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A Novel Power Distribution Network Assessment
Approach using Drones Considering Wireless Charging
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Abstract—Power networks are important infrastructure that re-
quires close monitoring and recurring assessment during and follow-
ing a catastrophic event. The drone’s unique aerial and unmanned
nature has made it an efficient and powerful tool for damage
assessment of the power networks. In this paper, we propose a drone
routing framework to enable the systematic and automatic assess-
ment of power networks considering wireless charging of the drone
during the scanning. This paper incorporates the resilience-oriented
line priority index to periodically prioritize the power lines based on
their specifications and conditions, and by doing so, this improves the
efficiency of the assessment. A multi-objective mixed-integer linear
programming (MILP) model is developed to dynamically determine
the drone’s optimal routing and speed in order to assure that the
drone gathers sufficient data while completing the assessment mission
in the shortest period of time. Since the proposed optimization
algorithm needs to be solved multiple times for different sections of
the power network, we propose a set of solution algorithms to reduce
the computational burden and allow the proposed algorithm to reach
the optimal solution quickly. Simulation results on a power network
consisting of 77 nodes and 73 lines illustrate the effectiveness of the
proposed approach in performing network-wide dynamic assessment
using a drone.

Index Terms—Autonomous Damage Assessment, Unmanned Aerial
Vehicle, Drone Surveillance, Resilience Improvement

NOMENCLATURE

Sets
A Set of directed arcs
AD Set of directed arcs for departing the initial control center
AL Set of directed arcs for landing at a control center
C Set of control centers, C ⊂N
I Set of arcs related to the same power line but in opposite

directions, I ⊂ P ×P
N Set of nodes
P Set of arcs related to the power lines, P ⊂ A
Parameters
δα Desired assessment time for arc α, α ∈ P
ε Minimum allowed battery level in percentage
γαβ Binary parameter equals 1 if the destination of arc α and

the origin of arc β are the same node, 0 otherwise, α,β ∈
A

ω Weight parameter in the objective function
Sα Maximum permitted speed to pass arc α, α ∈ A
θc Maximum charging rate of the drone’s battery per second

of flight
θd Discharging rate of the drone’s battery per second of flight
Sα Minimum permitted speed to pass arc α, α ∈ A
Dαi Binary parameter equals 1 if the destination of arc α is

node i, 0 otherwise, α ∈ A , i ∈N
L Total allowed time for the assessment
lα Length of arc α, α ∈ A
Mk A sufficiently big number for set of constraint k
Oαi Binary parameter equals 1 if the origin of arc α is node

i, 0 otherwise, α ∈ A , i ∈N
Variables
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ηα Binary variable for linearizing the battery constraints,
equals to 1 if the battery is fully charged after flight over
arc α, 0 otherwise, α ∈ A

φVα
Charging efficiency percentage as a function of the drone’s
speed

ρα Deviation from the desired assessment time for power line
associated with arc α, α ∈ P

ρmax Maximum deviation from the desired assessment time
among all power lines

τα Time spending on passing arc α at, α ∈ A
bα Battery level of the drone after passing arc α, bα ∈ [0,1],

α ∈ A
Tα Cumulative flight time until arc α is passed, α ∈ A
xαβ Binary variable equals to 1 if arc β is passed immediately

after arc α, 0 otherwise, α,β ∈ A

I. INTRODUCTION

Damage assessment is one of the key steps in the power dis-
tribution system restoration process when the system experiences
severe and wide-spread damages from catastrophic events such as
extreme weather conditions or man-made attacks. Conventionally,
this process needs to be tasked by a team of assessors who
manually inspect each of the affected locations and provide
an estimation for the restoration time as well as the required
restoration resources. In this process, the assessors may need to
travel to remote and sometimes difficult to access locations under
hazardous weather and road conditions to perform inspections.
With the recent advances in drone technology, the utility industry
has come to the realization that unmanned drone technology pro-
vides an appealing alternative to performing damage assessment
in a more cost-effective, automated, and reliable way.

Compared to the ad-hoc manual damage assessment, drones,
also referred to as UAVs (Unmanned Aerial Vehicles), offer
several key advantages. First, drones as aerial vehicles can be
launched and sent to locations under difficult and closed road con-
ditions (e.g., over-flooded areas and road closures) and in extreme
weather conditions (e.g., storms, hurricanes, and blizzards) [1],
[2]. Second, drones are unmanned, which means they are naturally
suited for working in dangerous environments, thus keeping the
crew and operators away from harm. [3], [4]. Third, drones can
be equipped with sensors and cameras to perform high quality
and comprehensive assessments, such as video surveillance and
infrared thermal scanning [5]. These smart technologies also help
drones scan the network faster than other alternative vehicles, thus
allowing the assessment operation to be completed within a shorter
time frame.

The idea of using drones for power network monitoring was
first introduced by Fernandes in 1989 [6]. In the United States,
drones were first used in the practical power restoration by Duke
Energy after Hurricane Maria in 2017 in Puerto Rico [7]. Drones,
controlled by pilots, helped the crew teams find damaged infras-
tructures, such as downed poles and power lines, and also helped
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uncover a safe path for the repair crew to enter the hazardous
zones for prompt repairs [7], [8]. Ameren Corp, an electric utility
company, uses drones to scan the communication towers and spare
the need to send a crew to manually climb up for inspection [9].
In other parts of the world, it was reported that a drone equipped
with a high-definition camera and a 5G terminal had successfully
inspected six kilometers of electric power lines in the Binhai New
Area [10] in China in 2019. In India, Sterlite Power, a leading
power transmission company in the country, formed a partnership
with Sharper Shape to provide drone inspection services for the
utility’s assets. [11].

