell transmission model (CTM) for a dynamic traffic assignment 
(DTA) problem considering system optimal (SO) approach instead of commonly deployed user-
equilibrium based concept. This makes the model to be relevant to regional evacuation planning 
problems. Kimms and Maiwald (2018) have proposed a path-based evacuation model based on the 
concept of CTM model having two objective function and taking into account uncertainty in roads of 
the network. 

Yazici and Kaan (2007) proposed a chance constraint program to address uncertainties in road 
capacities when distribution of the capacity of the links are known. Lim et al. (2015) use a chance-
constrained model to analyze the reliability of an evacuation plan considering the uncertain capacity 
of road links where the uncertain capacity is modeled using a Weibull distribution. Lv et al. (2013) 
applied a joint-probabilistic constrained (JPC) technique for the case of nuclear emergency 
evacuation. In the proposed model, uncertainties expressed as joint probability and interval values 
are addressed by incorporating interval-parameter programming and joint-chance constrained 
techniques. In all of the above studies, a priori knowledge of the underlying distribution is required. 

To account for unknown distribution, Ng and Waller (2010) and Ng et al. (2011) derive bounds 
on travel time reliability. The bound proposed in their approach is based on Markov’s inequality. 
However, the proposed bound may be loose in the context that further information about the 
underlying distribution is known. Ben-Tal et al. (2009) provided a robust linear programming model 
for the case of surface transportation networks assuming uncertainty in data which penalizes loss of 
life or property. Ben-Tal et al.  (2011) extend a robust optimization approach for multi-period 
transportation problems and apply an affinely adjustable robust counterpart (AARC) approach to 
consider “wait and see” decisions for dynamic traffic assignments. They apply the robust 
optimization framework to an emergency logistics planning problem and show that the AARC 
solution provides excellent results when compared to the solutions from deterministic linear 
programming and stochastic programming based on Monte Carlo sampling. Lv et al. (2015) couple a 
chance-constrained programming with an interval chance-constrained integer program (EICI) in 
order to cope with interval uncertainties that cannot be addressed by any specific distribution 
functions. Chung et al. (2012) use moment information to formulate a distributionally robust chance-
constrained model which allows them to derive a deterministic approximation of their model. Ng and 
Lin (2015) proposed an approximation of chance-constrained cell transmission model (CTM) for the 
case that only the first and second moments of demand and capacity are known. Although the 
probability inequalities that they used for demand constraint is similar to the work of Ng and Waller 
(2010), by using Cantelli’s inequality, they۹ provide sharper equalities for approximating capacity 
constraints. 

In our work, we provide a more comprehensive approach to address demand uncertainty not 
only for the case that mean and variance of demand distribution are known, but also for the case that 
additional information such as the demand uncertainty with symmetry and/or support information 
are available. Using this additional information, we prove that tighter bounds can be achieved. The 
transportation network is presented by a directed graph of nodes and arcs and e a robust chance 
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constraint path-based evacuation plan is provided that compared to cell transmission models (CTM) 
can be efficient in salving large-scale evacuation networks. Our approach is rooted in assessing the 
number of people left behind at the affected area using an evacuation plan within a given evacuation 
time. This approximation method provides a better estimate of the evacuees’ demand based on 
further information on the distribution, as compared to using just the moment information and 
making the demand estimate. 

General chance-constrained models are computationally intractable. Significant research efforts 
are focusing on coming up with safe and tractable approximation of chance constraints (Geletu et al. 
2013; Zaghian et al. 2017; Hamian et al. 2018). Chance-constrained models without full knowledge 
of underlying distribution have recently been solved using various approximation approaches. One 
such approach is proposed by Calafiore and Ghaoui (2006). They show that a chance constraint is 
second-order cone representable based on moment, support or symmetric information of the 
uncertainty.  More generally, they  show  that  for  𝜖𝜖 ≤ 0.5  individual  chance  constraints  can  be  
converted  to  second-order  cone constraints whenever the random vector 𝜉𝜉 is governed by a radial 
distribution. We use a similar approach to derive a deterministic approximation of the chance 
constraint for various approximations of the demand distribution. 

Nemirovski and Shapiro (2007) develop a Bernstein approximation for chance-constrained 
models that are convex and efficiently solvable.  Ben-Tal et al. (2010) propose a soft robust 
optimization framework that relaxes the standard notion of robustness by allowing the decision 
maker to vary the protection level in a smooth way across the uncertainty set. Recently, Calafiore and 
Campi (2005), Erdogan and Iyengar (2006) and Luedtke and Ahmed (2008) have proposed to replace 
the chance constraint (1b) by a point-wise constraint that must hold at a finite number of sample 
points drawn randomly from the distributionℙ. The advantage of this Monte Carlo approach is that 
no structural assumptions about ℙ are needed and the resulting approximate problem is convex. 
However, the drawback of such sampling based methods is that they may be too computationally 
intensive to solve large problems or to solve problems for which a small violation probability 𝜖𝜖 is 
required. Zymler, et al. (2013) developed tractable semi-definite programming base approximations 
for both individual and joint chance constraints for the case that second-order information is 
available. This approximation can only be achieved when the decision vector is a convex closed set.  

Cell transmission models (CTMs) are commonly used in the evacuation literature because of their 
capability to capture the traffic dynamics (Chung et al. 2011; Bish and Sherali 2013; Bish et al. 2014; 
Tarhini and Bish 2016). It does well in presenting flow propagation and modeling reduced travel 
times from congestion. The original CTM model (Daganzo 1994, 1995) is computationally expensive 
because of its nonlinear flow-density relationship (Peeta and Ziliaskopoulos 2001). To overcome this 
drawback, Ziliaskopoulos (2000) introduced a linear version of CTM which has been widely cited in 
the literature. However, we adopted a path-based model (PBM) introduced by Lim et al. (2012). PBM 
is much closer to the evacuation planning process that the authors are involved with at a local level, 
and it can handle very large-scale evacuations networks. The PBM also prevents traffic hold-back on 
the roads that can happen in the LP CTM because, in theory, a CTM-based model allows vehicles to 
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be stored at a cell.  
Our developed plan by the PBM intends to minimize the number of people left behind at 

evacuation nodes within a given evacuation horizon when we have scenario of demand uncertainty. 
Contribution of our work is in proposing robust approximation of the uncertain demand constraint 
when probability distribution function of demand is unknown and only partial (Moments, Symmetry, 
and Support) information is available. 

The rest of the paper is organized as follows: in Section 3, we describe the network flow 
optimization problem in a transportation network for evacuation routing and scheduling. In Section 
4, we introduce a robust approximation method for handling our chance constraint along with the 
corresponding models. The applicability of the model is demonstrated with a sample network in 
Section 5, as well as our results for various scenarios that might occur during evacuation. Conclusions 
and future work are presented in Section 6. 

 

3 Problem formulation 

A dynamic network flow model has been used to mathematically represent traffic flow evolution in 
an evacuation network. A dynamic network can be visualized as a static network with an additional 
dimension representing time, i.e., the static network is repeated for each discrete slice of time 
(Aronson 1989; Ford and Fulkerson 1958, 2015; Xuan et al. 2003). Traffic assignment on such time-
expanded networks relies upon a more aggregate representation of traffic as a series of flows that 
attempts to match the demand for road space with the capacity of the highway system’s links and 
intersections at various time. 

