
Research Article

5
3
0

Received: 14 November 2008, Revised: 13 May 2009, Accepted: 18 May 2009, Published online in Wiley InterScience: 17 July 2009
(www.interscience.wiley.com) DOI: 10.1002/cem.1249
A nonlinear partial least squares algorithm
using quadratic fuzzy inference system
Araby I. Abdel-Rahmana and Gino J. Lima*
J. Chemom
We introduce a new nonlinear partial least squares algorithm ‘Quadratic Fuzzy PLS (QFPLS)’ that combines the outer
linear Partial Least Squares (PLS) framework and the Takagi–Sugeno–Kang (TSK) fuzzy inference system. The inner
relation between the input and the output PLS score vectors is modeled by a quadratic TSK fuzzy inference system.
The performance of the proposed QFPLS method is tested and compared against four other well-known partial least
squaresmethods (Linear PLS (LPLS), Quadratic PLS (QPLS), Linear Fuzzy PLS (LFPLS), and Neural Network PLS (NNPLS))
on various different types of randomly generated test data. QFPLS outperformed competitors based on two
comparison measures: the output variables cumulative per cent variance captured by the PLS latent variables
and the root mean-square error of prediction (RMSEP). Copyright � 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION
 the regression errors. The weight updates can be done either by
* Correspondence to: G. J. Lim, Department of Industrial Engineering, University
of Houston, USA.
E-mail: ginolim@uh.edu

a A. I. Abdel-Rahman, G. J. Lim

Department of Industrial Engineering, University of Houston, USA
Statistical modeling and data analysis techniques have been
extensively used these days to model experimental and historical
data. Characteristics such as high dimensionality and co-linearity
in the data are the main challenges to the multivariate statistical
data analysis. Partial least squares (PLS) technique is a multi-
variate regression and data analysis method that addresses these
problems [1]. PLS projects the original variables into latent
variables and reduces the dimensionality of the data while
considering the correlation that exists among the attributes.
Therefore, it is easier to predict the output variables in the latent
variables domain than in the original variables domain. Originally,
the PLS method was introduced as a linear regression technique.
This linearity assumption between inputs X and outputs Y was
recognized as a main drawback in the PLS method because the
real world data often exhibit nonlinearity [2,3]. Several nonlinear
PLS techniques were developed to cope with the nonlinearity.
These techniques can be categorized into three groups:
transformation techniques, weight updating techniques, and
function techniques.
In transformation techniques, new columns are added to the

input matrix X so that the extended columns can take care of the
unknown nonlinearity that the original input data may have. Each
added block of columns is a transformed data of the original
matrix using a certain nonlinear function such as logarithms,
squared values, cross products, binary transformation, to name a
few [4–6], i.e., ~X ¼ ½X; f1ðXÞ; . . . flðXÞ�; where l is the number of
transformations that was applied to extend the original input
matrix X. Then the linear PLS method is applied between the
extended input matrix and the original output matrix. In general,
this approach is simple and easy to use, but it may lead to a poor
fitting. Furthermore, it may also lead to fat and short data
matrices. Such problems are difficult to handle in data analysis
because we now have substantially more input variables
(columns) with fixed observations (rows).
The weight updatingmethods attempt to update the input PLS

weights in order to improve the output prediction and to reduce
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an iterative method [7–10] or by solving a nonlinear program-
ming problem [11,12]. These methods still rely on either linear or
quadratic inner PLS functions to capture unknown nonlinearity in
the data.
The main idea of the function methods is to model the inner