While drones have been extensively used in industrial practices,
their optimal scheduling and routing have received little attention
from the research community in the context of distribution system
damage assessment. Lim et al. [12] have proposed a two-phase
mathematical framework using multiple drones to find the optimal
routes and locations of drones for the damage assessment of
power networks. Their proposed two-phase framework aimed
to find the optimal location of the unmanned aerial vehicles
(UAVs) in the first phase and then obtain the optimal route of
the drones following extreme weather. Based on their approach
and to address the risk of collision among the UAVs, Ahmadian
et al. [13] proposed a mixed-integer linear programming model to
optimize the routes of the UAVs while scanning a power network
considering the location of UAVs at each time. Although both of
the studies find the optimal solution to the problem, they are only
applicable to small-scale networks due to the complexity of their
models. Baik and Valenzuela [14] studied the problem of electric
transmission tower inspection by drones and presented heuristic
algorithms to solve the Traveling Salesman Problem (TSP) model.
Their optimization model provides a flight path that achieves
a good balance over the flight time, image quality, and tower
coverage.

While the literature offers insights into the scheduling and
routing of drones for power network assessment, two important
challenges remain to be addressed. First, most literature focuses
on routing methods based on the assumption that the drone flies
at a constant speed [15]. However, this simplified assumption may
be too restrictive to the problem discussed in this paper because
some sections of a distribution system may need more time to
perform a thorough assessment than others based on their ratings,
working conditions, and service life. Second, the scanning priority
of the power lines has not received much attention in the routing
context. These issues have motivated us to propose a dynamic
routing framework that allows the drone to collect information
and adjust its path and speed dynamically and proactively to make
the assessment more efficient. A set of Resilience-Oriented Line
Priority (ROLP) indices is proposed to assess and differentiate
the inspection priority of the power lines. Following the priority,
the drone dynamically changes its flight speed so that the power
lines with higher disruption probability and more significant roles
in the network can be inspected more thoroughly. Meanwhile,
power lines with lower priorities can be inspected at a higher
speed to reduce the total flight time. Hence, the proposed dynamic
routing approach allows the drone to respond to abnormalities in
the network more promptly and intelligently.

The drone’s battery limitation represents another obstacle for
developing the routing algorithm in real-world’s large-scale net-
works. Due to the small size of the drone, it is commonly assumed
that they can only fly for a short period of time (e,g., 30 minutes)

before recharging. To overcome this limitation, Liu et al. [16] 
provide an inspection system combining both a ground vehicle 
and a drone, in which the truck is used as a mobile platform 
to launch the drone to inspect the power lines. Alternatively, 
Choi et al. [17] designed an automatic drone charging station for 
autonomous operations to extend the drone’s mission duration and 
to increase drone durability for large-scale networks. In this paper, 
we assume that the drone’s battery can be charged wirelessly 
during its flight with the energy produced by the power lines 
[18], [19]. By harvesting the power line’s electromagnetic field, 
we expect that the drone can be recharged by staying close to the 
power conductors.

To overcome the issues mentioned above, this paper proposes a 
novel routing framework to enable the systematic and automatic 
assessment of power networks using a drone with the wireless 
charging feature. The contributions of this paper can be summa-
rized as follows:
• This paper develops a smart inspection framework for the

power distribution system using a drone that can be charged
wirelessly from the power lines;

• This paper introduces a set of resilience-oriented line priority
indices to dynamically re-prioritize the power lines within the
distribution network to achieve more efficient power network
damage assessment;

• This paper proposes a novel drone routing algorithm that
optimizes the flight route, speed, and schedule of a drone
while taking into account the priority of power lines and
the drone’s battery charge level; furthermore, a heuristic
approach is developed to reduce the computational burden
of the algorithm and to make it more suitable for practical
implementation.

The rest of the paper is organized as follows: the proposed
dynamic assessment framework is provided in Section II. The
implementation of the ROLP index and the developed optimization
model are discussed in Section III. Once the model is formulated,
the solution methodology is provided in Section IV. Case studies
are performed in Section V to demonstrate the effectiveness of
the proposed routing approach. Conclusions are drawn in Section
VI.

II. BACKGROUND AND FRAMEWORK

A. Wireless Charging Via Power Lines
Existing literature have shown that there are numerous wireless 

options to charge the drone’s battery and thus prolong its mission 
duration. Using the wireless energy transfer (WET) capability of 
the power lines for drone charging can be an effective approach 
as it allows the drone to be recharged without the interruption 
of its current mission. In this case, the power line is acting as 
a long transmitter antenna, which converts electrical power into 
a time-varying electromagnetic field, and a drone, equipped with 
a receiving antenna, can convert the oscillating fields to electric 
current and charge the drone’s battery by inductive coupling or 
resonant inductive coupling.