Let us consider a directed network 𝒢𝒢 = (𝒩𝒩,𝒜𝒜) consisting of a set of nodes 𝒩𝒩 and a set of arcs 𝒜𝒜. 
For each arc 𝑎𝑎 ∈ 𝒜𝒜, we define 𝜃𝜃𝑝𝑝𝑝𝑝 as the transit time on arc 𝑎𝑎 of path 𝑝𝑝 and 𝐶𝐶𝑝𝑝 as the arc capacity. 
Nodes in the network are categorized into source nodes (𝒩𝒩𝑠𝑠), intermediate nodes, and destination 
nodes (𝒩𝒩𝑑𝑑). Let 𝑆𝑆𝑖𝑖 be the number of evacuees at source node 𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠 and ℓ𝑗𝑗 be the capacity of 
destination node 𝑗𝑗 ∈ 𝒩𝒩𝑑𝑑. We assume that there are 𝑇𝑇 time periods 𝕋𝕋 = {0, 1, … ,𝑇𝑇 − 1} to complete 
the transportation of evacuees from source nodes to the destination nodes.  

3.1   Path Based Model 

 In this section, we present a deterministic evacuation route planning model. To formulate such a 
problem, much of the work in the literature uses a network flow optimization model that finds the 
flow on roads with respect to limited capacities of the roads. In short-notice emergency evacuations, 
egress paths are decided a priori by the authorities and the main issue is traffic control and flow 
management to have a smooth evacuation. For large evacuation networks, finding the evacuation 
paths, corresponding flow and schedule is computationally intractable and various heuristic methods 
are applied to find an evacuation plan (Bretschneider and Kimms 2011; Kim et al. 2008; Lim et al. 
2012; Al Qhtani et al. 2017). 
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Here, we use a path-based model (PBM) because it is scalable for large evacuation networks, and 
it is easy to implement in practice. In PBM, a set of evacuation paths is first selected from a pool of all 
possible paths between the source and destination. Paths can be enumerated applying successive 
shortest-path algorithm or using CPLEX solution pool for shortest-path problem. By feeding 
candidate paths into the PBM, flow and schedule of the paths are determined for each origin-
destination (O-D) pair. Hence, this approach reduces the problem complexity by enumerating 
possible paths to be included in the model instead of leaving the selection of paths to the optimization 
model as is the case for an arc-based evacuation network model. Rungta et al. (2012) justified the use 
of PBM using an evacuation network (see Figure 3) in which the PBM found an optimal solution in 
few seconds, while the arc-based model could not find a feasible solution after three hours of 
computation.  The PBM also has the ability to address specific desirable functions such as limiting the 
number of used paths in the plan and eliminating paths with high durations.  

In the context of evacuation planning two approaches can be used for flow and path assignment. 
One approach is to use the paths that have been formed by the evacuation planning optimization 
models which simultaneously develop flow schedule. For instance, in arc-based evacuation models 
in which paths are formed and selected at the same time that the flow schedule is provided. However, 
while working with evacuation mangers in a metropolitan area, we have come across another 
approach that can be used in practice. Emergency managers are mostly used to work with few limited 
path options in which they would find more familiar. Hence, the approach that we employ is to first 
enumerate many alternative paths in advance (e.g. using solution pool of shortest path problem) and 
improve them based on planners’ experience and/or personal preference, and then use a similar 
model to our PBM model to find traffic assignments including evacuation schedule. Benefit of using 
a path pool based optimization is that it can help managers to get exposed to a better selection of 
evacuation paths that were not considered by them in their previous practice for the region. Using 
path-based models, one must ensure that the feasible path pool to the model should be large enough 
to contain good near-optimal solutions. 

Assuming a limited number of evacuees (demand) at source nodes and a limited capacity at 
destination nodes, the objective function of DPBM is to evacuate the maximum number of people from 
the evacuation zone within a given planning horizon 𝑇𝑇. The model is designed to select a set of 
evacuation paths and assign corresponding flow rates such that the objective minimizes the total 
remaining evacuees at the end of time horizon. Evacuees left behind at the source node at the end of 
time horizon are represented as a penalty variable for unserved demand and their summation over 
all the source nodes is minimized. This ensures that the total number of evacuated people is 
maximized within time T. We can also apply Algorithm 1 introduced by Rungta et al. (2012) on the 
DPBM to minimize CT and calculate the earliest time at which the network can be cleared. Note that 
the objective function of DPBM is to minimize ∑ βii∈𝒩𝒩s  within a given planning horizon T. It turns out 
that the minimum CT is achieved when we find a minimum planning horizon T in which objective 
function of a PBM (here DPBM) is equal to zero (∑ βii∈𝒩𝒩s = 0). In Algorithm 1 in Rungta et al. (2012), 
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planning horizon T is initialized with a lower bound and is given as an input to the PBM model. If 
∑ βii∈𝒩𝒩s = 0, selected paths and assigned flow and schedule on those paths can clear the network in 
T, i.e., CT∗ = CT. Otherwise, if the ∑ βii∈𝒩𝒩s ≠ 0, the planning horizon T is increased by one unit. The 
process is repeated until CT∗ is obtained. 

We denote the set of paths by 𝓅𝓅, the set of paths with source node 𝑖𝑖 by 𝓅𝓅𝑖𝑖+, and the set of paths 
with destination node 𝑗𝑗 by 𝓅𝓅𝑗𝑗−. There are two sets of integer decision variables in the model: 

  𝑓𝑓𝑝𝑝𝑝𝑝 ∈ ℤ+  : Flow on path 𝑝𝑝 ∈ 𝓅𝓅 at time 𝑡𝑡 
  𝛽𝛽𝑖𝑖 ∈ ℤ+   : Unsatisfied demand associated with source node 𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠. 

Using the notation in Table 1, the deterministic path-based model (DPBM) can be presented as 
follows: 

Table 1: Notation  
Notation Description 
𝒩𝒩 Set of all nodes 
𝒩𝒩𝑠𝑠 Set of all source nodes 
𝒩𝒩𝑑𝑑 Set of all destination nodes 
𝐶𝐶𝑝𝑝 Capacity of arc 𝑎𝑎 
𝑆𝑆𝑖𝑖 Demand of source node 𝑖𝑖 
𝜏𝜏𝑝𝑝 Arc 𝑎𝑎 travel time 
ℓ𝑗𝑗 Capacity of destination node 𝑗𝑗 
𝓅𝓅𝑖𝑖+ Set of paths originating from source node 𝑖𝑖 
𝓅𝓅𝑗𝑗− Set of paths terminated at destination node 𝑗𝑗 
𝓅𝓅 Set of all paths 

 

Minimize � 𝛽𝛽𝑖𝑖
𝑖𝑖∈𝒩𝒩𝑠𝑠

 (DPBM) (3a) 

Subject to: � �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 ≥ 𝑆𝑆𝑖𝑖, ∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠, (3b) 

 �𝛿𝛿𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝(𝑝𝑝−𝜃𝜃𝑝𝑝𝑝𝑝)
𝑝𝑝∈𝓅𝓅

≤ 𝐶𝐶𝑝𝑝 , ∀𝑎𝑎 ∈ 𝒜𝒜,  ∀𝑡𝑡 ∈ 𝕋𝕋, (3c) 

 � �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑗𝑗

−

≤ ℓ𝑗𝑗, ∀𝑗𝑗 ∈ 𝒩𝒩𝑑𝑑 , (3d) 

 𝑓𝑓𝑝𝑝𝑝𝑝 ∈ ℤ+ ∀𝑝𝑝 ∈ 𝓅𝓅, ∀𝑡𝑡 ∈ 𝕋𝕋, (3e) 

 𝛽𝛽𝑖𝑖 ∈ ℤ+ ∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠 (3f) 

