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Abstract This paper proposes a method for real-time rerouting drone flights under uncertain flight times.
The battery runtime that remains of a drone in real-time may be insufficient to complete its flight mission.
This may be due to external factors, such as unexpected severe weather or obstacles that move into the
drone’s flight path. Under unexpected situations, such as these, the drone cannot safely return to its depot, as
planned. To ensure that the drone makes a safe return and that the flight mission is a success, there must be
a real-time rerouting process for a drone’s flight path in response to unforeseeable circumstances. Hence, this
paper proposes a real-time rerouting process consisting of two optimization models that generate an optimal
alternative flight path for a drone that has insufficient remaining battery runtime. The first model is used to
find an optimal flight path to visit all remaining target waypoints. If the first model fails to obtain a feasible
solution, the second model is implemented to find an optimal flight path to minimize the number of unvisited
waypoints. To confine the total flight (travel) time to the insufficient battery runtime, both models include the
constraint associated with uncertain flight (travel) times between waypoints. To capture this uncertainty, this
paper proposes a chance constrained programming (CCP) approach under the assumption of a known mean,
variance, and flight time intervals. Numerical examples show how the proposed rerouting process works, and
the CCP method results in more conservative solutions as compared to the deterministic approach.

Keywords: Chance constrained programming; Drone; Rerouting; Uncertain flight time

1 Introduction

Drones (unmanned aerial vehicles) are gaining attraction as a potential solution for applications such as
healthcare delivery services, border patrol, asset monitoring, disaster relief, and object tracking [1–4]. Figure
1 shows two categories for drone use. These include delivery and monitoring (remote sensing).

In the case of delivery, drones can load required items within the maximum loading capacity (payload
capacity) and deliver them to service areas regardless of road conditions. Numerous studies are underway
to supply emergency items such as defibrillators, and/or simple commercial items to customers using drones
instead of (or combined with) ground vehicles [5–8].

Another purpose is to monitor objects or situations (remote sensing), in which cameras and remote sensing
devices are equipped with the drones [9]. Instead of persons or manned vehicles, drones may conduct various
missions in dangerous areas or harsh environments. For example, volcanic activities, forest fires, and Arctic
ecosystems can be monitored and tracked by drones [10–12].

For these purposes, most drone flight paths are planned prior to taking off. When scheduling the flight
paths, one of the key factors in determining the flight duration (maximum possible flight time) is the battery
runtime of the drone. A feasible flight path which ensures the safe return of the drones and the fulfillment of
assigned flight mission can be developed based on the battery runtime and flight distances (in time) between
waypoints. However, the planned feasible flight path may not be valid anymore if the drones consume more
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Fig. 1. Purposes of drone flights

battery power than planned for. This unintended and undesired case may occur due to unexpected harsh
environmental conditions, such as strong winds or obstacles moving onto the flight path [13]. Such disturbances
trigger excessive battery power consumption. As a result, the remaining battery runtime at a certain waypoint
may be below the one planned for the flight mission. Therefore, the planned flight paths must be rerouted to
ensure the safe return of the drones and minimize the unvisited flight waypoints (unmet demands).

For a real-time rerouting, there are three requirements for obtaining a feasible alternative flight path: 1)
telemetry data of drone flight status; 2) a rerouting process for multi-drone flights, and 3) flight (travel) time
reflecting real flight environment. The first requirement can be satisfied by using existing drone monitoring
technologies. Various commercial drone flight control programs have been developed that provide the real-
time status of drones, including the remaining battery runtime, flight altitude, flight distance, and radio
transmission/reception status [14]. Thus, with the current technology, the telemetry data of drones can be
obtained in real-time.

The second requirement is related to an autonomous flight control system. Traditionally, at least two
ground crews (pilot and payload operator) are required to operate and control a drone, in real-time [15]. In
the case of multiple drones needing alternative paths, it is difficult to provide each one with the alternative path
that is manually operated by the ground crews. The autonomous flight control method is used to minimize
the workload of the ground crews for multi-drone flights and rerouting time [16].

The third requirement is to delineate the real flight environment which affects flight times between way-
points. This could be fulfilled by considering environment conditions, such as winds, rain, air temperatures,
and payload amount in the flight path optimization model. However, the real flight (travel) time may be dif-
ferent from a theoretical (estimated) flight time due to any kind of unforeseen weather patterns. The real flight
time may be out of the forecasted value or range. Hence, fluctuations in the flight time need to be considered
to ensure a feasible alternative path in real-time rerouting. Ignoring fluctuations (uncertainty) may result in
failure to bring the drone back to depot and/or satisfy the demand.