More specifically, inductive coupling is more suitable for short-
range, low-power WET application where the distance between 
the transmitter and receiver does not exceed several centimeters. 
Despite its high energy efficiency, inductive coupling can be 
very sensitive to the distance between the transmitter and 
receiver as well as the position of alignment (i.e., vertical/
horizontal
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alignment). Therefore, it is recommended that to employ inductive 
power transfer for drones, the distance between the drone and the 
cable (i.e., the charging range) should be carefully maintained 
with minimized lateral movements of the drone. On the other 
hand, resonant coupled WET (RC-WET) is insensitive to the 
charging range and is capable of transmitting more energy over 
greater distances. RC-WET was developed based on the theory 
that when two magnetically coupled coils are in a resonant mode 
(i.e., oscillating at the same frequency), they can exchange energy 
without significant losses. As the standard frequencies of the 
power lines are either 50 or 60 Hz, the drone needs to proper 
electronic components to establish and maintain a stable resonant 
mode and high transmission efficiency.

Aside from the theoretical modeling and design, the practical 
experiment with the models of actual power distribution system 
conducted in [X] showed that the amount of available energy 
at the close vicinity of conducting wires would be sufficient to 
charge moving quadrotor drones. The design and optimization of 
WET was further discussed in [X] to wirelessly charge moving 
quadrotor drones. The experiment has concluded that a drone 
equipped with a simple multi-layer coil is capable of potentially 
receiving a charging signal of millivolts under the inductive 
coupling approach.

While the proof of concept of WET has been validated in both 
simulation and laboratory experiments, its feasibility for practical 
applications is still under investigation due to challenges such 
as the frequency of the power line’s electromagnetic field, the 
potential magnetic interference and shielding, as well as the size 
and weight of the WET receiver. Our work is the first of its kind 
to systematically evaluate and explore the drone’s performance 
with WET taken into consideration. We hope our work can help 
promote the concept of WET for drone monitoring applications 
and accelerate its adoption in real-world power industry practices.
B. Proposed Framework

To set the stage for the rest of the discussion, the framework 
of the proposed approach is illustrated in Fig. 1, and the details 
of each step are described in this section. We assume that a drone 
scans the power network repeatedly and transfers the gathered 
information to the control centers.
Step 1: The ROLP index of each network component is calculated 
based on the initial data of the network and the proposed method 
in Section III-A. The desired assessment time for each power line 
is estimated according to its ROLP index and length. The power 
lines that are more likely to be damaged need more attention 
during the visit and need to be scanned at a slower speed. Step 
2: An optimization model is solved to determine the optimal flight 
route, speed, and schedule of the drone for the power line 
damage assessment.
Step 3: The drone is launched following the provided solution. 
During the assessment, the drone wirelessly transfers small-size 
data about the health of power lines to the control center. This 
brief information can help assess the situation and dispatch the 
repair crew to the location if necessary in real time. At the end of 
the assessment, the drone returns to one of the control centers and 
transfers the large volume of detailed information about the power 
lines; this also provides the opportunity for recharging the battery. 
Note that in our work, we assume the drone is communicating 
with the control center based on a standardized industrial wireless 
communication technology such as Digi XBee, Zigbee, and Wi-
Fi 802.11 (including 2.4 GHz and 5 GHz). We also assume that

the wireless data transmission between the drone and the control 
center is properly secured and maintained during the drone’s 
mission, and thus is free of data loss or delay.
Step 4: The detailed information gathered by the drone can be 
used to identify an abnormal situation in the network to update 
the resilience factors associated with each network component.

These four steps can be repeated to assess the health of power 
networks.

Step 1: ROLP Calculation

Impact Criticality Recovery

Probability of 

disruption 
Damage level

Step 2: Optimization

Updated 

parameters

Step 3: Surveillance

Sending brief data 

wirelessly

Obtain status of the 

network

Step 4: Update “damage 

level” and “probability of 

disruption” in ROLP 

index

Send repair 

crew if needed

Fig. 1: Proposed framework for network damage assessment by
drone

III. METHODOLOGY

In this section, we first introduce a set of quantitative indices
to describe the priority of different power lines for assessment.
Then, we explain the route scheduling optimization model to
determine the optimal route and speed of the drone to satisfy
the time requirements (i.e., desired visiting times) based on the
identified power line priorities.

A. Resilience-Oriented Line Priority Index

During a power network inspection, the differences in both the 
functional and physical properties of power lines should be taken 
into account. More attention should be given to lines that are 
more prone to failures and that are more critical to the network 
functionality. Therefore, we propose a set of ROLP metrics to 
quantify power line conditions and determine the assessment 
priority, accordingly. Based on the nature and specifications of 
the power grid network [20], [21], [22], we consider the following 
resilience factors for the drone-based power line inspection:
• Lα: Likelihood of disruption on power line α. The value of

this parameter will be estimated for a specific time horizon
(T ) based on the current health condition of the power line
and the historical data about its endurance.

• ϕα: Estimated damage level on power line α caused by
a disruption. Based on the quality of the infrastructure, a
disruption may cause different damage levels on a power
line. The value of ϕα ranges between 0 and 1, where a larger
number indicates a higher damage level on the power line α.

• Iα: Impact of power line α’s disruption on the network. The
impact of a power line is defined as the total loss in the
network if the power line is disconnected from the rest of
the network. For instance, a power line at the feeder side of
the network clearly has a higher impact than a lower voltage
line on the lateral that serves only one consumer.

• tRα
: Time to recover to the initial state for power line α.

One of the most important factors in calculating a power line
resilience is the recovery function of that power line. Power
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lines with a faster recovery are considered more resilient by
definition [23]. The recovery time of each power line may
depends on its length, voltage, and location, to name a few.