Constraint (3c) limits the total flow on each arc to the capacity of the arc. In this constraint, 
parameter 𝛿𝛿𝑝𝑝𝑝𝑝  is a binary parameter which takes value 1 if path 𝑝𝑝 contains arc 𝑎𝑎 and 0 otherwise. 
Variable 𝑓𝑓𝑝𝑝(𝑝𝑝−𝜃𝜃𝑝𝑝𝑝𝑝) ensures that the flow originating on path 𝑝𝑝 at time 𝑡𝑡 − 𝜃𝜃𝑝𝑝𝑝𝑝 reaches arc 𝑎𝑎 after the 
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transit time 𝜃𝜃𝑝𝑝𝑝𝑝. This constraint allows the simultaneous sharing of any arc by multiple paths. 
Constraint (3b) is related to demand at each source node and guarantees that the sum of flows on 
paths originating from each origin node in 𝒩𝒩𝑠𝑠 over all time and the number of evacuees left behind 
represented by penalty variable 𝛽𝛽𝑖𝑖 is equal to initial demand at that node. However, we convert it to 
an inequality constraint as seen in (3b) because the inequality constraints improved the 
computational convergence of the model. Constraint (3b) together with the objective function (3a) 
minimize the summation of unsatisfied demand 𝛽𝛽𝑖𝑖 from all source nodes. This objective function, in 
turn, maximizes the total outgoing flow from the network. Constraint (3d) bounds the total incoming 
flows at each destination node to its capacity. Constraints (3e) and (3f) reflect the non-negativity and 
integrality conditions. The model could have been written in other ways to reduce the number of 
variables but the current model is a natural way to address the shortfall in the number of evacuees 
left behind within a given planning horizon 𝑇𝑇. 

For the DPBM model, a deterministic estimate of the demand is used on the right-hand side of 
constraint (3b). The evacuation plan based on the assumption of deterministic demand may result in 
an optimal value which may not reflect the true number of people left behind when the actual demand 
differs from its estimated value. Chance constraints have been used to address this problem and 
derive a better evacuation plan where the constraint is satisfied with some specified confidence level. 
A so-called individual chance constraint can be formulated when the demand parameter 𝑆𝑆𝑖𝑖 in 
constraint (3b) is replaced by the random demand 𝑆𝑆𝚤𝚤� .  Referring to the deterministic model, the 
demand constraint (3b) is modified to limit the infeasibility of the constraint for each arc by a 
violation level 𝜖𝜖𝑖𝑖 ∈ (0,1]. 

The chance-constrained model with demand uncertainty can be formulated as follows: 

Minimize � 𝛽𝛽𝑖𝑖
𝑖𝑖∈𝒩𝒩𝑠𝑠

 (CCP) (4a) 

Subject to: ℙ�� �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 ≥ 𝑆𝑆𝑖𝑖� ≥ 1 − 𝜖𝜖𝑖𝑖, ∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠, (4b) 

 (3c)-(3f).  (4c) 

Constraint (4b) is an individual chance constraint equivalent of the deterministic constraint (3b) 
with the desired probability level imposed individually on each constraint, where parameter   1 −
𝜖𝜖𝑖𝑖 ∈ (0,1] is the desired reliability level. For modeling with chance constraints, the basic assumption 
is that the probability distribution function 𝐹𝐹�̃�𝑆𝑖𝑖 of the random parameters is known with certainty. 
When this is the case, and the probabilistic constraint is of the form (4b), a deterministic 
reformulation is possible: 
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� �𝑓𝑓𝑝𝑝𝑝𝑝 + 𝛽𝛽𝑖𝑖 ≥ 𝐹𝐹�̃�𝑆𝑖𝑖
−1(1− 𝜀𝜀𝑖𝑖)

 

𝑝𝑝∈𝕋𝕋

,
 

𝑝𝑝∈𝓅𝓅𝑖𝑖
+

   (5) 

where 𝐹𝐹�̃�𝑆𝑖𝑖
−1 is the inverse distribution function of the random demand.  

4 Robust approximation of chance constraints 

Assuming the probability distribution of the random demand is known, we can solve the chance-
constrained problem as a deterministic model using constraint (5). However, when the distribution 
is not known, such an approach is not possible. Methods like a min-max approach for a family of 
distributions can be used instead for situations when the distribution of the demand is not known 
exactly. We use such an approach via a robust tractable approximation that can be used when only 
the mean, variance, support, and/or symmetry information is available for the underlying random 
demand. 
We consider the following robust individual chance constraint problem: 

Minimize � 𝛽𝛽𝑖𝑖
𝑖𝑖∈𝒩𝒩𝑠𝑠

  (6a) 

Subject to: ℙ�� �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 ≥ 𝑆𝑆𝑖𝑖� ≥ 1 − 𝜖𝜖𝑖𝑖, ∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠,∀ℙ ∈ 𝓅𝓅 (6b) 

 (3c)-(3f).  (6c) 

In order to tractably solve model (6) by approximation, we must say more about the family of 
probability distributions, 𝓅𝓅, under consideration. The three propositions that follow specify the 
family of distributions in three distinct ways and, in turn, provide computationally tractable 
approximations that ensure the resulting solution is feasible to model (6). Our results are related to 
those of Calafiore and Ghaoui (2006), but simpler because we only have randomness in the right-
hand side. Also, a result similar to the first of our three propositions considering known mean and 
variance of the underlying distribution can be found in Chung et al. (2012). Our proposition differs 
from the above published work based on the fact that it is structurally dependent on the SPBM model 
and derived accordingly. Hereafter, we name the robust model under an uncertain demand 
distribution as RCCP. 

Proposition 1. For 𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠 let the random demand 𝑆𝑆𝑖𝑖  have known mean 𝑆𝑆�̅�𝑖  and variance 𝜎𝜎𝑖𝑖2, where we denote 
this family by 𝓅𝓅 = (𝑆𝑆�̅�𝑖 ,𝛴𝛴), with 𝑆𝑆̅ = (𝑆𝑆�̅�𝑖)𝑖𝑖∈𝒩𝒩𝑠𝑠  and 𝛴𝛴 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝜎𝜎𝑖𝑖2) 𝑖𝑖∈𝒩𝒩𝑠𝑠 , and consider the following model: 

Minimize � 𝛽𝛽𝑖𝑖
𝑖𝑖∈𝒩𝒩𝑠𝑠

 (RCCP1) (7a) 
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Subject to: � �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 ≥ 𝜎𝜎𝑖𝑖�
1 − 𝜖𝜖𝑖𝑖
𝜖𝜖𝑖𝑖

+ 𝑆𝑆�̅�𝑖, ∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠,  (7b) 

 (3c)-(3f).  (7c) 

Then every feasible solution of model (7) is feasible for model (6) with 𝓅𝓅 = (𝑆𝑆�̅�𝑖 ,𝛴𝛴). 

Proof. Let (𝑓𝑓,𝛽𝛽) be a feasible solution of (7). It suffices to show that for each 𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠 and ℙ ∈ 𝓅𝓅: 

ℙ�� �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 < �̃�𝑆𝑖𝑖� ≤ 𝜖𝜖𝑖𝑖 
(8) 

From Cantelli's inequality we have a one-sided version of Chebyshev's inequality: 

ℙ��̃�𝑆𝑖𝑖 ≥ 𝑆𝑆�̅�𝑖 + 𝜅𝜅𝜎𝜎i� ≤
1

1 + 𝜅𝜅2
  

Thus by requiring 

� �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 ≥ 𝑆𝑆�̅�𝑖 + 𝜅𝜅𝜎𝜎i  

the probability the chance constraint is violated is no more than 1 1 + κ2⁄ . Setting this value equal to 
ϵi and solving for κ yields the desired result. 