relationship between the input and the output PLS score vectors
in a nonlinear fashion. Several nonlinear versions of the function
methods have been developed such as quadratic PLS, spline PLS,
and neural networks PLS. Wold et al. [4] have pioneered the
quadratic PLS techniques and many other methods are variants
of their work. They extended the two blocks linear PLS model
using a quadratic function instead of a linear function. In spline
PLS, a general form of a spline function is used for the inner
relation. The spline function can be a B-spline, local polynomial,
or additive [13–15]. In neural networks PLS, the nonlinearity is
modeled using feed-forward neural networks, radial basis
functions (RBF), or an artificial neural network [16–20]. Although
there are many methods in the literature focusing on the
nonlinear function techniques, some drawbacks include the
complexity of implementation and over fitting the regression
model parameters (poor interpretability) [21]. For example,
quadratic PLS does not provide enough flexibility for modeling
the complex nonlinear relationship. It is partly due to the
quadratic function that is assumed to fit the PLS inner relation. On
the other hand, the spline PLS and neural networks PLS are
expected to give adequate flexibility for fitting complex
nonlinearity, but the extra flexibility can be a source for over
fitting and prediction error.
We attempt to overcome these drawbacks by introducing a

new function method called Quadratic Fuzzy PLS (QFPLS). This
09 John Wiley & Sons, Ltd.
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method combines the Takagi–Sugeno–Kang (TSK) fuzzy infer-
ence system [22,23] with PLS. The motivation for this is because
TSK method is known to give a better interpretability [21]. The
only attempt in the literature to use fuzzy systems was done by
Bang et al. [24]. They used a linear TSK fuzzy system and gained
some benefits over other nonlinear PLS methods. In this paper
we extend their work to a quadratic TSK fuzzy system to
model the inner PLS relation.
The rest of the paper is organized as follows. Section 2

describes the proposed method QFPLS in more details. Section 3
gives a comprehensive comparison of the proposed method
against four other methods using randomly generated test
cases. We give a summary of findings the in Section 4 with
recommendations for future work.
Figure 1. A schematic of the QFPLS method. 5
2. METHODOLOGY

Our method combines the PLS method and the quadratic TSK
fuzzy model. The PLS modeling is a multivariate linear regression
technique that reduces the high dimensionality of correlated
predictor variables (input matrix X) and response variables
(output matrix Y) by projecting those variables to the input
weight (w) and output weight (c) directions that maximize the
covariance between input and output variables. The PLS
projection decomposes the high co-linearity variables into
one-dimensional variables in the form of input score vector (t)
and output score vector (u). The relation between the score
vectors (t) and (u) is called the inner relation in the PLS procedure
and is crucial in the PLS prediction. The decomposition of X and Y
by score vectors is formulated as in equation (1).

X ¼
Xs
i¼1

tip
T
i þ E ¼ TPT þ E

Y ¼
Xs
i¼1

uiq
T
i þ F ¼ UQT þ F

(1)

where s is the number of PLS components, X is an n� K matrix
and K is the number of input variables, Y is an n�Mmatrix andM is
the number of output variables, n is the number of observations,
E and F are the input and output residuals, respectively, p is the
input loading vector, and q is the output loading vector.
The PLS procedure has two parts: outer PLS and inner PLS. In

outer PLS as in equation (1), T and U are the score matrices, and
P and Q are the loading matrices for the X and Y data sets
(or blocks) respectively. The loading vectors (p and q) are the
direction cosines of the dominant directions within the data set.
Projection of the X and Ydata sets on the loading vectors will give
the score vectors (t) and (u). In the inner PLS part, the X and Y
matrices are indirectly related through their scores by the inner
model which is a function of (t) on (u). The procedure of
determining the scores and loading vectors of the inner relation
is continued until the required number of PLS components (s) are
extracted. The number of PLS components is determined based
on the percentage variance explained or using statistically sound
approaches such as cross validation.
PLS is linear if the inner relation is linear and we call this LPLS.

LPLS can be used for data classification, data mining, and image
processing [25]. For example, input weightw and output weight c
can be used to find the contributions of different variables to
each score while input score vector t and output score vector u
J. Chemometrics 2009; 23: 530–537 Copyright � 2009 John Wil
can be used to detect outliers. LPLS is limited to modeling linear
cases while the real world data often exhibit nonlinearity. Various
nonlinear PLS methods have been introduced to overcome the
nonlinearity situation. However, each of these approaches
inherently carries shortcomings such as complexity, lack of
analytical interpretability of regression coefficients, and so on
[21]. To overcome such shortcomings, we introduce the QFPLS
method in the following section.