Most of the research on drone flight scheduling focused on optimizing drone flight planning in advance
[1–3, 5, 17, 18]. Recent research reports on drone flight scheduling problems considered the flight environment,
including air temperature and wind speeds [17, 19]. Kim et al. [17] proposed a drone flight scheduling method
that reflects changes in battery performance due to changes in the air temperature. A drawback of their work
is its inability to reroute drones when any sort of unforeseeable circumstance (insufficient remaining battery
runtime) occurs during the flight.

This paper aims to develop a real-time rerouting process to provide an alternative flight path for drones
under uncertain flight times during the mission. As shown in Figure 2, when an unforeseen circumstance arises
(i.e., the remaining battery runtime reaches a threshold value to terminate the flight), the proposed algorithm
is used to find an alternative drone flight path in real-time. Hence, the approach enables the drones to be
rerouted when it is necessary to ensure the safe return back to the depot while minimizing unmet demand
during the flight.

To reflect uncertain environmental conditions, this paper proposes the use of a chance constrained pro-
gramming (CCP) approach to handle uncertain flight times [20, 21]. The CCP finds a solution corresponding
to the user-defined confidence level on constraint violation. It is commonly used to handle parameter uncer-
tainty in a stochastic optimization model based on the decision maker’s preference on the confidence level of
the resulting solution [22]. The data in this paper show that the flight time varies in real time, and it follows
a Normal or Beta distribution.

Overall, this work contributes to the existing body of literature as follows:

– To propose a real-time rerouting method for drones in flight. The proposed method provides the ability to
reroute drones to ensure the safe return of drones to the depot and to minimize unmet demand (unvisited
waypoints) in the case of insufficient battery runtime during the flight.

– To propose a CCP that can handle uncertainty in drone flight times between waypoints. This approach
illustrates an uncertain nature of flight environment and enhances the feasibility of the developed alterna-
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Fig. 2. A concept for real-time rerouting for drone flights under insufficient remaining battery runtime

tive flight paths. Moreover, this approach provides flexibility for decision-makers with a confidence level
for each developed flight path.
The rest of this paper is organized as follows. Section 2 describes the problem in detail and presents

the proposed rerouting process. Section 3 describes the notation and the two mathematical models for the
problem. A CCP model is also defined based on the experimental data in Section 3. In Section 4, a case study
is presented to illustrate the effectiveness of the proposed model in practice, and its results are discussed.
Section 5 concludes the paper and suggests a potential extension of this work.

2 Problem Description

Consider a problem involving flying drones conducting a surveillance mission (monitoring: remote sensing) on
a given area while minimizing: 1) the collision risk in the flight environment [23, 24] and 2) the detection risk
during the flight. For the purpose of surveillance, the drones fly over geographically vulnerable areas where
people or vehicles are not accessible. During the flight, it is possible that a drone may collide with nearby
objects such as buildings, mountains, or trees. The risk also reflects a potential exposure to unfavorable
conditions. For example, the purpose of a surveillance flight in a military operation is to collect information
about enemy command posts, strike facilities, and detection facilities. Such missions may risk drones being
exposed to a hostile environment. If they are detected, drones can be shot down by enemies.

Suppose that optimal drone flight paths have already been developed and the sequence of visits to corre-
sponding waypoints is given prior to flight commencement. These waypoints consist of two types: 1) target
waypoints and 2) intermediate waypoints. The target waypoints are the locations that must be visited to
achieve the purpose of the flight, and the intermediate waypoints are the locations on the path to the target
waypoints that are chosen to minimize the risk of colliding with ground objects located on a particular flight
segment. If the target waypoints are not visited, a penalty cost is incurred, while the intermediate waypoints do
not incur any cost for not being visited. A threshold value of the remaining battery for a safe return to a depot
is given as an input. This will ensure that a drone will have sufficient battery runtime to fly back to the initial
launching depot or the nearest depot from the current waypoint. As the drone commences its flight following
the given path, the actual flight environment will be unfolded, and its associated data can be collected during
the flight. The updated information can be useful in revising the flight path, if necessary. Figure 3 shows the
proposed real-time rerouting strategy. This rerouting process is used to provide an alternative route to ensure
a safe return to a depot, while minimizing unmet demand when the remaining drone battery runtime falls
below a particular value (i.e., a threshold value at each waypoint to guarantee a safe return to a depot).

Using commercially available monitoring technologies, the real-time telemetry data of the drone flight,
such as the remaining battery (flight) runtime of a drone and its location can be obtained. If the remaining
battery runtime reaches a threshold value, then it must first be decided whether to immediately return to
the launching point, seeing as the drone may not be able to visit at least one of the remaining waypoints
(demands) with the remaining battery runtime. Figure 4 shows two possible strategies when a drone has a
remaining battery runtime that is less than planned.