Proposition 2. Assume the hypotheses of Proposition 1 hold. In addition, assume 𝑆𝑆�̅�𝑖  is symmetric about its 
mean, let 𝓅𝓅 = (𝑆𝑆�̅�𝑖 ,𝛴𝛴)𝑆𝑆 denote this family of distributions, and consider the following model: 

 

Minimize � 𝛽𝛽𝑖𝑖
𝑖𝑖∈𝒩𝒩𝑠𝑠

 (RCCP2) (9a) 

Subject to: � �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 ≥ 𝜎𝜎𝑖𝑖�
1

2𝜖𝜖𝑖𝑖
+ 𝑆𝑆�̅�𝑖, ∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠,  (9b) 

 (3c)-(3f).  (9c) 

Then every feasible solution of model (9) is feasible for model (6) with 𝓅𝓅 = (𝑆𝑆�̅�𝑖,𝛴𝛴)𝑆𝑆. 

Proof. The proof follows in similar fashion to that of Proposition 1, except it relies on the following 
one-sided Chebyshev inequality for a random variable that is symmetric about its mean: 

ℙ��̃�𝑆𝑖𝑖 ≥ 𝑆𝑆�̅�𝑖 + 𝜅𝜅𝜎𝜎i� ≤
1

2𝜅𝜅2
 (10) 
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Setting ϵi to the right-hand side of inequality (10) and solving for κ yields the desired result. 

Proposition 3. For 𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠 let the random demand 𝑆𝑆𝑖𝑖  have known mean 𝑆𝑆�̅�𝑖  and known bounds on its support; 
i.e., we know 𝑙𝑙𝑖𝑖− < 𝑙𝑙𝑖𝑖+ such that ℙ�𝑆𝑆𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖−, 𝑙𝑙𝑖𝑖+]� = 1. Let 𝓅𝓅 = (𝑆𝑆,̅ 𝐿𝐿)𝐼𝐼 denote the family of distributions where 
𝐿𝐿 contains the intervals [𝑙𝑙𝑖𝑖−, 𝑙𝑙𝑖𝑖+], 𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠. Consider the following model: 

Minimize � 𝛽𝛽𝑖𝑖
𝑖𝑖∈𝒩𝒩𝑠𝑠

 (RCCP3) (11a) 

Subject to: � �𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝕋𝕋𝑝𝑝∈𝓅𝓅𝑖𝑖

+

+ 𝛽𝛽𝑖𝑖 ≥ (𝑙𝑙𝑖𝑖− − 𝑙𝑙𝑖𝑖+)�
1
2

ln �
1
𝜖𝜖𝑖𝑖
�  + 𝑆𝑆�̅�𝑖, ∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠,  (11b) 

 (3c)-(3f).  (11c) 

Then every feasible solution of model (11) is feasible for model (6) with 𝓅𝓅 = (𝑆𝑆,̅ 𝐿𝐿)𝐼𝐼 . 

Proof. The proof follows in similar fashion to that of Proposition 1, except it relies on Hoeffding's 
inequality (Hoeffding 1963) specialized to a single random variable: 

ℙ��̃�𝑆𝑖𝑖 ≥ 𝑆𝑆�̅�𝑖 + 𝜅𝜅𝜎𝜎i� ≤ 𝑒𝑒𝑥𝑥𝑝𝑝�
−2𝜅𝜅2

�𝑙𝑙𝑖𝑖− − 𝑙𝑙𝑖𝑖+�
2� (12) 

Setting ϵi to the right-hand side of inequality (12) and solving for κ yields the desired result. 
Depending on whether we are in a situation in which we are willing to assume the demand for 

each origin node i has: (i) known mean and variance; (ii) known mean and variance and is symmetric; 
or, (iii) known mean and support, we can apply the respective Propositions 1, 2, or 3 to obtain a 
tractable robust model, i.e., model (7), (9), or (11). These respective models differ from model (4) 
with constraint (5)—the case in which the distribution is known—only by the term that appears on 
the right-hand side of the constraint governing demand satisfaction.  

In the proposed robust chance constraint programs (RCCPs), the uncertain demand (𝑆𝑆𝑖𝑖) is 
substituted by an estimation of demand to reach the desired level of confidence (i.e., feasibility of a 
solution). For instance, having moment information (S�i, σi) and reliability level of ϵi, in RCCP1, the 

source node demand (𝑆𝑆𝑖𝑖) is substituted by S�i + σi�1− ϵi ϵi⁄ . Therefore, it becomes important to 
gather more accurate estimates for the parameters because RCCP will try to generate conservative 
evacuation plans to protect the evacuees from undesired outcomes such as a longer than expected 
evacuation time. Although, in most cases, RCCPs may result in an increased 𝐶𝐶𝑇𝑇∗, it is possible to find 
solutions that are both robust (desired confidence level is guaranteed) and optimal (approximated 
demands are not inflated enough to increase 𝐶𝐶𝑇𝑇∗) based on propositions 1, 2 and 3. Furthermore, 
because the proposed RCCPs are linear programs, finding a solution in a timely manner is not an 
issue. 
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5 Computational Results 

This section is designed to test the performance of the proposed chance constrained approach under 
various demand scenarios. We further explore the effect of path generation methods on plan 
performance. Experimental studies are conducted on a test evacuation network shown in Figure 1. 
We developed our model in a C++ environment and the problem is solved using CPLEX 12.3. 
Experiments were made on a PC with 3.07 GHz Intel Core i7 processor having 24GB RAM and running 
Ubuntu 10.04.3.  

5.1      Numerical case study 

In this network, nodes 1-3 are source nodes and nodes 9-10 are destination nodes. Since the total 
demand is uncertain, modeling the constraint as a chance constraint and assuming the probability 
distribution of the perceived demand is known, the solution of the model would result in a feasible 
evacuation plan for unexpected scenarios within the assumed distribution. However, a problem 
arises when the assumed distribution is different from the actual distribution. We perform the 
following numerical tests to show the feasibility of the plan. 

      For each source node, we assume that the mean of the demand is known with value 𝑆𝑆�̅�𝑖 =167,  
∀𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠 . The standard deviation of the random demand for each of the three source nodes are set to 
be σ1 =8.3, σ2 =7.5 and σ3 =9.1. Using the chance-constrained model, we assume that demand 
distribution at each source node is defined by Si, based on the given statistical parameter values. In 
the case of uniform distribution, Si is assumed to be uniform consistent with the given moment 
information (𝑆𝑆�̅�𝑖, σi) of source node 𝑖𝑖. While for the beta distribution, demand is defined as 
Si =160+15d�i and d�i follows beta1(2.68, 3), beta2(3, 3.45) and beta3(2.4, 2.75), respectively. The 
capacity of each destination node is set to be 750. 

Then, we compare the performance of the chance constraint program (CCP) under uniform (CCP-
Unif) and beta distribution (CCP-Beta) assumptions, and robust chance constrained models (RCCP1, 
RCCP2, and RCCP3). First, an estimated amount of demand for each source node is calculated and is 
used to solve CCP-Unif, CCP-Beta, RCCP1, RCCP2, and RCCP3. The estimate can be calculated based on 
(1) the assumed cumulative probability distribution or the given moment information and (2) a given 
reliability level, i.e., (1 − ϵ). We repeat this computation for the combination of each model and 
various reliability levels ranging from 60% to 99% probability levels.  
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Figure 1: Evacuation test network 
 

After obtaining a plan and optimum clearance time (by using Algorithm 1 in Rungta et al., 2012) 
for each combination, we apply the Shortfall Determination Algorithm to check the feasibility of the 
plan. For example, 1,000 demand scenarios are randomly generated using normal, uniform, and beta 
distributions following given moment information. Assuming for a moment that these scenarios are 
actual, Step 2 is used to check if the evacuation plan for each source node obtained by CCP-Unif, CCP-
Beta, RCCP1, RCCP2, and RCCP3 is feasible. For each source node, we compare a demand scenario (𝑆𝑆𝑖𝑖𝑖𝑖) 
from an actual distribution (normal, uniform, or beta) with the number of evacuees (𝑆𝑆𝑖𝑖) used in the 
models. Note that the value of 𝑆𝑆𝑖𝑖  changes depending on the optimization model and the 
corresponding confidence level. If 𝑆𝑆𝑖𝑖𝑖𝑖  is less than or equal to 𝑆𝑆𝑖𝑖 , then the evacuation plan is considered 
feasible. Otherwise, the excess demand remains at the source node and the corresponding evacuation 
plan becomes infeasible.  