• Cα: Criticality of the power line α. The criticality of a power
line reflects the ability of the network to redistribute the flow
through an alternative line to mitigate the loss of the damaged
power line [23], [24], [25].

Based on these resilience factors, we propose a ROLP index
Rα of each power line in the network as:

Rα(Lα,ϕα, Iα, tRα,Cα) =

1−
∫ tSα

t=t0α
IαϕαLα(1−Qα(t))dt+CαϕαLα(tE α−tSα)+

∫ tRα
t=tE α

IαϕαLα(1−Qα(t))dt
D ,

∀α ∈ P (1)

The numerator of right side of the equation is the estimated total 
loss of the network caused by a disruption on arc α. In this 
equation, Qα(t) represents the cumulative repair rate of the power 
line at time t, and D is the total consuming demand of the network.

Figure 2 shows the calculation of network loss. In this figure, 
the total time after a disruption is divided into three time periods: 
the disruption happens at time t0; at time tS, the network is 
reoptimized to mitigate the disruption effect; at time tE , the 
disrupted component has been partially recovered and is available 
until it is fully recovered (tR). The numerator on the right-hand 
side of the Equation (1) is divided into three terms. Each term 
represents the estimated network loss of each time period. The 
ROLP of each arc in Equation (1) is a single index normalized in 
scale.

Fig. 2: Resilience Triangle [23]

The impact of a power line disruption (Iα) and the criticality
of each power line (Cα) are calculated based on the structure
of the network and the flow of the arcs. If a disruption on a
power line disconnects a significant part of the network, the power
line is considered to have a high impact. The impact of an arc
disruption on the network is defined as the total loss resulted by
disconnecting the arc from the network. Other than Cα and Iα,
which are determined based on the network structure as described
in this section, the likelihood of a disruption (Lα), the estimated
damage level on the power line (ϕα), and the recovery time of the
power line (tRα

) are assumed to be given as input parameters.
In this paper, we assume that the network structure will remain

unchanged during the inspection and that only (Lα) and (ϕα) will
be updated based on the information collected by drones during
the assessment. The detailed approach for the information/data
exchange between the drone and the control center is beyond the
scope of this paper and will not be discussed here. Note that
updating the values of Lα and ϕα may result in a revised ROLP
index of the power lines. To reflect this change in the network
assessment, a mathematical model is developed in the following
section to find the optimal routing schedule of the drones. Note

that a line with a low ROLP indicates its resilience is low against
adversarial conditions. Hence, such lines should be given high
priority and thus require more detailed and careful assessment
during the damage assessment process.

B. Optimization Model
This section describes the detailed formulation of the optimiza-

tion model for finding the optimal drone routing schedule. Since 
the problem is to scan the power network under an emergency 
or a normal conditions using a drone, it can be formulated as 
a traveling salesman problem (TSP) [26], [27], [28]. However, 
existing TSP solution approaches may not work for our problem 
for two reasons: dynamic drone speed and the tree network struc-
ture. First, unlike most studies assuming a constant drone speed, 
this paper assumes a dynamic flight speed, in which the drone 
speed is defined as a variable in the optimization model. Most 
studies in the context of TSP assume that the speed of the drone 
is constant, and its travel time is pre-determined or calculated 
based on the distance. Among the studies that try to optimize 
the vehicle’s speed, there are two conventional approaches. One 
is to assume the vehicle’s speed to be constant during the whole 
operation or in a specific time interval and to define it as a single 
variable in the model [29], [30]. The other approach is to optimize 
the vehicle’s speed for each arc [31], [32], [33]. Since this paper 
aims to determine the vehicle speed more specific to each power 
line, we define the speed of the drone as a continuous variable 
for each arc.

Second, the power networks are often described as a tree 
network [34], which differs from the conventional transportation 
networks in the TSP context. Although there is no need to visit the 
same power line more than once, if the drone reaches a dead-end 
branch and there are more arcs to be visited in the network, the tree 
structure necessitates reversing its flight direction and scanning the 
same power lines. Hence, this paper constructs the network with bi-
directional arcs to accommodate flows in two opposite directions, 
where each arc can be visited at most one time. Because the power 
networks are often constructed as trees (i.e., acyclic), the number of 
arcs is relatively small in comparison with other networks. The 
purpose of most of vehicle routing problems is to determine the 
optimal route to serve each node of the network [35], [36], [37]. 
Hence, the conventional notation of TSP uses xi j as a binary 
variable, which equals one if the vehicle travels from node i to node 
j directly. However, in this chapter, the main focus is to provide 
flights on each arc to inspect the power lines, and the network 
nodes do not represent important components. So, in this chapter, 
we define the primary routing variable as xαβ, which equals one if 
the drone flies on arc β immediately after arc α.

We propose a mixed-integer linear optimization model to find 
the optimal route and speed of the drone. In this formulation, 
binary variables xαβ determine the optimal route of the drone. The 
value of xαβ becomes 1 if the drone takes the directed arc β 
immediately after arc α in the optimal solution. Since each power 
line has a specific priority, the speed (Vα) of the drone will be 
optimized for each arc, where Vα ≥ 0,∀α ∈ P .