2.1. The QFPLS modeling methodology

In the QFPLS method, the TSK model is applied to the PLS inner
regression. The PLS outer projection is used to reduce the
dimension and to remove the co-linearity, and the TSK fuzzy inner
model is used to capture the nonlinearity in the projected latent
space. In QFPLS, the data are not used directly to train the TSK
model, but are preprocessed by the PLS outer transform, which in
turn will decompose the multivariate regression problem into a
few univariate regression problems and simplifies the TSK model.
Figure 1 shows a schematic of the basic QFPLS method, which
uses the PLS outer transform to generate score variables from the
data.
Score vectors (th and uh) for the hth latent variable are used for

the inner TSK fuzzy modeling. The relation between the score
vectors can be expressed as

^̂uh ¼ fhðthÞ þ eh (2)

where eh is the regression error.
The general procedure of QFPLS method can be defined as

follows:
(1) P
ey &
reprocess by centering and scaling of the X and Y matrices.
At h¼ 1 assume that E0¼X and F0¼Y. (centering and scaling
are to have zero mean and unit variance).
(2) F
or each h, assume uh as a column in Fh�1.

(3) P
erform the PLS outer transformation as in equation (3). This step

is called the nonlinear iterative partial least squares algorithm
(NIPALS). Iterate this step until it converges over the scores u.

wT
h ¼ uThEh�1

ðuThuhÞ

wh ¼
wh

whk k
th ¼ Eh�1wh

cTh ¼
tThFh�1

ðtThthÞ

ch ¼
ch
chk k

uh ¼ Fh�1ch

(3Þ
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(4) M
ww
odel the inner PLS function fh(th) which predicts the output
scores uh with the input scores th. The quadratic TSK
fuzzy inference method is used to model this relation as in
equation (4). In the next section, this part will be described in
detail.

fhðtÞ ¼
XL
i¼1

Giðbi0 þ bi1t þ bi2t
2Þ (4Þ

Determine the input and output loading vectors as in
(5)

equation (5).

pTh ¼ tThEh�1

ðtThthÞ

qTh ¼ ^̂uThFh�1

ð̂û T
h^̂uhÞ

(5Þ
(6) C
alculate the residuals for each h as in equation (6).

Eh ¼ Eh�1 � thp
T
h

Fh ¼ Fh�1 �^̂uhq
T
h

(6Þ
(7) U
pdate h¼ hþ 1, then return to step [2] until all PLS factors
are calculated.

2.2. The quadratic TSK fuzzy modeling algorithm

A fuzzy inference system is the process of formulating the
mapping from a given input to an output using fuzzy logic. The
mapping then provides a basis from which decisions can be
made. The process of fuzzy inference consists of membership
functions, fuzzy logic operators, and if–then rules. Fuzzy inference
systems have been successfully applied in the areas such as
automatic control, data classification, decision analysis, expert
systems, and computer vision. There are usually two types of
fuzzy inference systems differing in defuzzification, namely
Mamdani-type and Sugeno-type. Mamdani–type inference
expects the output membership functions to be fuzzy sets.
After the aggregation process, there is a fuzzy set for each output
variable that needs defuzzification. Rather than integrating across
functions to find defuzzified output, it is also possible to use the
weighted average of a few data points. Sugeno-type systems
support this type of model. In general, Sugeno-type systems can
be used to model any inference system in which the output
membership functions are constant, linear, quadratic, etc.
The fuzzy inference method proposed by Takagi, Sugeno, and

Kang, which is known as the TSK model in fuzzy systems field, has
been well recognized in both theoretical and practical research
for fuzzy modeling and control. The basic idea is to subdivide
the input space into fuzzy regions and to approximate the
system in each subdivision by a simple model. The main
advantage of the TSK model is its capability of describing a highly
complex nonlinear system using a small number of simple rules.
Typically, a TSK model consists of many IF–THEN rules as in
equation (7).