– Strategy 1 is to directly return to depot r in which a rerouting process is not needed to get an alternative
path. If the remaining battery runtime (bλ) is not sufficient to visit at least one of the remaining target
waypoints, then the drone should directly return to depot r.
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Fig. 3. Proposed rerouting process

Fig. 4. Comparison of two strategies for insufficient battery runtime

– Strategy 2 is utilized when the drone is able to visit at least one of the remaining target waypoints before
returning to depot r. In this case, the drone can visit target waypoint 3 (tλ,3+t3,r) or target waypoints 2
and 3 (tλ,2+t2,3+t3,r). Hence, the rerouting process will be used to find a feasible alternative path.

The two strategies are expressed as below:

Algorithm 1 To decide whether a drone should return to its depot r directly
Inputs:

Initial launching depot: r
Location of a drone when a potential battery shortage is noticed (event): λ
Remaining waypoints when the event occurs: j ∈ I
Remaining battery runtime of drone k when the event occurs: bλ
Flight distance (time) information between waypoints including λ: tλ,j , tλ,r, and tj,r.

for all (remaining waypoints j ∈ I) do
if tλ,r ≤ bλ <min(tλ,j + tj,r) then

Return to its initial depot r directly.
else

Run optimization model, ROM-A
end if
if ROM-A : infeasible then

Run optimization model, ROM-S
end if

end for

Given a set of input data, the algorithm checks if the drone can visit only one of the remaining target
waypoints and decides whether to implement the rerouting process (tλ,r ≤ bλ<min(tλ,j+tj,r)). As a result, we
can avoid unnecessary efforts to find an alternative path when the remaining battery runtime is not sufficient
enough to do so.

If the first decision leads to Strategy 2 in Figure 4, then the proposed rerouting process is triggered and runs
the rerouting optimization model for visiting all remaining target waypoints (ROM-A). The goal of ROM-A is
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to find an optimal alternative flight path for the drone to visit all remaining target waypoints while minimizing
the risk of the alternative path.

The ROM-A, however, might not be able to get a feasible alternative flight path to visit all remaining target
waypoints due to insufficient battery runtime. For this case, we implement another mathematical optimization
model, which is the rerouting optimization model for visiting some of remaining target waypoints (ROM-S).
The ROM-S is used to develop an optimal alternative flight path for the drone for a given battery runtime,
in which the optimal flight path minimizes the penalty cost for not visiting some target waypoints as well as
the risk of the alternative path. Both of these models are constructed using the CCP method. This proposed
process ensures that the drone returns safely to the initial launching point (or the nearest depot) after finishing
its updated flight schedule when any sort of unforeseen circumstance arises.

3 Problem Formulation

This section explains, in detail, the two optimization models discussed in Section 2. Section 3.1 describes
ROM-A, and Section 3.2 describes ROM-S. In Section 3.3, the proposed CCP method is developed to deal
with the random uncertainty in the flight times of drones. To capture the properties of uncertain flight times,
a set of data was obtained by flying a drone in a real flight environment.

The two optimization models are developed using the following notation.

Indices
I Set of all waypoints (i.e, i, j,u,λ ∈ I),
R Set of center (depot) waypoints (r ∈R),
IW Set of remaining intermediate waypoints (iw),
TW Set of remaining target waypoints (tw).

Parameters
bλ Remaining battery runtime at location λ,
t̃i,j Random flight time between waypoints (i, j),
Ri,j Risk when flying from waypoint i to j,
Ptw Penalty cost when tw is not visited,
a Weight factor associated with the risk level,
b Weight factor associated with the penalty cost.

Decision Variables Our aim is to determine a near optimal flight path minimizing the risk (and penalty cost)
on the path to visit all (or some) of the remaining target waypoints within flight duration bλ. Accordingly,
we define decision variables as follows:
xi,j 1 if a drone flies from waypoint i to j, 0 otherwise,
htw 1 if target waypoint tw is not visited, 0 otherwise,
µi The visiting sequence of waypoint i on a path.

3.1 Rerouting Optimization Model for visiting "all" remaining target waypoints: ROM-A

The ROM-A is expressed as follows:
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Minimize z =
∑

i∈(I∪{λ})

∑
j∈(I∪R)

xi,j ×Ri,j , (1)

Subject to:
∑

i∈(I∪{λ})

xi,tw = 1, ∀tw ∈ TW (2)

∑
j∈(I∪R)

xtw,j = 1, ∀tw ∈ TW (3)

∑
j∈I

xλ,j = 1,λ ∈ I (4)

∑
i∈I

xi,r ≤ 1, ∀r ∈R (5)∑
i∈(I∪{λ})

xi,j ≤ 1, ∀j ∈ IW (6)

∑
j∈(I∪R)

xi,j ≤ 1, ∀i ∈ IW (7)

∑
i∈(I∪{λ})

xi,u−
∑

j∈(I∪R)

xu,j = 0, ∀u ∈ I (8)

∑
i∈(I∪{λ})

∑
j∈(I∪R)

xi,j × t̃i,j ≤ bλ,λ ∈ I (9)

µi−µj +n×xi,j ≤ n−1, ∀i, j ∈ I (10)
xi,i = 0,xi,j ∈ {0,1},µi ≥ 0,n= |I|,m= |R|.