We compare CCP and RCCP models using two types of performance measures: plan feasibility 
and optimum clearance time (𝐶𝐶𝑇𝑇∗).  

Table 2: Comparison between CCP and RCCP when the actual demand follows a normal distribution 

      Probability Level (1 − 𝜖𝜖) 
      99 98 95 90 80 70 60 

CCP-Unif 

Demand (𝑆𝑆𝑖𝑖)   545 544 541 537 528 520 511 
𝐶𝐶𝑇𝑇∗   23 23 23 23 23 22 22 

Feas. 
(Normal) 

𝒩𝒩1 95.8% 94.6% 93.1% 91.8% 84.8% 75.9% 63.6% 
𝒩𝒩2 95.0% 95.0% 93.3% 92.1% 86.1% 79.6% 65.0% 
𝒩𝒩3 96.1% 96.1% 94.6% 92.4% 87.9% 79.8% 69.3% 

CCP-Beta 

Demand (𝑆𝑆𝑖𝑖)   520 518 516 513 509 507 504 
𝐶𝐶𝑇𝑇∗   22 22 22 22 22 22 22 

Feas. 
(Normal) 

𝒩𝒩1 78.5% 78.5% 75.5% 71.3% 67.0% 61.9% 56.7% 
𝒩𝒩2 77.4% 73.4% 73.4% 69.6% 58.4% 58.4% 53.0% 
𝒩𝒩3 77.8% 74.4% 69.6% 65.6% 61.9% 58.2% 53.3% 

RCCP1 

Demand (𝑆𝑆𝑖𝑖)   750 677 611 577 552 540 534 
𝐶𝐶𝑇𝑇∗   31 28 26 24 24 23 23 

Feas. 
(Normal) 

𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 98.1% 93.9% 90.7% 
𝒩𝒩2 100.0% 100.0% 100.0% 99.9% 96.8% 93.5% 89.7% 

 
 (1,10) 
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𝒩𝒩3 100.0% 100.0% 100.0% 99.9% 98.6% 94.8% 92.0% 
 
Table 2 shows the percentage of demand scenarios that are feasible for each source node when 

the actual demand follows normal distribution. Each of these values were calculated based on an 
estimated number of evacuees (𝑆𝑆𝑖𝑖) per assumed distribution and confidence level (1 − 𝜖𝜖) for CCP-
Unif, CCP-Beta, RCCP1 models. Furthermore, for given 𝑆𝑆𝑖𝑖, we can use CCP-Unif, CCP-Beta, RCCP1 
models to calculate 𝐶𝐶𝑇𝑇∗, i.e., the time it takes for all evacuees to reach the destination nodes. Similarly, 
Table 5 and Table 5 in Appendix show the results under the assumption that the actual demand 
follows Uniform and Beta distribution, respectively. 

In Table 2, the feasibility of the tested instances under the RCCP1 approach consistently 
outperformed the CCP-based approach (i.e., CCP-Beta and CCP-Unif). This is because accuracy of the 
CCP-based approach depends on the assumed demand distribution, leading to obtain less feasible 
solutions when the assumed distribution is different from the actual distribution. For example, at the 
99% reliability level, we expect that a chance constraint program will provide solutions with 99% 
feasibility percentage. Instead, CCP-Unif on average produced feasible solutions for only 96.0% of the 
scenarios (average of 95.8%, 95%, 96.1% which are feasibility percentages of the three source nodes) 
and CCP-Beta was feasible for only 78.0% of scenarios (average of 78.5%, 77.4%, 77.8%) when the 
actual distribution (e.g., normal distribution) was different from the assumed beta distribution. In 
this specific example, the uniform distribution showed better feasibility results than the beta 
distribution. Similarly, Table 5 and Table 6 in Appendix compare feasibility results of evacuation 
plans generated by CCP-Unif, CCP-Beta and RCCP1 when actual distribution is uniform and beta, 
respectively. This brings an important point that the solution of CCP depends on the exact description 
of the demand distribution. 

 
Shortfall Determination Algorithm 

Inputs: 
An evacuation network 𝒢𝒢 consisting of a set of nodes 𝒩𝒩 and a set of arcs 𝒜𝒜. 
An evacuation routing plan (i.e., evacuation paths, flow rates, and schedule for each source node) 

Step 1 - Initialization: 
for all node 𝑖𝑖 ∈ 𝒩𝒩𝑠𝑠  do 

Generate 1,000 random demand scenarios 𝑆𝑆𝑖𝑖𝑖𝑖  from the selected underlying distribution (Normal, 
Uniform or Beta distribution) consistent with the given moment information. 
Step 2 - Shortfall determination:  
if 𝑆𝑆𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 then 

Allocate demand proportionately to each selected evacuation path. 
Set Feasibility = TRUE. 

else if 𝑆𝑆𝑖𝑖𝑖𝑖 > 𝑆𝑆𝑖𝑖  then 
Excess demand remains at the source node. 
Set Feasibility = FALSE 

end if  
end for 
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One can notice from Tables 2, 5, and 6 that RCCP resulted in better feasibility at the cost of higher 
optimum clearance time. Because the evacuation plan has to be developed without knowing the 
demand distribution in advance, it is reasonable for the planners to take a conservative approach to 
give more time for evacuation. However, if the evacuation began much earlier than necessary, the 
region will suffer from an unnecessary negative economic impact due to loss of work hours. RCCP 
attempts to address how late we can wait to begin evacuation to meet the desired confidence level 
under any type of evacuation demand distribution. As the demand of all source nodes increases, the 
𝐶𝐶𝑇𝑇∗ may go higher. But, RCCP will ensure the resulting 𝐶𝐶𝑇𝑇∗ is optimal for available data for demand 
estimate (see propositions 1, 2 and 3).  

 
Figure 2: Flow passing through nodes over the course of an evacuation (for (1 − 𝜖𝜖) = 90%) 

 

We further compare results of a robust model (RCCP1) with a chance-constraint model (CCP-
Beta) to see how their scheduled flows behave over the course of an evacuation. Figure 2 displays 
snapshots of flows (evacuees) at different times (discrete time intervals) that pass through different 
source nodes, intermediate nodes, and destination nodes at the 90% confidence level in the models. 
More detailed results for various confidence levels are tabulated in Table 7 and Table 8 in Appendix. 
Looking at the flow on destination nodes, we observe that the CCP-Beta had its last flow at time 22 
compared to time 24 for RCCP1.  Based on the previous results, plans using a RCCP expect a longer 
time to complete the evacuation as compared to the plans provided by CCPs. However, looking back 
at the scenarios projected in Table 2, 5 and 6, there is a good chance that the CCP-based plans may 
not feasible when the actual demand is different from what it was assumed in the planning stage. For 
the case of case of CCP-Beta with confidence level of 90%, when the actual (or realized) demand 
follows a normal distribution, the provided plan was feasible only 68.83% of the scenarios tested 
(the average of 71.3%, 69.6% and 65.6% corresponding to source nodes 𝒩𝒩1,𝒩𝒩2, and 𝒩𝒩3). This can 
result in a devastating consequence; the feasibility could drop from the aimed 90% to a mere 68.83%. 
In reality, having an accurate estimation on demand distribution is near impossible. Hence, CCPs may 
not properly provide reliable plans for emergency evacuations. Although RCCPs project a longer CT∗, 
the resulting plans are expected to be more reliable. 