Rk ¼ If x1 is Ak
1

� �
; . . . ; and xnisA

k
n

� �
;

Then; y ¼ ak
0 þ ak

1x1 þ � � � þ ak
nxn;

�
k ¼ 1; 2; :::; L (7)
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where L is the number of fuzzy rules
�
Rk
�
k¼1;...;L

, Ak
n

� �
are fuzzy

sets characterized by membership functions Ak
nðxÞ, ak

i

� �
i¼0;...;n

are real-valued parameters and xi are the input variables. The

overall output of the model is calculated as in equation (8).

y ¼

PL
i¼1

tiyi

PL
i¼1

ti

¼

PL
i¼1

tiðai
0 þ ai

1x1 þ � � � þ ai
nxnÞ

PL
i¼1

ti

(8)

where ti is the firing strength of rule Riand is defined as in
equation (9)

ti ¼ Ak
1ðx1Þ � Ak

2ðx2Þ � � � � � Ak
nðxnÞ (9)

Generally, the Gaussian-type membership function can be
used to build the model as in equation (10).

Ak
s ðxsÞ ¼ exp �ðxs � cks Þ

2

2s2
k

 !
; k ¼ 1; 2; :::; L (10)

where cks is the center of the k thGaussian membership function of
the sthinput variable xs, and sk is the standard deviation of the
membership function.
In our QFPLS model, we use a quadratic TSK formulation. The

input variable is the PLS input scores vector, and the output
variable is the PLS output scores vector. For each PLS component
h, the predicted PLS output scores ûhis calculated as a function of
the PLS input scores thas in equation (11).

^̂uh ¼ fhðthÞ þ eh ¼
XL
i¼1

Giðbi0 þ bi1t þ bi2t
2Þ

where

Gi ¼
tiPL

i¼1

ti

tiðtÞ ¼ expð� ðt � ciÞ2

2s2
i

Þi ¼ 1; 2; :::; L

(11)

Gi is the normalized firing strength and ti is a Gaussian type firing
strength for the ith rule. L is the number of fuzzy rules. L should be
estimated by minimizing the regression erroreh[26]. The other
parameters (ci; si; andbi) in the previous formulation can be
determined as described in the following sections.
(a) E
stimation of ci by Fuzzy c-means (FCM) algorithm

Fuzzy c-means (FCM) is a data clustering technique wherein
each data point belongs to a cluster to some degree that is
specified by a membership grade. This technique was originally
introduced by Bezdek in (27) as an improvement on earlier
clustering methods. It provides a method that shows how to
group data points that populate some multidimensional space
into a specific number of different clusters. It is based on
minimization of the following formula:

Jm ¼
XN
i¼1

XL
j¼1

mm
ij ti � cj
�� ��2; 1 � m � 1 (12)
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where m is any real number greater than 1, mij is the degree of
membership of ti in the cluster j, ti is the ith of the d-dimensional
measured data, cj is the d-dimension center of the cluster. Fuzzy
partitioning is carried out through an iterative optimization of the
objective function shown in equation (12). Then the membership
grademijand the cluster centers cj are updated as in equation (13)
(assuming m¼ 2) and iterate until mk � mkþ1k k � ".

ci ¼

PN
j¼1

m2
ij tj

PN
j¼1

m2
ij

; i ¼ 1; 2; :::; L

where mij ¼
1PL

k¼1

tj�cij j
tj�ckj j

� �2
(13)
(b) E
J. Ch
stimation of siby Moody and Darken’s rule [28]
The width of a Gaussian-type membership function, si, can be
decided by using the p-nearest neighborhood heuristic
suggested by Moody and Darken [28] as in equation (14).

si ¼
1

P

XP
l¼1

ðci � clÞ2
" #1=2

(14)

where cl (l¼ 1, 2,. . ., p) are the p (typically p¼ 2) nearest
neighborhoods of the center ci.
(c) E
stimation of biby Global learning algorithm [29]

The parameters,bi, of a fuzzy rule can be determined by using a
global learning algorithm. Global learning chooses the
parameters of fuzzy rules that minimize the objective functionJG.
Equation (15) shows a complete formulation of the global
learning algorithm.