The objective function (1) is to minimize the total risk (
∑
i∈(I∪{λ})

∑
j∈(I∪R)xi,j×Ri,j) of the alternative

path. Constraints (2) and (3) ensure that all remaining target waypoints (tw) are visited once by the drone.
Constraint (4) defines the initial launching point of the alternative flight path that should be location λ, where
the remaining battery runtime reaches a threshold value (i.e., the drone has insufficient battery runtime).
After finishing the flight mission, the drone should return to the initial launching point or to the nearest depot
(Constraint (5)). The intermediate waypoints (iw) may or may not be visited by the drone depending on the
remaining battery runtime and the risk (constraints (6) and (7)). Constraint (8) defines the flow conservation
of the drone flight, and Constraint (9) ensures that flight time of the alternative path should be within the
remaining battery runtime (bλ). Constraint (10) is used to eliminate sub-tours, which are incomplete flight
paths [25–27].

3.2 Rerouting Optimization Model for visiting "some" remaining target waypoints: ROM-S

The ROM-A may not result in a feasible solution for visiting all remaining waypoints within the remaining
battery runtime (bλ). For this case, the ROM-S is proposed to maximize the utilization of remaining battery
runtime bλ, which means to minimize the total penalty cost caused by not visiting some of the remaining
target waypoints.

The ROM-S is expressed as follows:

Minimize z = a×
∑

i∈(I∪{λ})

∑
j∈(I∪R)

xi,j ×Ri,j (11)

+ b×
∑

tw∈TW

Ptw×htw,

Subject to:
∑

i∈(I∪{λ})

xi,tw ≤ 1, ∀tw ∈ TW (12)

∑
j∈(I∪R)

xtw,j ≤ 1, ∀tw ∈ TW (13)

∑
i∈(I∪{λ})

xi,tw = 1−htw, ∀tw ∈ TW (14)

and constraints (4)− (10).
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The objective function (11) is to minimize the total penalty cost (
∑
tw∈TW Ptw×htw) as well as the total

risk of the alternative flight path, in which a is a parameter that represents the importance of the risk and b is
a parameter that represents the importance of the penalty cost. These two parameter values are determined by
the decision makers’ preference. In this model, constraints (12) and (13) are used rather than constraints (2)
and (3) because the drone visits some, but not all, remaining target waypoints. Constraint (14) defines which
remaining target waypoints are visited by the drone. The rest of the constraints in the ROM-S correspond to
constraints (4)-(10) in the ROM-A.

3.3 A CCP method

Constraint (9) in both the ROM-A and the ROM-S models has a random parameter, t̃i,j , which is the flight
time between waypoints. The random uncertainty in flight time results from the external flight environment.
As described in Section 1, the CCP method is used to mitigate the random uncertainty in the flight time.
From [20] and [21], we can reformulate Constraint (9) as a chance constraint with constraint violation level ε
as below,

P (
∑

i∈(I∪{λ})

∑
j∈(I∪R)

xi,j t̃i,j − bλ ≤ 0)≥ 1− ε. (15)

This chance constraint would guarantee that the solution is feasible at the 1− ε confidence level (i.e., the
minimum probability that total flight time of a path would not exceed the remaining battery runtime).

To get the information and patterns on the probability distribution P on flight times, experiments are
carried out with a Phantom 4 Pro by DJI [28] (Section 3.3.1). In Section 3.3.2, we constructed deterministic
counterparts of Constraint (15) for each probability distribution obtained from the experiments. The deter-
ministic counterpart is used to reformulate the CCP model (Constraint (15)) with an equivalent deterministic
constraint, which is tractable. Section 3.3.3 explores robust chance constraints for cases where this probability
distribution information is not specified [29, 30].

3.3.1 Data Collection

Experiments were performed to collect flight times of a drone (Phantom 4 Pro) in a real environment (Figure
5). The experimental conditions are shown in Table 1.

Fig. 5. Experiments to obtain real flight time data

A drone flight test was carried out for three days (including multiple flights per day) to obtain the necessary
data. The time required to fly 264 m while keeping the drone’s flight speed of 6 m/s and altitude (19 m)
constant was measured. Based on the data collected, we analyzed the probability distribution of the flight
time (by date) as shown in Table 2.