The objective of the model is to minimize the deviation from the 
planned scanning time that was assigned to each power line based 
on its ROLP index. Variable ρα represents this deviation for the 
power line associated with arc α. Variable bα showcases the battery 
charge level of the drone after scanning arc α. Note that the 
dynamic drone speed will affect the battery charging and 
discharging rates as the drone draws more power at a higher speed.
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The battery charge level is observed only after completing a scan
of each power line segment. The value of variable bα is calculated
at the end of each power line segment using Equation (2), where
θd and θc are the discharging rate and charging rate of the battery
per second during the flight, respectively. Variable φV is a function
of the drone speed, and represents the charging efficiency. The
first case (i.e., xαβ = 1,α ∈ AD,β ∈ A) in Equation (2) indicates
that the drone starts with a fully charged battery, and the third
case is to ensure that the battery level cannot exceed 100% in the
mathematical model.

bα =


1− ταθd , xαβ = 1,α ∈ AD,β ∈ A
bβ− ταθd , xαβ = 1,α ∈ AL,β ∈ A
Min{1,bβ− ταθd + ταθcφV}, xβα = 1,α ∈ P

(2)

In the first two cases, the drone flies from or to a control center
without being charged during the flight. If the charging efficiency
is a linear function of the drone speed (i.e., B0 + B1V ), the
term ταθcφV can be reformulated as ταθc(B0+B1Vα) = ταθcB0+
θclαB1. Hence, it is a linear constraint and the optimization model
can be solved as a mixed-integer linear programming (MILP)
model.

A MILP model for obtaining the optimal drone routing and
schedule is described below. Function (3) includes the objective
function, and Constraints (4) to (23) are the corresponding con-
straints. The main objective is to complete the power line network
damage assessment within the given assessment time. Variable ρα

is associated with the deviation from the desired assessment time
of each power line, which takes a value between 0 and 1. Value
0 for ρα means that the desired assessment time for the power
line is completely satisfied, and the values close to 1 represent
the conditions in which the desired assessment time is not at all
satisfied. In order to minimize both the total deviation and the
maximum deviation among all deviations, the objective function
of model (3) is defined as minimizing a convex combination of the
average deviation and the maximum deviation from all deviations.

min {ω∑α∈P ρα

|P |
+(1−ω)ρmax | ρα ≤ ρmax,α∈P} (3)

In Constraint (4), both arcs α and β are associated with the
same power line but in opposite directions. The left-hand side of
the equation is the total assessment time of the power line in both
directions. The right-hand side represents the elastic constraint
considering the percent deviation ρα from the planned assessment
time δα.

τα + τβ ≥ δα(1−ρα),(α,β)∈I (4)

Equations (5) to (11) calculate the battery charge level at each
iteration. These equations are the linearized forms of Equation
(2). In this set of equations, variable bα shows the battery charge
level of the drone after scanning arc α. Since the battery level
cannot exceed 100%, binary variable ηα is introduced to ensure
of that. If the battery is fully charged, variable ηα is set to 1.
Also, if the drone scans arc α immediately after arc β, variable
bα will be calculated based on variable bβ. However, if the value
of xβα is zero, both constraints should be free regardless of ηα.
Therefore, the value of the parameter M1 should be greater than
the parameter M2. Constraint (6) is binding only if the drone flies
over arc α immediately after arc β and if its battery is not fully
charged. Constraints (9) to (11) calculate the battery charge level
after flight from or to a control center. The drone battery will not
be charged during these flights.

bα ≤ bβ−τα(θd - θcφVα
)+M1(1 - xβα),α∈P ,β∈A (5)

bα ≥ bβ−τα(θd - θcφVα
)−M1(1 - xβα) - M2η

α,α∈P ,β∈A (6)

ε≤ bα ≤ 1,α∈A (7)
bα ≥ 1−M2(1−η

α),α∈A (8)
bα = 1− ταθd ,α∈AD (9)
bα ≤ bβ− ταθd+M1(1−xβα),α∈AL,β∈A (10)

bα ≥ bβ− ταθd−M1(1−xβα)−M2η
α,α∈AL,β∈A (11)

Equation (12) ensures that if the drone enters an arc on the
power lines, it should also leave the arc during the flight. Equation
(13) indicates that the drone can scan arc α immediately after β

only if these arcs are connected to each other in the same direction.
Binary parameter γαβ is equal to 1 if the destination of arc α and
the origin of arc β are the same node.

∑
α∈A

xαβ = ∑
α∈A

xβα,β ∈ P (12)

xαβ ≤ γαβ,α,β ∈ A (13)

Equation (14) ensures the total travel time of a drone is less
than the total allowed time of operation.

∑
α∈A

τα ≤ L (14)

The drone control centers are assumed to be located close to
the power network. When the launching site is selected, the drone
flies from the control center to a network node via arc α∈AD (see
Equation (15)) and returns to any of the control centers following
an arc α∈AL after completing the assessment (see Equation (16)).

∑
β∈P

∑
α∈AD

xαβ = 1 (15)

∑
β∈P

∑
α∈AL

xβα = 1 (16)

Equations (17) to (19) control the time that the drone spends on
each arc based on the minimum and maximum speeds allowed.
Equation (18) enforces variable τα to be zero if arc α is not
included in the solution.