JG ¼
XN
k¼1

½uðkÞ � ûðkÞ�2 ¼ ðuG � TGbGÞT ðuG � TGbGÞ (15)

where
uG ¼ ½uð1Þ uð2Þ � � � uðNÞ�T
bG ¼ ½b10 b11 b12 � � � bL0 bL1 bL2�T

TG ¼

G1ð1Þ G1ð1Þtð1Þ G1ð1Þtð1Þtð1Þ � � � GLð1Þ GLð1Þtð1Þ GLð1Þtð1Þtð1Þ
G1ð2Þ G1ð2Þtð2Þ G1ð2Þtð2Þtð2Þ � � � GLð2Þ GLð2Þtð2Þ GLð2Þtð2Þtð2Þ

G1ðNÞ G1ðNÞtðNÞ G1ðNÞtðNÞtðNÞ � � � GLðNÞ GLðNÞtðNÞ GLðNÞtðNÞtðNÞ

2
664

3
775

5

Applying the singular value decomposition (SVD) to TG yields

TG ¼ USV
where
U ¼ ½û1 û2 . . . ûN�T 2 RN�N

V ¼ ½v̂1 v̂2 . . . v̂3L�T 2 R3L�3L

S ¼ diagðŝ1; ŝ2; . . . ;ŝ3LÞ

bG ¼
PS
i¼1

^̂uTi uG
ŝi

v̂i

s is the number of nonzero singular values in S

Computational complexity of this algorithm can be analyzed, but
it is beyond the scope of this paper.
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3. NUMERICAL EXPERIMENTS

3.1. Experimental setup

We compare the QFPLS method against four other well known
PLS methods: LPLS, QPLS, LFPLS, and NNPLS. All methods use the
same outer PLS framework, but each method uses a different
inner PLS framework (this makes one method different from
others). LPLS is the linear partial least squares method proposed
by Geladi and Kowalski. In LPLS, the PLS output scores vector (u)
is predicted using a linear function of the PLS input scores vector
(t). QPLS is the quadratic partial least squares method introduced
byWold et al. [4]. QPLS uses a quadratic function tomodel the PLS
inner relation. LFPLS is the linear fuzzy partial least squares
proposed by Bang et al. [24]. LFPLS uses a fuzzy inference system
called TSK method to model the inner PLS relation. NNPLS is the
neural network partial least squares method which was proposed
by Qin and McAvoy [16]. NNPLS incorporates the feed-forward
neural networks into the PLS modeling. The nonlinear inner
relationmodeling is performed by a number of single input single
output networks and a conjugate gradient learning method is
employed to train the network.
In order to make a fair performance comparison among the

five methods, we first generated five sets of data that represent
five different function types of multi–input–multi-output data
sets: linear (aX þ b), quadratic (aX2 þ bX þ c), cubic (aX3 þ bX2þ
cX þ d), sinusoidal (a � sinðXÞ þ b), and exponential
(a � expðXÞ þ b), where a, b, c, and d are the corresponding
function coefficients, X is the randomly generated data, i.e.,
Xij ~Nðm̂j; ŝjÞ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . .1; K , and it is generated
by commands rand form̂j in Matlab, 2008b. There are 90
randomly generated test sets for each function type, in which 30
sets are labeled A for small size, 30 sets are labeled B for medium
size, and 30 sets are for larger data and labeled C. These three
data categories are based on the numbers of the input and the
output variables. Therefore, a total of 450 data sets are used for
testing the performance of the methods (see Table I). Each data
set consists of 100 rows (or observations, n¼ 100): X 2 <100�K

and Y 2 <100�M. For Category A, K is the number of process
(input) variables and M represents the number of product
(output) variables. K ranges from 5 to 10 whileM ranges from 1 to
5. Each of the data sets may have different values of K and M,
and the mean m̂j