It is possible to collect data that can give partial information about the distribution beyond first 
and second moments. In the following we examine the results when extra information regarding the 
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demand distribution such as symmetry and support information is available. Shortfall Algorithm is 
used again and we follow the same experimental procedure as described previously. First, the results 
are obtained based solely on the information of the first two moments of the random demand data 
(Model RCCP1). The next experiments are based on the assumption that the distribution is symmetric 
(Model RCCP2). The third set of experiments is based on the assumption that the mean of the demand 
is known and the deviation of the demand from mean for each source is bounded (Model RCCP3). 
Tables 3, 9 and 10 show the results when the actual demand is drawn from, respectively, normal, 
uniform and beta distributions, and robust approximation of the chance constraint is performed 
using the known statistical information of the demand distribution (Table 9 and 10 in Appendix). 

As expected, results shown in Tables 3, 9 and 10 suggest that a tighter approximation can be made 
when we have more information about the distribution. For example, for a desired reliability of 99% 
for the constraint to be feasible, the demand approximation based on the support information 
(RCCP3) gives the tightest bound and results in a shorter 𝐶𝐶𝑇𝑇∗. Information about the symmetry of the 
distribution significantly improves the tightness of the approximation and makes the demand 
approximation tighter resulting in an efficient evacuation plan. Note that computation times for 
solving RCCP and CCP models for the test network were less than a second.  

Table 3: Performance of RCCP under various distribution information (true demand distribution: Normal) 

      Probability Level (1 − 𝜖𝜖) 
      99 98 95 90 80 70 60 

Moment 
(RCCP1) 

Demand (𝑆𝑆𝑖𝑖)   750 677 611 577 552 540 534 
𝐶𝐶𝑇𝑇∗   31 28 26 24 24 23 23 

Feas. 
(Normal) 

𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 98.1% 93.9% 90.7% 
𝒩𝒩2 100.0% 100.0% 100.0% 99.9% 96.8% 93.5% 89.7% 
𝒩𝒩3 100.0% 100.0% 100.0% 99.9% 98.6% 94.8% 92.0% 

Symmetry 
(RCCP2) 

Demand (𝑆𝑆𝑖𝑖)   679 627 581 558 542 534 531 
𝐶𝐶𝑇𝑇∗   28 26 25 24 23 23 23 

Feas. 
(Normal) 

𝒩𝒩1 100.0% 100.0% 100.0% 98.9% 94.9% 89.9% 87.4% 
𝒩𝒩2 100.0% 100.0% 100.0% 98.9% 95.5% 91.4% 89.1% 
𝒩𝒩3 100.0% 100.0% 99.8% 98.6% 94.6% 90.1% 87.7% 

Support 
(RCCP3) 

Demand (𝑆𝑆𝑖𝑖)   595 588 577 568 557 549 543 
𝐶𝐶𝑇𝑇∗   25 25 25 24 24 24 23 

Feas. 
(Normal) 

𝒩𝒩1 100.0% 99.9% 99.9% 99.5% 98.8% 98.0% 95.3% 
𝒩𝒩2 100.0% 100.0% 100.0% 99.5% 98.5% 97.4% 94.5% 
𝒩𝒩3 100.0% 100.0% 100.0% 99.9% 99.6% 98.9% 97.1% 

 

We can conclude that, although RCCP recommends a longer optimum clearance time in 
evacuation planning, it provides a conservative solution that will work under unknown demand 
distribution. While planning for an evacuation, if complete information of the demand distribution is 
available, then the tightest approximation can be obtained. Nevertheless, it is arguably more sensible 
to use the robust approximation to come up with an evacuation plan when complete information of 
the distribution is not known. As in such cases, an incorrect assumption would lead to undesired 
infeasible plans. Insights learned from these results can greatly help evacuation managers to prepare 
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well for an upcoming disaster. 

 5.2      Path enumeration impact on evacuation plan performance 

As we mentioned earlier, it is computationally intractable to find an optimal set of evacuation paths, 
flow assignment on the paths, and schedule over an optimal clearance time for a large-scale 
evacuation problem. The premise of our proposed approach was to ease the computational burden 
of dealing with large-scale evacuation networks. This is possible by using the path-based approach 
(Rungta et al., 2012). The solution quality of the path-based approach depends on the number of pre-
defined candidate paths as an input to the evacuation plan optimization model. Having a sufficient 
number of the candidate paths is important to obtain a reliable plan. We should note that as we 
increase the number of candidate paths to be fed to the optimization model, its computational time 
can increase due to the increased number of variables.   
In this section, numerical studies are conducted to analyze the performance of the path-based model 
for different initialized number of paths for the model. Computational times for solving the small test 
network in Figure 1 are less than one second. To establish a benchmark for experiments of this 
section, all 216 paths of the previous network have been enumerated and used in RCCP1 to derive 
optimum evacuation plan and clearance time. Estimation of the demand that is used for this 
experiment is derived from the RCCP1 with 99% reliability level meaning that the right hand side of 
constraint (7b) takes values 182, 180 and 183 for source nodes 1, 2 and 3, respectively. 
Then result of the model is obtained when less number of paths are used as an input of RCCP1 and by 
comparing with the benchmark plan, their feasibility is calculated. As it is shown in Table 4, even 
when only 10 shortest paths per node are used in the model (total 30 input paths), feasibility for all 
source nodes are 100% and performance of it is the same as the optimum plan. In cases that number 
of input paths are less than 10 paths per node, feasibility might deviate from 100%. For instance, 
when 10, 9 and 9 paths are selected for nodes 1, 2 and 3 respectively, the feasibility for the first and 
third node drops to 93.4%, and 65.6% and overall feasibility of the plan decreases to 86.2%. From 
the results, we can conclude that we can reach global optimal solutions for the network by only 
enumerating 30 paths instead of using all 216 paths. Therefore, using the path-based method in the 
proposed RCCP models makes them capable to deal with large-scale networks through using less 
number of paths while obtaining optimal solutions. 
 

Table 4: Evacuation percentage vs. the number of enumerated paths  

nPaths (pcnt) per Source Node 
𝐶𝐶𝑇𝑇∗ Total nPaths (pcnt) 

𝒩𝒩1 𝒩𝒩2  𝒩𝒩3  
30 (100%) 30 (100%) 30 (100%) 23 90 (100%) 
10 (100%) 10 (100%) 10 (100%) 23 30 (100%) 
10 (100%)   9 (100%) 10 (100%) 23 29 (100%) 
10 (93.4%)   9 (100%)   9 (65.6%) 26 28 (86.2%) 
10 (93.4%) 10 (91.7%)   9 (73.8%) 26 29 (86.2%) 
  9 (96.2%)   9 (94.4%) 10 (65.8%) 27 28 (85.3%) 
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  9 (89.6%) 10 (98.9%) 10 (66.7%) 27 29 (85.0%) 
  9 (85.2%) 10 (91.7%)   9 (32.8%) 32 28 (69.7%) 
  9 (96.2%)   9 (58.3%)   9 (54.6%) 32 27 (69.7%) 
  7 (98.9%)   7 (41.7%)   7 (68.3%) 32 21 (69.7%) 
  5 (60.4%)   5 (86.1%)   5 (62.8%) 32 15 (69.7%) 
  3 (98.9%) 3 (5.6%)   3 (51.9%) 41   9 (52.3%) 

   nPaths: number of paths;   pcnt: Percent feasibility 

In order to better study the influence of path enumerations, computational experience is 
implemented on a large metropolitan area evacuation network. Figure 3 represents the 
transportation network of Houston, Texas, the fourth largest city in the US. Houston has experienced 
many hurricanes and is one of the most vulnerable metropolitan cities situated on the Gulf coast. In 
the considered evacuation network, there are a total of 42, including 13 source nodes and 4 
destination nodes. Data used for this network is obtained from the work of (Rungta et al., 2012 and 
Lim et al., 2016). 