τα ≤
lα
Sα

,α ∈ A (17)

τα ≥
lα
Sα

−M3(1− ∑
β∈A

xβα),α ∈ A (18)



6

τα ≥
lα
Sα

−M3(1− ∑
β∈A

xαβ),α ∈ A (19)

τα ≤M3( ∑
β∈A

xαβ + ∑
β∈A

xβα),α ∈ A (20)

Finally, constraints (21) to (23) eliminate the subtours [38],
[39] in the solution. Although there are common techniques in the
literature for subtour elimination [40], [41], the proposed approach
is specifically designed for the problem discussed in this paper.
The key idea is to use a positive variable to keep track of the
operation time. Variable Tα is the total flight time starting from
the first flight until the scanning of arc α. The value of variable
Tα is calculated based on variable Tβ if and only if the drone takes
arc α immediately after arc β.

Tα ≥ Tβ + τα−M4(1− xβα),α,β ∈ A (21)

Tα ≤ Tβ + τα +M4(1− xβα),α,β ∈ A (22)

Tα = τα,α ∈ AD (23)

Section IV illustrates the proposed and implemented solution
approach that is capable of solving the model within a proper
time frame.

IV. SOLUTION APPROACH

The TSP is known to be NP-hard [42], [43], [44]. Since the
proposed model needs to be solved every time the drone arrives
at a control center, the model must be solved in a timely manner so
that the optimal solution is provided for the next flight as soon as
possible. Hence, two prepossessing approaches are developed to
reduce the computational time for solving the optimization model
in Constraints (3)-(23). Section IV-A explains the first step to
finding a feasible solution and constructing an upper bound on
the objective value. This solution will be used as a starting point
for the next step to find an optimal solution. This approach can
often result in a significant reduction in computation. Furthermore,
Section IV-B presents variable reduction methods to decrease
the number of feasible combinations in the solution space, thus
speeding up the convergence as a result.

A. Initial Solution
A drone scans an arc only once in the same direction during

a single flight mission. This means that the routes representing
branches with certain conditions can be uniquely determined
without solving the model. Such conditions include branches that
(1) only consist of vertices with the degree of one or two, and (2)
are not connected to the control centers. To visit this branch, the
drone needs to start visiting the branch from its connection node
to the rest of the network, reach the leaf node (the vertex with
the degree of 1), and return to the starting point. To illustrate this,
Figure 3 shows a branch including a leaf node and vertices with
the degree of 2 and the only feasible route available.

Based on this network property, Algorithm 1 is developed to
provide a good feasible solution as a starting point (xαβ, vα, τα,
and Tα) for the exact solution algorithm at the next stage. As the
first step to obtaining feasible values for xα,β, the launching arc
(aD) and the landing arc (aL) are determined. The power networks
are spanning trees. So, for every arc α and β in the network,
there exists exactly one path (Uαβ) from α to β (see the proof
in Appendix A). After determining the path between the pair of
launching and landing arcs (i.e., UaDaL ), the arcs in UaDaL are
stored in the list, Av. Then, the other branches of the tree are

Fig. 3: Single branch with vertices of degree 2 and a leaf node

added to the list. The directed arcs in the list Av are used to
determine the drone route, and by using this route, the values of
x can be calculated. Next, because the battery charging rate is
a function of drone speed and the battery discharging rate is an
input parameter, a critical speed (v∗) exists such that the battery
charging rate equals the battery discharging rate. The speed of the
drone in this heuristic algorithm is fixed to v∗. Variables τ and T
are also calculated based on the critical speed.

Algorithm 1 Heuristic Algorithm to Provide Initial Solution
Av : List of visited arcs
Ah : Set of arcs that have to be visited
Ab : List of arcs to be visited
Lt : Temporary list
i : Counter
v∗ : Critical drone speed where θcϕVα

= θd
α : Last passed arc
Aα : Set of arcs that can be passed immediately after passing α

Procedure:
aD = the shortest arc of AD, aL = the shortest arc of AL.
i = 1.
Add all the target arcs (i.e., P ) to Ah.
Step 1:
Add the unique path UaDaL from aD to aL to list Av.
Remove the opposite direction of UaDaL from Ah.
Step 2:
α = The arc in position i of list Av.
if set Ah∩Aα \(Av∪Ab) 6= /0 then add one arc from it to the beginning
of list Ab and go to Step 3.
else i = i+1 and repeat this step.
end if
Step 3:
α = the first arc in list Ab.
Remove α from set Ab and set Ah.
Remove the opposite direction of arc α from set Ah.
Add α to list Lt .
if position i in list Av is included in Aα then go to Step 4.
else

if set Ah ∩Aα \ (Av ∪Ab) 6= /0 then add it to the beginning of list
Ab and repeat Step 3.

else, Add set Aα \ (Av∪Ab) to the beginning of list Ab and repeat
Step 3.

end if
end if
Step 4:
i = i+1.
Add list Lt after position i−1 of list Av and empty Lt .
if Ah = /0 then go to Step 5, otherwise, go to Step 2.
end if
Step 5:
for index = 2 to length of list Av do

let a1 = Av
index−1, a2 = Av

index.
xa1,a2 = 1.
τa2 = la2/v∗
Ta2 = Ta1 + τa2 .

end for
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B. Variable Reduction Methods
We propose three preprocessing approaches to reduce the num-

ber of variables with the aim to speed up computation. These
variable reduction methods rely on the specific nature of the power
network structure.
• As explained in Section IV-A, the acyclic property of the

power networks enables us to determine unique routes as-
sociated with branches under certain conditions. Identifying
these unique paths before solving the optimization model
helps reduce the size of the model and speed up the solution
process. For example, in Figure 3, the only feasible route for
the drone is to follow from Arc 1 through Arc 10, as shown
in the figure. Hence, the variables {x1,2, x2,3,..., x9,10} should
be 1.