	 

. Note that the standard deviation ŝj

	 

is

set to 1, which reflects white noise to our data, i.e.,
Xij ¼ m̂j þ "ij; "ij ~Nð0; 1Þ; 8ði; jÞ: Matlab command randn is used
to generate "ij . Each data set contains a combination of the input
and the output variables whose numbers are listed in Table I.
One can estimate howmany PLS components to be included in

the model using Cross Validation. However, this is beyond the
scope of this paper. In our paper, the maximum number is set to
15, i.e., min (K, 15). This is because it is reported in the literature
that 3–5 PLS components will give sufficient information
about the data [31]. Furthermore, the well-known software
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Table I. Generation of 90 data sets for each function type

Category K (Process variables) M (Product variables) Combinations

A 5, 6, 7, 8, 9, and 10 1, 2, 3, 4, and 5 30
B 15, 20, 25, 30, 40, and 50 6, 7, 8, 9, and 10 30
C 55, 60, 70, 80, 90, and 100 11, 12, 13, 14, and 15 30

Figure 2. Captured variability (quadratic, category A, part 1).
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SAS (version 9.1) sets 15 as a default parameter for the maximum
number of PLS components in the model. The logic behind this is
that adding more than 15 components in the model generally
does not add much to the captured variability.
In PLS analysis, two approaches are often used to compare the

performance of different PLS methods [32]. The first approach is
to use a training set to build the PLS model and then use an
independent data set to test the efficiency of the model. The root
mean square error of prediction (RMSEP) is an example of this
type of performance measure. The second approach is to use a
training set only for both ‘‘build’’ and ‘‘test.’’ The output (Y)
variables cumulative per cent variance captured by the PLS latent
variables is a typical measure of performance in this approach. In
this paper, we use both approaches for comparing the
performance of different PLS methods.
First, we use the output (Y) variables’ cumulative per cent

variance captured by the PLS latent variables for comparing the
performance of the five PLS methods using all 450 test sets. This
has been a standard measure for testing the quality of the PLS
model building in the literature [5,11]. It is obtained by dividing
the explained sum of squares by the corresponding total sum of
squares (i.e., SSY). The more the explained variance, the better is
the method. Note that this measure is similar to a cumulative
R-square in regression analysis.
Second, we use the root mean-square error of prediction

(RMSEP) on independent data sets for comparing the five PLS
methods. The experiments were performed based on 15 data
sets. Each data set has 20 observations. There are three data sets
per data type (small, medium, and large), i.e., 15 cases. We use the
RMSEP formula given in equation (16).

RMSEP ¼
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

ðyi � ŷiÞ

M

vuuut
8>>>><
>>>>:

9>>>>=
>>>>;
=20 (16)

A method with a smaller value of RMSEP is better. We also
calculate the average RMSEP per data type (linear, quadratic,
cubic, exponential, and sinusoidal) as in equation (17).

Average RMSEP ðper data typeÞ ¼ AvRMSEP ¼
X3
j¼1

RMSEPj (17)

Our procedure is given below and the results are shown in
Table III in Section 3.2.