The data on Day 1 shows that the flight time is normally distributed (with mean 48 seconds and standard
deviation 0.715) whereas the data on Day 2 and Day 3 follow a Beta distribution. Both of the Beta distributions
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Table 1. Experiment setup and environment

Day 1 (Oct. 4, 2017) Day 2 (Oct. 5, 2017) Day 3 (Oct. 6, 2017)
Flight speed 6 m/s 6 m/s 6 m/s
Flight altitude 19 m 19 m 19 m
Flight distance 264 m 264 m 264 m
Temperature 27.1 - 28.5 ◦C 26.7 - 28.8 ◦C 27.3 - 29.0 ◦C

Maximum wind speed 4.2 m/s 2.7 m/s 2.1 m/s
Number of experiments 30 58 56

Table 2. Experimental results

Day 1 (Oct. 4, 2017) Day 2 (Oct. 5, 2017) Day 3 (Oct. 6, 2017) Overall
Distribution∗ Normal Beta Beta Normal

Mean 48 seconds 47.5 seconds 47.4 seconds 47.6 seconds
Standard deviation 0.715 0.355 0.361 0.51

are asymmetric, and the skewness values are -0.0697 (Beta I: skewed to the left with αI=10.8, βI=9.14) on
Day 2 and 0.0827 (Beta II: skewed to the right with αII=2.2, βII=2.47) on Day 3, respectively. The result of
the analysis of overall data shows that the flight time follows Normal distribution. Through the experiments,
the flight time distribution or fluctuation in the travel time is specified for the CCP method.

3.3.2 Under known distributions

First, by using the distribution information shown in Table 2, the flight time (t̃i,j) in Constraint (15) is assumed
to be distributed according to the known distributions (Normal and Beta). We refer to the deviation in the
Normal distribution and the shapes of the two Beta distributions (αI & βI and αII & βII). Under the
assumption that the flight time distribution of a drone follows a Normal or Beta distribution, the Constraint
(15) can be converted into a deterministic approximation for computational efficiency [22, 30].

Proposition 1 Assume the flight time (t̃i,j) is normally distributed and t̂i,j is the expected value of t̃i,j , then
Constraint (15) is equivalent to the following inequality:

Φ−1(1− ε)×
√ ∑
i∈(I∪{λ})

∑
j∈(I∪R)

x2
i,jV ar(t̃i,j)+ (16)

∑
i∈(I∪{λ})

∑
j∈(I∪R)

xi,j t̂i,j ≤ bλ,

Proof See [22, 30] for details.

Proposition 2 Assume the flight time (t̃i,j) is distributed according to the Beta distribution and t̂i,j is the
expected value of t̃i,j , then Constraint (15) is equivalent to the following inequality:∑

i∈(I∪{λ})

∑
j∈(I∪R)

[(1−Ψ−1
beta(ε))× t̃i,j +Ψ−1

beta(ε)× t̃i,j ]×xi,j (17)

≤ bλ, t̃i,j ≤ t̃i,j ≤ t̃i,j

Proof See [31] for details.

3.3.3 Under Uncertain Distributions

In practice, it is very challenging to evaluate the exact probability distribution P . The probability distribution
of flight time data may not follow the two distributions outlined above, nor be specified. This is one of the
disadvantages in using the CCP method [29]. In these cases, finite empirical data are used to estimate the
mean and variance of the flight time and assumed to belong to an entire family of probability distributions
[29, 30]. We refer to the deviation and the intervals of collected data. Constraint (15) can be expressed as
below:
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Table 3. Parameters applied in the case study

Parameter Value Unit
tw1 = 20
tw2 = 30

Penalty cost (Ptw) tw3 = 50 $(U.S. Dollar)
tw4 = 70
tw5 = 60

Remaining flight duration at waypoint λ 35 minute
Threshold value at waypoint λ 35 minute

Proposition 3 When the distribution is unknown, but the first two moments (mean t̂i,j and variance V ar(t̃i,j))
are known, then Constraint (15) is equivalent to the following inequality:√

(1− ε)/ε×
√ ∑
i∈(I∪{λ})

∑
j∈(I∪R)

x2
i,jV ar(t̃i,j) (18)

+
∑

i∈(I∪{λ})

∑
j∈(I∪R)

xi,j t̂i,j ≤ bλ,

Proof See [30] for details.

Proposition 4 Assume random data have known mean (t̂i,j) and the individual data are only known to
be placed independent bounded intervals (∈ [γ−i,j ,γ

+
i,j ]), then Constraint (15) is equivalent to the following

inequality: √
(1/2)ln(1/ε)×

√ ∑
i∈(I∪{λ})

∑
j∈(I∪R)

x2
i,j(γ

+
i,j −γ

−
i,j)2 (19)

+
∑

i∈(I∪{λ})

∑
j∈(I∪R)

xi,j t̂i,j ≤ bλ,

Proof See [30] for details.