• Combining the acyclic property of the network and the
assumption that each arc cannot be visited more than once
in the same direction leads to the following statement: The
only power lines that the drone can fly over in both directions
sequentially are the ones connected to a leaf node (e.g., Arc
5 and 6 in Figure 3).

• In the selection of a drone path, if a visit of α→ β→ λ were
to be only one feasible path that visits the three arcs (i.e.,
γαβ = 1 and γβλ = 1), then relationship xαβ = xβλ holds.

In Section V, a case study is provided to illustrate the methodology 
and the effectiveness of the proposed approach.

V. CASE STUDY

We consider a power network consisting of 77 nodes and 73 
power lines [45] to test the optimization model and illustrate the 
effectiveness of the proposed solution approach. Five potential 
drone control centers that are not components of the power 
network are added to the network for the purpose of launching and 
retrieving drones as well as collecting the data gathered by drones. 
At each iteration of the operation, the drone is launched from the 
current control center and lands at any of the control centers after 
completing the network assessment. Then, the data is transferred 
to the control center database, and the drone battery is replaced for 
the next flight. The collected data can help reassess the likelihood 
of having a disruption and the estimated disruption level on each 
power line. This recalculation updates the ROLP measurement and 
assessment time of the power lines as explained in Section III-A. 
Table I shows the values of the parameters used in this example. 
The resilience parameters of each line and subsequently its desired 
assessment time has been randomly generated. The optimization 
model was implemented in GAMS [46] and was solved using 
CPLEX 12.6 [47].
TABLE I: Values of parameters used in the numerical example

Parameter Value Parameter Value
ε 5% θc 0.15 %/s
S 10 ft/s θd 0.05 %/s
S 1.5 ft/s φV 1− V

10
L 2.5 hours ω 1

Note that the objective function in (3) is a convex combination
of the maximum deviation and the average of deviations. In this
section, we assume equal weights for both terms (i.e., ω = 0.5).
However, the values of ω are application-specific and should be
determined based on the assessment requirement and the purpose
of the decision-makers to strike a proper balance between the
maximum deviation and the average of deviations.

1) Performance Evaluation

The first step for solving the optimization model ((3)–(23)) is
to generate an initial flight path for the drone using Algorithm
1, provided an initial solution for the test problem with the
corresponding objective value of 0.7070. The network has 30 arcs
that are not connected to a leaf node. Before applying any solution
methods proposed in this paper, the original optimization model
(3)-(23) had 136,882 constraints and 27,969 variables for the test
network. First, after applying the routing constraints such as (12)
and also the presolve methods, the problem size was decreased
to 2374 constraints and 1051 variables, where 495 variables were
binaries (i.e., a 95% reduction). Second, applying the variable
reduction techniques discussed in Section IV-B further reduced
the size of the problem to 1648 constraints and 870 variables,
where 346 variables were binary, thus resulting in additional
30% in reduction. The proposed solution approach in Section IV
helped reduce the computational time from 1803 seconds to 176
seconds—a 90% reduction. The resulting optimal value was 0.319,
with the maximum deviation (ρmax) being 45.3% and the average
deviation equalling 18.4% from the desired assessment time. This
indicates that on average, 82% of the desired assessment time of
the power lines have been satisfied within the 150-minute time
limitation. The drone can scan the network for the flight length
of about 45,000 ft in 150 minutes with an average speed of 5.06
ft/s (3.45 Mph). The battery charge level and the drone’s average
flight speed with regard to the overall operation timeline can be
seen in Figures 4 and 5, respectively.

Fig. 4: Drone’s battery level during the operation timeline

Fig. 5: Drone’s average speed during the operation timeline

Table II compares the results of the inspections for four power
lines to show the effect of ROLP indices and the length of power
lines on the power line assessment time and the drone speed. As
explained in Section III.A, less resilient lines (i.e., lower ROLP
values) need more detailed assessments than others. Hence, the
drone needs to lower its speed on such lines to assure the quality
of the assessment. Meanwhile, the length of a line also plays an
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important role in the drone speed as the inspection for long lines
is more time-consuming than their shorter counterparts. Hence,
assessing long lines with a high ROLP in a quicker manner can
help save the total assessment time. Take Line (1005, 1006) for
example. It has a high ROLP of 4.92 and a long length of 1049
ft. Because the line is considered resilient, the drone can fly at
a high speed of 6.76 ft/s and complete the inspection in 155.1
seconds; yet, it still resulted in a 27% deviation from the desired
assessment time. In contrast, Line (2005, 2006) has a much shorter
length with a high ROLP of 4.38, but the drone completed the
assessment within the desired assessment time. Line (2021, 2022)
is located in a dead-end branch; thus, it is scanned two times as
the drone needs to fly to the end of it and then return. This is
consistent with our analysis in Section IV. A similar observation
can be made from Line (2021, 2022) with a short length (205
ft). Although its ROLP index (3.56) is lower than the previous
two lines, the assessment can be completed within the desired
assessment time because of its shorter line length. Lastly, Line
(2038, 2039) has a low ROLP (1.49) and a long length (800 ft).
To address the low ROLP index of this power line, the drone flies
at a slow speed of 2.88 ft/s, which lead to a 9-minute assessment
time for this power line.