Procedure RMSEP

Step 1: Parameter Estimation or Model Building

We generate two random input training matrices (100� K )
and (100�M) for building the PLS models. This provides us
with the PLS parameters to use in Step 2.
www.interscience.wiley.com/journal/cem Copyright � 200
Step 2: Model Testing

We randomly generate 20 independent observations that
consist of K independent variables (20� K) and M depen-
dent variables (20�M). We use the model in Step 1 to
estimate ŷ(predicted output).
Step 3: RMSEP Calculation

RMSEP ¼
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

ðyi � ŷiÞ

M

vuuut
8>>>><
>>>>:

9>>>>=
>>>>;
=20

for each test case is calculated.
Step 4: AvRMSEP Calculation

AvRMSEP ¼
X3
j¼1

RMSEPj

We repeat Steps 1–4. Note that we have five data types. Therefore,
we run this procedure five times.
The following section shows an overall comparison results fol-
lowed by detailed ones for each data type used in this study.
4. RESULTS

Figure 2 shows the captured variability of the first 15 data sets
(out of 30) in Category Awhile Figure 3 shows results based on 15
data sets in Category B. LPLS does not seem to perform well on
both of these cases. However, LPLS does better on the
exponential data (Figure 3) than the quadratic case (Figure 2).
This is not surprising because LPLS is based on linear PLS, which
would favor exponential data over quadratic in data fitting. QPLS
does a much better job than LPLS on both of these cases. It favors
quadratic over exponential because QPLS is simply based on
quadratic PLS. It is interesting to see that three other methods
(LFPLS, NNPLS, and QFPLS) seem to be robust in predicting the
9 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 530–537



Figure 3. Captured variability (exponential, category B, part 1).

Figure 4. Dominance frequency of QFPLS over other methods.

Nonlinear PLS using quadratic fuzzy system
output. All three methods perform well on all data sets tested.
More output analysis follows on the next page.
Figure 4 shows an overall performance comparison among the

five methods. It shows the dominance frequency in percentage
that onemethod outperforms all other methods. All fivemethods
performedwell in the linear case data. QFPLS outperformed other
methods in 76% of the linear cases. Note that when the test cases
are linear, all methods performed reasonably well, i.e., the
percentage differences among the five methods were relatively
small.
Table II. Results of the independent samples t-test between QFP

Data types Statistic

LPLS

Linear t 5.301
p 0

Quadratic t 95.59*

p 0*

Cubic t 88.084*

p 0*

Exponential t 63.928
p 0

Sinusoidal t 122.202*

p 0*

*We use the Levene’s test to approximate the case of no equal va

J. Chemometrics 2009; 23: 530–537 Copyright � 2009 John Wil
As expected, LPLS does not do well for the quadratic case. The
other methods (QPLS, LFPLS, NNPLS, and QFPLS) performed
better than the LPLSmethod. The performance difference among
LFPLS, NNPLS, and QFPLS was small, yet QFPLS was the better
performer in most of the cases. QFPLS outperformed 88% of the
quadratic cases. We observed similar results on the cubic data
where QFPLS outperformed other methods 83% on all cubic test
cases. The results of other methods were similar to those of the
quadratic case. In the exponential data, QFPLS took the
performance lead in 86% of the test cases. Two of the best
performers were NNPLS and QFPLS with a small difference
between the two methods. Performance lead of QFPLS continues
in the sinusoidal cases with a 77% lead. The performance of LPLS
and QPLS in the case of sinusoidal data was extremely poor.
Although LFPLS performed better in the case of sinusoidal data
than any other data, NNPLS and QFPLS were still the best
performers.
So far, we used dominance frequency as a performance

measure. We continue our performance comparison using a
statistical measure, the independent-samples t-test, to show the
dominance of QFPLS over the other four methods in the study.
This test compares the means of two independent samples. For
each pair of methods, we first checked the normality assumption
of the dependent variable (the captured variability). If the
variances between two methods are approximately equal, then
we adopt the results of the independent-samples t-test.
Otherwise, we cannot apply the t-test as is. Therefore, the
Levene’s test in SPSS (33) is used for approximation. The null
hypothesis of the independent samples t-test is that themeans of
the two groups are not significantly different. While, the
alternative hypothesis is that the means of the two groups are
significantly different. By using 95% confidence level, we reject
the null hypothesis if the p-value is less than 0.05. Our results
using SPSS are shown in Table II. It shows the p (p-value) and
t (t-statistic) values of the independent samples t-test between
the QFPLS method and the other four methods in our
comparison study. All p-values are zero or much less than 0.05.
This indicates that QFPLS outperforms the other four methods.
Note that t-values of NNPLS and QFPLS are somewhat small. This
indicates that NNPLS performs close to QFPLS.
LS and other methods