4 Numerical Experiments

This section consists of three parts. In Section 4.1, we describe a case study to demonstrate how the proposed
rerouting process works. Using the case study, we test the proposed rerouting models and analyze the results
in Section 4.2. In Section 4.3 various scenarios on the weight parameters (a and b) in the objective function of
the ROM-S are explored to analyze the sensitivity of the parameters to the optimal solution and the objective
value. The two proposed models are implemented in GAMS [32] and solved by CPLEX 12.6.2 [33], and all
experiments are performed on a server running RedHat Linux 64-bit with an Intel Xeon processor and 16GB
of RAM.

4.1 A Case Study

For numerical experiments, we introduce the case study shown in Figure 6. Suppose that a drone is supposed to
visit target waypoints following the black dashed line, as shown, and return to the initial launching depot (c1).
However, during its flight, it encountered an some sort of unforeseen circumstance (i.e., the current remaining
battery runtime reaches the corresponding threshold value) at location wλ with five remaining target waypoints
(tw1 - tw5) to be visited. In addition, there are two more possible returning waypoints (depots c2 and c3)
as well as seven intermediate waypoints (iw1 - iw7) to reduce the collision risk with ground objects in flight
segments (Section 2).

As described in Section 2, each target waypoint is associated with a penalty cost if it is not visited during
the flight mission. The specific penalty cost values are summarized in Table 3. When the drone has 35 minutes
of battery runtime remaining (which is within the threshold value), an alternative flight path must be developed
to ensure the safe return of the drone and minimize the collision risk level of the flight path and the penalty
cost for not visiting target waypoints.



10 Seon Jin Kim, Gino J. Lim

Fig. 6. A case study

4.2 Numerical results and discussions

Using the case study, the proposed four deterministic counterparts of the CCP model (i.e., Normal distribu-
tion, Beta distribution, only known mean and variance, and only known and its intervals in Section 3.3) were
solved. Actual solving time for all cases is negligible. The detail results are shown in Table 4 and Figure 7.

First, under the Normal distribution assumption, the ROM-A found an optimal alternative flight path
for the drone at 10% and 5% of ε. The risk of the developed alternative path increases from 1.5 to 1.7 as the
violation level ε decreases from 10% to 5%. To ensure a higher satisfaction level for the safe return of the drone
after completing its flight mission, the drone is required to fly with a shorter path without visiting iw4 as
shown in Figure 7(a). However, at violation level ε = 1% (satisfaction level 99%), there is no feasible alternative
flight path to guarantee the safe return of the drone after visiting all five remaining target waypoints with
at least 99% confidence level. Therefore, the ROM-S instead of the ROM-A was utilized to find an optimal
alternative flight path. The drone only visits four remaining target waypoints except tw2. The corresponding
risk of the developed flight path by the ROM-S is 1.3 and the corresponding penalty cost for not visiting tw2
is $30.

Second, the proposed process was tested under the Beta distribution, in which the Beta I and Beta II
distributions were applied (see Section 3.3.1). Under the Beta I distribution, the risk of all the developed
alternative flight paths is 1.5 at ε = 10%, 5%, and 1% (Figure 7(b)), whereas under the Beta II distribution,
the risk increases from 1.5 to 1.8 as the satisfaction level (1 - ε) increases from 90% to 99% (Figure 7(c)).
The reason for the objective values under the Beta I distribution remaining constant for the three different
settings is because of the different shapes of the distributions. As shown in Figure 8, the probability density
function (PDF) of the Beta I distribution (Figure 8(a)) is narrower in width than the PDF of the Beta II
distribution (Figure 8(b)). The Beta I distribution has a lower variance than the Beta II distribution. The
values of Ψ−1

beta(ε) under the Beta I distribution range from 0.29 to 0.40 in the different values of ε (0.1, 0.05,
and 0.01) as shown in Figure 8(c), whereas the values of Ψ−1

beta(ε) under the Beta II distribution range from
0.06 to 0.19 as shown in Figure 8(d). Hence, the optimal values under the Beta I do not vary in the different
values of ε (0.1, 0.05, and 0.01).

Next, we tested the proposed process under the assumption that the mean and variance of the flight time
are known instead of the specified distribution information. To visit all five remaining target waypoints under
this assumption, the allowable minimum violation level (ε) is 17%, which is the highest violation level of all
experiments. At violation levels below 17% (ε < 17%), the ROM-S was implemented to develop an optimal
alternative flight path which minimizes the penalty cost as well as the risk. At ε = 1%, the drone only visits
two target waypoints (tw4 and tw5) and the corresponding penalty cost for not visiting target waypoints (tw1,
tw2, and tw3) is $100 (Figure 7(d)).