TABLE II: Comparing the results for the four power lines

Power line 1005-
1006

2005-
2006

2021-
2022

2038-
2039

Length (ft) 1049 145 205 800
Desired assessment time (s) 213.3 33.1 57.6 762.6

ROLP index 4.92 4.38 3.56 1.49
Number of passing 1 1 2 2
Assessment time (s) 155.1 33.1 57.6 554.6

Assessment time deviation 0.27 0 0 0.27
Average drone speed (ft/s) 6.76 4.38 7.12 2.88

2) Performance Comparison and Sensitivity Analysis

To demonstrate the importance of the drone’s capability to be 
wirelessly charged during assessment, we evaluate the case where 
wireless charging is disabled. To ensure a fair comparison, it has 
been assumed that the drone will take the same route and speed as 
the one obtained from the proposed optimization model (3)-(23). 
It is considered that every time the drone battery level is low, 
the drone heads to the closest depot (one of the five designated 
control centers) to charge its battery and then continues scanning 
the network. The minimum allowed battery level percentage when 
it reaches the control center is assumed to be 5%. Figure 6 shows 
the he battery charge level with regard to the overall operation 
timeline.

Fig. 6: Drone’s battery level during the operation timeline consid-
ering no wireless charging

Table III compares the result of the model with and without 
the incorporation of wireless charging. It is evident that the 
wireless charging system significantly extends the operation range 
of the drone from 45526 ft to 66880 ft, which is roughly a 47%
improvement. It also greatly extends the total operation time of 
the drone by roughly 67%, from 150 min to 250 min. We can 
also observe that without the incorporation of wireless charging, 
the drone needs to spend 66.7 min at the depot for this particular 
mission, which could jeopardize the on-time completion of the 
inspection

TABLE III: Comparing the result of the model with and without 
considering the wireless charging system

With wireless
charging system

No wireless
charging system

Total operation distance (ft) 66880 45526
Total operation time (min) 252.3 150

Time spent in a depot (min) 66.7 0
# of control center departures 7 1
# of control center landings 7 1

In addition, the desired time limit for assessment plays an
important role in this problem. On one hand, a shorter operation
time enforces the drone to make more frequent visits to the
control centers to transfer data. A benefit of more frequent visits
is a faster response to any deteriorating network components
needing immediate attention. On the other hand, a larger value
for operation time limit allows the drone to spend a sufficient
amount of time on each line for inspection and satisfy the desired
assessment time constraint, thus providing more information about
the network condition. Figure 7 compares the value of both terms
in the objective function and the total objective value under
different total allowed time settings. This figure indicates that
increasing the time limit dramatically decreased in both maximum
and average deviations. The problem became infeasible when the
time limit fell below 1.5 hours. When the time limit is higher than
3.5 hours, the drone satisfied the desired assessment time for all
power lines.
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Fig. 7: Impact of time limitation on assessment time deviations

A feature of the proposed model is that it considers a dynamic
speed for the drone. The dynamic speed allows the drone to
adjust its flying speed based on the ROLP index and the desired
assessment time of each arc. For example, as shown in Table II,
power lines with a high ROLP index are associated with a shorter
desired assessment time, and thus, the drone can be operated at a
higher speed. Figure 8 compares the performance of the current
model with a dynamic drone speed versus a static-speed model
implemented using the same model parameters. In the static-speed
model, the flying speed of the drone was optimized a priori and
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then remained unchanged during the whole assessment process.
Figure 8 shows that the dynamic speed of the drone allows the
drone to satisfy all of the requirements in a 3.5-hour flight. In
contrast, the constant-speed benchmark model took over 7 hours to
meet the same requirements. This comparison clearly shows that
enabling the dynamic speed would greatly improve the drone’s
scanning efficiency.
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Fig. 8: Effect of dynamic speed on the model performance

VI. CONCLUSION

This paper presents a novel drone-based power line damage
assessment with the incorporation of wireless charging as a routine
power infrastructure health monitoring or a real-time damage
assessment following a catastrophic event. Our approach can
help enhance the resilience of power networks by proactively
monitoring the health conditions of the network components using
drones. A Resilience-Oriented Line Priority index was proposed to
assess and differentiate the inspection priority of the power lines
depending on their health conditions. Following the priority, the
drone dynamically changes its flight speed so that the power lines
with a higher disruption probability and more significant roles in
the network can be inspected more thoroughly. An MILP model
was developed to find the optimal route and the dynamic speed
of the drone to complete the assessment in a more flexible and
intelligent manner. A case study was presented to illustrate the
performance of the optimization model and solution algorithms
under different scenarios. We have shown that the use of drones
can be a powerful and practical way to proactively identify the
level of degradation of power lines and help restore them if
needed. As a future research, one can extend the inspection of
the power lines to other components of the power networks and
consider the weather uncertainty and its effects on the drone’s
performance.
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APPENDIX

A. Proof 1
Proof: To prove that there is only one path between each

pair of nodes in a tree, suppose that there are two paths P1 and
P2 between node i and node j. Starting from node i, if node k is
the first node that is on both paths, there is a cycle passing nodes
i and k. Also, if there is no mutual point on P1 and P2, there
is a cycle passing these nodes as both paths include nodes i and
j. However, the graph does not include any cycle, and thus, this
cannot happen.
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