The total mean demand on source nodes is 566,000 and transit times are multiplies of  τ = 30 
minute intervals. Demand is not uniformly distributed among source nodes and the average number 
of demand on source nodes 1-6, 7-10 and 11-13 are 100, 3500 and 14000, respectively. Due to this 
variety in the amount of demand of source nodes, in order to better compare the performance of path 
enumerations, we define three levels of source nodes. Level 1 includes nodes 𝒩𝒩1 -𝒩𝒩6 which have the 
least amount of demand, level 2 includes source nodes 𝒩𝒩7 -𝒩𝒩10 and level 3 contains nodes 𝒩𝒩11 -𝒩𝒩13 
with highest amount of demand. 

For the third level of nodes, since the amount of demand compared to other classes is 
considerable, we consider three number of path levels: Small (5-10 paths), Medium (10-25) and 
Large (60-90 paths). For the first and second level of nodes (𝒩𝒩1 -𝒩𝒩6 and 𝒩𝒩7 -𝒩𝒩10), we consider 
Medium and Large levels. Therefore, our experiment is conducted by evaluating results of each 2 ×
2 × 3 = 12 combination of source node level and path number level. 
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Figure 3: City of Houston Transportation Network 

 
In Table 11 (see Appendix), mean and standard deviation for the number of input paths as well 

as feasibility percentage and solution time for the combination of each source node level and path 
number level are presented. In combination 𝐶𝐶1(𝑀𝑀,𝑀𝑀, 𝐿𝐿), highest levels for number of paths (Medium, 
Medium and Large levels) are considered for node levels 𝒩𝒩1 -𝒩𝒩6, 𝒩𝒩7 -𝒩𝒩10, and 𝒩𝒩11 -𝒩𝒩13. Hence, 
results of 𝐶𝐶1(𝑀𝑀,𝑀𝑀, 𝐿𝐿) is selected as a benchmark to evaluate the results of other combinations. As 
shown, when Large and Medium path levels are selected for source nodes 11 to 13 (𝒩𝒩11 -𝒩𝒩13), 
regardless of the path levels of other two node levels, 100% feasibility is achieved. Only when the 
number of paths for populated source nodes 𝒩𝒩11 -𝒩𝒩13 are within the Small level (5-10 paths), as is in 
𝐶𝐶6, 𝐶𝐶9, and 𝐶𝐶12, feasibility of the plan deviates from 100%. But in other cases, 100% feasibility is 
achieved by using a fewer number of paths. Having an enough number (i.e., more than 10) of pre-
defined paths for source nodes 11 to 13 seem to ensure 100% feasibility. However, as the number of 
pre-defined paths in the model increases, the solution time increases at a slow pace. Hence, it can 
adequately handle large-scale evacuation networks. Other benefits of the path-based RCCP models 
(as compared to arc-based models) are that it simplifies the optimization process by performing path 
formation prior to flow assignment and schedule, and it is easy to implement the plan in practice. 
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6 Conclusion 

While most of the existing evacuation traffic assignment problems assume deterministic input 
parameters (such as demand), there are a few works that account for uncertainties in parameters. 
Stochastic programming techniques, specifically chance-constrained programming, are usually 
employed to come up with a reliable evacuation plan. However, in the context of mass evacuation, 
only partial information of demand distribution may be known as opposed to the exact distribution. 
To address this challenge, we have developed a stochastic approach where only partial information 
of demand distribution (i.e., moment, support, or symmetry) is available. To overcome the 
computational burden of a stochastic model, robust approximations of chance-constrained problems 
are provided to model traffic demand uncertainty in evacuation networks.  Particularly, when the 
demand variable has an arbitrary distribution in the evacuation problem, we propose the utilization 
of a distribution-free linear approximation technique to solve the problem. Furthermore, three 
models (RCCP) are proposed by deriving robust linear approximations of the demand-satisfaction 
constraint for the cases that moments, support and symmetry properties of the distribution are 
known. Performance of the proposed RCCP models were compared with a chance constraint 
programming model under the assumption that the demand distribution follows uniform or beta 
distributions (CCP-Unif, CCP-Beta). Feasibility of each of these five models were measured when the 
real demand distribution was assumed to follow normal, uniform or beta. Results showed that the 
solution of the CCP-based approach depends on the exact description of the demand distribution, and 
the probability of not being able to complete evacuation is high when the real demand distribution is 
different from what was assumed. This issue was clearly overcome by using RCCP Models. RCCPs 
provide better feasible plans regardless of the underlying assumed distribution. We also note that 
among RCCP models, RCCP3 provide more efficient evacuation plans in the context of both feasibility 
and optimum amount for clearance time as more information about the demand (support 
information) is being considered compared to the other two cases. 
One can extend this work by incorporating other types of parameter uncertainty such as road 
capacity or travel times during the planning phase, which will give a more helpful solution to 
evacuation managers. However, when there are more probabilistic parameters in the model, it 
becomes computationally more challenging to solve the resulting model. Therefore, computationally 
more efficient solution approaches will be always desired for the models to be practically useful. 
Furthermore, an investigation on approaches to better control the level of conservatism of the PBM 
solution (see Bertsimas and Sim, 2004) can be another venue for potential future research. 
 

Appendix 
 

 
Table 5: Performance comparison between CCP and RCCP (true distribution: uniform) 

      Probability Level (1 − 𝜖𝜖) 
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      99 98 95 90 80 70 60 

CCP-Unif 

Demand (𝑆𝑆𝑖𝑖)   545 544 541 537 528 520 511 
𝐶𝐶𝑇𝑇∗   23 23 23 23 23 22 22 

Feas. (Unif) 
𝒩𝒩1 100.0% 98.3% 95.4% 92.7% 82.0% 72.1% 62.2% 
𝒩𝒩2 100.0% 100.0% 95.5% 91.4% 79.7% 71.7% 58.6% 
𝒩𝒩3 100.0% 100.0% 97.7% 91.9% 82.7% 73.3% 65.0% 

CCP-Beta 

Demand (𝑆𝑆𝑖𝑖)   520 518 516 513 509 507 504 
𝐶𝐶𝑇𝑇∗   22 22 22 22 22 22 22 

Feas. (Unif) 
𝒩𝒩1 71.6% 71.6% 68.1% 63.9% 61.0% 58.2% 54.9% 
𝒩𝒩2 72.9% 69.8% 69.8% 66.9% 57.7% 57.7% 53.0% 
𝒩𝒩3 73.0% 70.8% 67.9% 64.6% 60.5% 56.9% 51.9% 

RCCP1 

Demand (𝑆𝑆𝑖𝑖)   750 677 611 577 552 540 534 
𝐶𝐶𝑇𝑇∗   31 28 26 24 24 23 23 

Feas. (Unif) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 94.5% 88.1% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 97.2% 88.4% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 95.3% 88.9% 

 
 

Table 6: Performance comparison between CCP and RCCP (true distribution: beta) 

      Probability Level (1 − 𝜖𝜖) 
      99 98 95 90 80 70 60 

CCP-Unif 

Demand (𝑆𝑆𝑖𝑖)   545 544 541 537 528 520 511 
𝐶𝐶𝑇𝑇∗   23 23 23 23 23 22 22 

Feas. (Beta) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 99.2% 83.4% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 99.3% 84.2% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 99.8% 89.6% 