Last, under the assumption that the independent intervals of the flight times, as well as the mean value
are known, the allowable minimum violation level of (ε) is 12% to visit the five remaining target waypoints
and safely return to a depot (c2). The ROM-S was also triggered to get an optimal alternative flight path
when the violation level is less than 12% (ε < 12%). The specific paths are shown in Figure 7(e).
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Table 4. Results from case study

Violation level: ε Results
Risk Optimal flight path(Satisfaction level: 1-ε) (Penalty cost)

Under Normal distribution
10% (90%) 1.5 wλ→ tw1 → tw2 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
5% (95%) 1.7 wλ→ tw1 → tw2 → tw4 → iw2 → tw3 → tw5 → c2
1% (99%) Infeasible No solution
⇒ ROM-S∗ 1.3 (30) wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
Under Beta I distribution
10% (90%) 1.5 wλ→ tw1 → tw2 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
5% (95%) 1.5 wλ→ tw1 → tw2 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
1% (99%) 1.5 wλ→ tw1 → tw2 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
Under Beta II distribution
10% (90%) 1.5 wλ→ tw1 → tw2 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
5% (95%) 1.7 wλ→ tw1 → tw2 → tw4 → iw2 → tw3 → tw5 → c2
1% (99%) 1.8 wλ→ tw1 → tw2 → iw4 → tw4 → tw3 → tw5 → c2
Under uncertain distribution with known mean and variance
17% (83%) 2.0 wλ→ tw1 → tw2 → tw4 → tw3 → tw5 → c2
10% (90%) Infeasible No solution
⇒ ROM-S∗ 1.4 (30) wλ→ tw1 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
5% (95%) Infeasible No solution
⇒ ROM-S∗ 1.5 (30) wλ→ tw1 → tw4 → iw2 → tw3 → tw5 → c2
1% (99%) Infeasible No solution
⇒ ROM-S∗ 0.8 (100) wλ→ iw3 → tw5 → iw5 → tw4 → c2
Under uncertain distribution with known independent intervals
12% (88%) 2.0 wλ→ tw1 → tw2 → tw4 → tw3 → tw5 → c2
10% (90%) Infeasible No solution
⇒ ROM-S∗ 1.3 (30) wλ→ tw1 → tw4 → iw2 → tw3 → tw5 → iw7 → c1
5% (95%) Infeasible No solution
⇒ ROM-S∗ 1.4 (30) wλ→ tw1 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
1% (99%) Infeasible No solution
⇒ ROM-S∗ 1.4 (30) wλ→ tw1 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
Under deterministic assumption

1.3 wλ→ tw1 → tw2 → iw4 → tw4 → iw2 → tw3 → tw5 → iw7 → c1
Initial flight path

1.2 wλ→ iw1 → tw1 → tw2 → iw4 → tw4 → iw2 → tw3 → tw5 → iw7 → c1
∗ : a=b=1

Through these numerical results, the CCP method provides more conservative solutions compared to the
deterministic assumption. The results from the ROM-S were obtained under the assumption that the weighted
importance value for the risk in the objective function of the ROM-S is 1 (a = 1) and the value for the penalty
cost is also 1 (b = 1). In Section 4.3, we will analyze the optimal values under various values of the two
parameters (a and b).

4.3 Sensitivity analysis on weight parameters

The objective function (11) in the ROM-S (Section 3.2) consists of two terms: the first term is to minimize the
risk, and the second term is to minimize the penalty cost of the developed alternative flight path. These are
conflicting goals, in principle. If minimizing the risk is the sole focus, it may not be feasible to accomplish the
flight mission due to there being a significant number of unvisited target waypoints. Conversely, if minimizing
the penalty cost is the sole focus (visiting as many waypoints as possible), the alternative flight path may be
at a greater risk of a collision or a detection.

The sensitivity analysis was conducted by changing the weighted importance values on the objective
function in the ROM-S in the case of satisfaction level 99% (violation level: ε = 1%) under the Normal
distribution was conducted in this section. The results are shown in Table 5, in which we first changed the
value of a under the condition that the value of b is fixed at 1 (b = 1), and vice versa.
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(a) Under Normal distribution (b) Under Beta I distribution

(c) Under Beta II distribution (d) Under known mean and variance

(e) Under known independent intervals

Fig. 7. Specific flight paths from case study

When the value of b was set to 1, the risk value corresponding to alternative flight paths remained the
same (i.e.,1.3) until the value of a was increased beyond 40. Between the value of 50 and 100, the risk value
dropped to 0.8, whereas the penalty cost increased from 30 to 50. To minimize the weighted sum (Weighted
sum = a × Risk + b × Penalty cost) when a ≥ 40, corresponding alternative paths dropped to visiting only
two target waypoints (tw1 and tw2) from the original plan. If the alternative path with a = 50 were to be the
same as the path developed at a < 40 (i.e., not visiting only tw2), the corresponding weighted sum would have
been 95 (95 = 50 × 1.3 + 1 × 30), which is greater than the weighed sum of the optimal alternative path as
shown in Figure 9 (Projected objective value = 95 vs Realized objective value = 90). This means that when
the value of a is 40 or higher, the risk is relatively more important than the penalty cost in the remaining
flight mission. In other words, the flight safety of the drone is more important than completing the remaining
flight mission. This was expected due to the scale difference between the risk value and the penalty cost.
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(a) Beta I: Probability density function (b) Beta II: Probability density function