Methods

QPLS LFPLS NNPLS

5.403 3.347 2.214
0 0.001 0.028

17.125 4.808 2.291
0 0 0.023

13.604 4.184 2.098
0 0 0.037

30.255* 14.362* 3.078
0* 0* 0.002

51.887 11.504* 6.503
0 0* 0

riances.
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Table III. RMSEP and avrmsep comparison among five PLS methods

Size RMSEP ¼
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

ðyi�ŷiÞ

M

s8>><
>>:

9>>=
>>;=20

K M LPLS QPLS LFPLS NNPLS QFPLS

Linear data 8 3 1.01 0.98 0.91 0.88 0.84
30 8 2.19 2.18 1.99 1.93 1.75
80 13 1.04 1.03 0.94 0.91 0.92

AvRMSEP 1.41 1.40 1.28 1.24 1.17
Quadratic data 8 3 2.73 1.65 1.33 0.88 0.86

30 8 2.44 1.50 1.24 0.94 0.90
80 13 2.22 1.70 1.58 1.54 1.52

AvRMSEP 2.46 1.62 1.38 1.12 1.09
Cubic data 8 3 5.16 2.02 1.93 1.43 1.15

30 8 4.24 3.01 1.24 1.33 1.11
80 13 3.43 2.45 1.35 1.46 1.53

AvRMSEP 4.28 2.49 1.51 1.41 1.26
Exponential data 8 3 1.09 0.99 0.86 0.97 0.79

30 8 1.25 1.32 1.23 1.08 1.17
80 13 1.14 1.51 1.08 0.95 0.87

AvRMSEP 1.16 1.27 1.06 1.00 0.94
Sinusoidal data 8 3 8.94 3.99 3.37 3.06 2.31

30 8 6.50 5.07 3.03 3.11 2.23
80 13 7.65 3.47 2.97 3.05 2.07

AvRMSEP 7.70 4.18 3.12 3.07 2.20

A. I. Abdel-Rahman and G. J. Lim

5
3
6

We continue our comparison using RMSEP as the measure of
performance. The results are displayed in Table III. Overall, QFPLS
outperforms the other four PLS methods. The performance
difference between QFPLS and NNPLS seems to be marginal in
linear, quadratic, and exponential data. In linear data, there is not
much difference among the five PLS methods. However, due to
the complexity of the sinusoidal data, the RMSEP values of all
methods are higher than those of other data types. It is
interesting to see that RMSEP depends solely on the PLS method
used and it is independent of the data size. Table III also shows
the average RMSEP (AvRMSEP) per data type. The results favor
QFPLS and NNPLS. On average, QFPLS clearly takes the
performance lead in cubic and sinusoidal data.
5. CONCLUSION AND FUTURE WORK

We introduced a new nonlinear partial least squares method
(QFPLS). The proposed method uses the PLS framework for the
outer relations and uses the TSK fuzzy inference system for the
inner relation. We used the quadratic TSK method which uses a
quadratic function to model the relation between the input and
the output PLS scores vectors. Comprehensive experiments on
various types and sizes of data have shown that QFPLS clearly
outperformed four other well-known methods (LPLS, QPLS, FPLS,
and NNPLS) in the literature.
Our future work includes designing a fuzzy inference system

with a higher order mapping function such as cubic or other
nonlinear functions. Furthermore, we plan to develop a practical
PLS framework in which a library of different PLS methods will be
www.interscience.wiley.com/journal/cem Copyright � 200
available for different users to choose the appropriate methods
for their specific applications. This library will also include well
known PLS methods found in the literature.
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