CCP-Beta 

Demand (𝑆𝑆𝑖𝑖)   520 518 516 513 509 507 504 
𝐶𝐶𝑇𝑇∗   22 22 22 22 22 22 22 

Feas. (Beta) 
𝒩𝒩1 98.5% 98.5% 95.6% 90.8% 83.2% 73.7% 63.1% 
𝒩𝒩2 99.0% 96.8% 96.8% 92.0% 76.2% 76.2% 66.7% 
𝒩𝒩3 100.0% 98.7% 95.2% 91.7% 84.1% 75.2% 64.4% 

RCCP1 

Demand (𝑆𝑆𝑖𝑖)   750 677 611 577 552 540 534 
𝐶𝐶𝑇𝑇∗   31 28 26 24 24 23 23 

Feas. (Beta) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 
Table 7: Amount of RCCP1’s flow that reaches to each node over the course of evacuation, (1 − 𝜖𝜖) = 90% 

Time slot 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

𝒩𝒩1 15 12 10 10 10 9 14 9 5 12 10 6 14 11 10 10 10 10 5      

𝒩𝒩2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10      

𝒩𝒩3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5     

𝒩𝒩4  15 20 20 19 20 17 19 20 20 18 20 19 20 20 20 20 20 20 20 10    

𝒩𝒩5  10 15 17 15 17 15 17 19 16 15 18 15 15 19 20 20 20 20 20 10    

𝒩𝒩6   10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10   

𝒩𝒩7    10 15 17 18 17 18 17 18 16 18 16 19 16 15 15 15 15 15 15 15  

𝒩𝒩8    5 17 18 17 18 16 18 16 18 16 20 16 19 16 15 15 15 15 15 15  

𝒩𝒩9     8 12 15 15 15 15 15 15 15 13 15 15 15 15 15 15 15 15 15 15 

𝒩𝒩10     5 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 
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Table 8: Amount of CCP-Beta’s flow that reaches to each node over the course of evacuation, (1 − 𝜖𝜖) = 90% 

Time slot 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

𝒩𝒩1 15 15 15 14 5 5 15 5 5 8 14 15 15 5 5 10 5      

𝒩𝒩2 10 10 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5     

𝒩𝒩3 10 10 10 10 10 10 10 10 10 10 10 6 10 10 10 10 10 5     

𝒩𝒩4  15 20 20 20 20 20 20 20 20 17 19 20 20 20 20 20 15 10    

𝒩𝒩5  10 15 16 20 20 15 15 20 15 15 15 19 20 20 15 15 15 10    

𝒩𝒩6   10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10   

𝒩𝒩7    10 15 15 15 15 15 15 15 15 13 15 15 15 15 15 15 15 15  

𝒩𝒩8    10 15 15 15 15 15 20 15 15 15 15 15 15 15 15 15 15 15  

𝒩𝒩9     10 15 15 15 15 10 15 15 15 13 15 15 15 15 15 10 15 15 

𝒩𝒩10     5 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

 
 

Table 9: Performance of RCCP (true distribution: Uniform) 

      Probability Level (1 − 𝜖𝜖) 
      99 98 95 90 80 70 60 

Moment 
(RCCP1) 

Demand (𝑆𝑆𝑖𝑖)   750 677 611 577 552 540 534 
𝐶𝐶𝑇𝑇∗   31 28 26 24 24 23 23 

Feas. (Unif) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 94.5% 88.1% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 97.2% 88.4% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 95.3% 88.9% 

Symmetry 
(RCCP2) 

Demand (𝑆𝑆𝑖𝑖)   679 627 581 558 542 534 531 
𝐶𝐶𝑇𝑇∗   28 26 25 24 23 23 23 

Feas. (Unif) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 98.5% 88.7% 84.0% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 97.1% 89.5% 85.1% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 97.8% 87.8% 84.7% 

Support 
(RCCP3) 

Demand (𝑆𝑆𝑖𝑖)   595 588 577 568 557 549 543 
𝐶𝐶𝑇𝑇∗   25 25 25 24 24 24 23 

Feas. (Unif) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.0% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 96.7% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 
 

Table 10: Performance of RCCP (true distribution: Beta) 

      Probability Level (1 − 𝜖𝜖) 
      99 98 95 90 80 70 60 

Moment 
(RCCP1) 

Demand (𝑆𝑆𝑖𝑖)   750 677 611 577 552 540 534 
𝐶𝐶𝑇𝑇∗   31 28 26 24 24 23 23 

Feas. (Beta) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Symmetry 
(RCCP2) 

Demand (𝑆𝑆𝑖𝑖)   679 627 581 558 542 534 531 
𝐶𝐶𝑇𝑇∗   28 26 25 24 23 23 23 

Feas. (Beta) 
𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Support 
(RCCP3) 

Demand (𝑆𝑆𝑖𝑖)   595 588 577 568 557 549 543 
𝐶𝐶𝑇𝑇∗   25 25 25 24 24 24 23 

Feas. (Beta) 𝒩𝒩1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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𝒩𝒩2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
𝒩𝒩3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 11: Evacuation percentage vs. the number of enumerated paths on the Houston evacuation network 

 𝐶𝐶𝑇𝑇∗ Computation 
time (s) 

Number of 
paths (Mean, STD) 

Source Nodes 
𝒩𝒩1 -𝒩𝒩6 𝒩𝒩7 -𝒩𝒩10 𝒩𝒩11 -𝒩𝒩13 

𝐶𝐶1(𝑀𝑀,𝑀𝑀, 𝐿𝐿) 147 1.05 395 Paths (16, 5) (21, 4) (72, 9) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶2(𝑀𝑀,𝑀𝑀,𝑀𝑀) 147 0.33 221 Paths (15, 5) (16, 5) (23, 1) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶3(𝑀𝑀,𝑀𝑀, 𝑆𝑆) 147 0.28 176 Paths (14, 3) (17, 5) (9, 1) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶4(𝑀𝑀, 𝑆𝑆, 𝐿𝐿) 147 0.67 332 Paths (17, 5) (9, 2) (65, 6) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶5(𝑀𝑀,𝑆𝑆,𝑀𝑀) 147 0.27 154 Paths (14, 5) (8, 2) (13, 3) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶6(𝑀𝑀,𝑆𝑆,𝑆𝑆) 202 0.31 168 Paths (19, 7) (7, 1) (8, 3) 
Feasibility (100%, 0%) (74.6%, 38.5%) (69.2%, 32.0%) 

𝐶𝐶7(𝑆𝑆,𝑀𝑀, 𝐿𝐿) 147 0.45 337 Paths (8, 2) (19, 5) (72, 9) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶8(𝑆𝑆,𝑀𝑀,𝑀𝑀) 147 0.24 170 Paths (9, 1) (17, 5) (16, 4) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶9(𝑆𝑆,𝑀𝑀, 𝑆𝑆) 191 0.19 145 Paths (8, 2) (20, 3) (7, 2) 
Feasibility (66.7%, 51.6%) (96.8%, 6.4%) (70.1%, 31.1%) 

𝐶𝐶10(𝑆𝑆, 𝑆𝑆, 𝐿𝐿) 147 0.32 269 Paths (7, 2) (8, 2) (66, 8) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶11(𝑆𝑆, 𝑆𝑆,𝑀𝑀) 147 0.19 126 Paths (8, 2) (8, 2) (16, 8) 
Feasibility (100%, 0%) (100%, 0%) (100%, 0%) 

𝐶𝐶12(𝑆𝑆, 𝑆𝑆, 𝑆𝑆) 241 0.16 96 Paths (7, 2) (7, 1) (5, 1) 
Feasibility (100%, 0%) (80.7%, 38.6%) (61.7%,19.6%) 

*L, S and M stands for Large, Medium and Small level for number of paths 
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