(c) Beta I: Cumulative distribution function (d) Beta II: Cumulative distributio function

Fig. 8. Different shapes of the Beta distribution

Table 5. Results from ROM-S at ε= 1% under a Normal distribution

Weights Objective function value Optimal flight patha b Risk Penalty cost Weighted sum
1 1 1.3 30 31.3 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
2 1 1.3 30 32.6 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
5 1 1.3 30 36.5 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
10 1 1.3 30 43 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
20 1 1.3 30 56 wλ→ iw1 → tw1 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
30 1 1.3 30 69 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
40 1 1.3 30 82 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
50 1 0.8 50 90 wλ→ tw3 → iw2 → tw4 → iw5 → tw5 → iw6 → c1
60 1 0.8 50 98 wλ→ iw3 → tw3 → iw2 → tw4 → iw5 → tw5 → iw6 → c1
70 1 0.8 50 106 wλ→ iw3 → tw3 → iw2 → tw4 → iw5 → tw5 → iw6 → c1
80 1 0.8 50 114 wλ→ iw3 → tw3 → iw2 → tw4 → iw5 → tw5 → iw6 → c1
90 1 0.8 50 122 wλ→ iw3 → tw3 → iw2 → tw4 → iw5 → tw5 → iw6 → c1
100 1 0.8 50 130 wλ→ iw3 → tw3 → iw2 → tw4 → iw5 → tw5 → iw6 → c1
1 2 1.3 30 61.3 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2
1 5 1.3 30 151.3 wλ→ iw1 → tw1 → iw4 → tw4 → iw2 → tw3 → tw5 → c2
1 10 1.3 30 301.3 wλ→ tw1 → tw3 → iw2 → tw4 → iw5 → tw5 → c2

On the other hand, when the case is that the value of b is altered with a fixed value of a (a = 1), the risk
and the penalty cost did not change even when the value of b increased beyond 10. Only the weighted sum
increased proportionately to the value of b. In this case study, the scale of the penalty cost values dominated
the scale of the risk values when a = b = 1. Based on the scales of the given values for the collision risk and
the penalty cost, this approach can help the decision makers find appropriate values for a and b considering
their decision criteria.
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Fig. 9. Changes of the objective function value in the ROM-S when b=1

5 Conclusion

This paper introduced a method for the real-time rerouting of drone flights under uncertain flight time. To
ensure the safe return of the drone and minimize the risk of setback of the purpose of the drones’ missions in the
case of an unforeseen circumstance (insufficient remaining battery runtime), the proposed rerouting process
features two rerouting optimization models (ROM-A and ROM-S) used to develop an optimal alternative
flight path for completing the remaining flight. Once the drone starts its flight and a rerouting decision is
triggered (due to the occurrence of an unexpected event), the ROM-A was used to find an alternative flight
path for visiting all remaining target waypoints based on the original plan that was given. If the ROM-A fails
to find a feasible solution, the ROM-S was triggered to generate an alternative flight path, minimizing the
unmet demand (not visiting target waypoints). Both models include the constraint to consider uncertain flight
(travel) times between waypoints. To capture the flight time uncertainty, a CCP method was developed and its
deterministic counterparts were derived to lower the computational burden for solving the CCP model under
the Normal and Beta distributions as well as under unknown distribution information (solely known mean,
variance, or intervals of the flight times). The proposed models were tested using a case study. The results
showed that the flight paths developed based on CCP carries a higher risk value than the deterministic model
when all remaining target waypoints were forced to be visited. When the risk value was fixed at 1.2, which
is the value obtained from the deterministic model, the CCP-based flight path skipped some waypoints to
reduce the risk of being detected. Overall, the CCP produced more conservative plans than the deterministic
approach due to the travel time uncertainty and the detection risk. The CCP has the flexibility of adjusting
the conservatism of the generated flight paths using the value of ε. If the user is risk-averse (very sensitive to
the uncertainty), a very small value of ε could be specified to develop a flight path. If the user is risk-prone
(less sensitive to the uncertainty), a larger value of ε could be used instead. Hence, the CCP method provides a
flexible way to consider uncertain factors in developing alternative flight paths as well as the decision maker’s
risk tolerance with regard to those uncertainties.

An extension of this work may include a method to determine an appropriate threshold value at each
waypoint. This value may affect the timing of the decision to reroute the current flight path and, thus, the
amount of unmet demand. Furthermore, there is a need to collect more comprehensive data to understand
better how uncertain factors affect drone flight performance in real-time under various flight environments,
such as extreme weather conditions, and different drone specifications.
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